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Abstract. The number of equivalence classes of central configurations (abbr. c.c.) in the planar 4-body 
problem with three arbitrary and a fourth small mass is investigated. These c.c. are derived according 
to their generic origin in the 3-body problem. It is shown that each 3-body collinear c.c. generates exactly 2 
non-collinear c.c. (besides 4 collinear ones) of 4 bodies with small m 4 ~> 0; and that any 3-body equilateral 
triangle c.c. generates exactly 8 or 9 or 10 (depending on m 1, m 2, m3) planar 4-body c.c. with rn 4 = 0. 
Further. every one of these c.c. can be continued uniquely to sufficiently small m 4 > 0 except when there 
are just 9 ; then exactly one of them is degenerate, and we conjecture that it is not continuable to m 4 > 0. 

1. Introduction 

C o n s i d e r  N mass  po in t s  wi th  masses  m k > 0 a n d  p o s i t i o n  vectors  qk, (k = 1, . . . ,  N)  

in  the  euc l idean  p l a n e  E 2. T h e y  fo rm a cen t ra l  c o n f i g u r a t i o n  {ql ,  - . - ,  qN ; rnx . . . . .  rnN}, 

or  a b b r e v i a t e d :  a c.c. {q; rn}N, b e l o n g i n g  to the  masses  m k, if the vec tors  qk satisfy the  

sys tem of  a lgebra ic  e q u a t i o n s  

N 

f l  . . . . .  fN = 0, where  f k :  = ~ mTfk3(qk -- q j ) -  qk' rjk: = [qj -- qkl > 0 .  
j=l  
j~k 

(1) 

These  c o n f i g u r a t i o n s  descr ibe  the  u l t ima te  g e o m e t r y  of  m o t i o n  n e a r  a co l l i s ion  

s ingu la r i t y  or  for e x p a n s i o n  to in f in i ty  in  the N - b o d y  p r o b l e m ,  a n d  they  fu rn i sh  

h o m o g r a p h i c  so lu t i ons  of  this p r o b l e m  t h r o u g h  

Zk(t) = qkz(t), (k = 1 . . . .  , N),  where  z = z(t) satisfies 5 = - czl z l -  3 ; 

i.e. z(t) is a n y  so lu t i on  of  a K e p l e r - p r o b l e m  (c > 0) a n d  qk a n d  z are  cons ide red  as 

c o m p l e x  n u m b e r s .  W h e n  N = 3 a n d  m 1 , m 2, m 3 a rb i t r a ry ,  al l  so lu t i ons  (q~, q2, q3) 

of  (1) are  k n o w n :  T h e y  are  the  3 co l l inea r  c o n f i g u r a t i o n s  of Eu le r  a n d  the  2 equ i l a t e ra l  

t r i ang le  c o n f i g u r a t i o n s  of Lag range .  F o r  N ~> 4 a n d  g iven  masses  the  so lu t i ons  

(qz . . . . .  qN) of  (1) are  n o t  yet  all  k n o w n ,  n o r  have  the i r  equ iva lence  classes been  

comple t e ly  e n u m e r a t e d .  W e  shal l  m a k e  here a smal l  c o n t r i b u t i o n  to the  la t te r  t a sk  

w h e n  N = 4, wh ich  we a s s u m e  f rom n o w  on.  T h e n  (1) cons t i t u t e s  8 scalar  e q u a t i o n s  

for 8 u n k n o w n s  (the vec to r  c o m p o n e n t s  of  the  qk) with  4 p a r a m e t e r s  m k. At first we 

der ive  a n  a lgebra ic  r e d u c t i o n  of  (1) to 3 e q u a t i o n s  in  3 u n k n o w n s ,  a n d  t h e n  we reduce  

the p r o b l e m  to the  case m 4 = 0. W e  c an  here  on ly  o u t l i ne  the  ideas  a n d  t e c h n i q u e s  

be ing  used  a n d  refer for a m o r e  de ta i led  t r e a t m e n t  a n d  c o m p l e t e  proofs  to a for th-  

c o m i n g  p a p e r  in  Celestial  Mechanics .  
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2. Algebraic Reduction 

Applying in (1) the scaling (and then d ropp ing  the primes) 

N 4- 

mk = m'km, qk = qk ml/3'  m: = E m k ,  yields Y~m~ = 1. 
1 i 

N o w  (1) with N = 4 implies 

Setting 

yields 

4. 4. 3 

2 m k q k  = - -  2 m k f  k = 0 ,  and with Zk : = qk - -  q4. then qk  = Zk - -  2 m j z j "  
1 1 1 

4 

Rjk: = mjmk(rjk 3 -- 1), (j :~ k), Rk: = ~ Rjk,  (k = 1 . . . .  ,4) 
j = l  
j ~ k  

4- 3 

m k f  k = ~ Rjk(Z k -- Z;) = RkZ k -- ~, R;kZ ;, (Z 4 = 0, rik = [Zj -- Z k 1) 
j = l  j = l  
j:~k j ~ k  

and it becomes  visible that  (1) is equivalent  to M z  = 0, where 

_ 12 _R13 / (Zl) ..lmlIl' 
M: = R2~ R~ Rz3 ,z: = z 2 , ' s i n c e [ m 2 f 2 ] :  Mz. 

R31 - -  R32 R3 / z3 \ m a f 3 ]  

(2) 

(3) 

(4) 

Since [Zk[ = rk4 > 0; i.e. z @ 0 in ~3 (considering qk' Zk as complex  numbers) ,  det 
M = 0. Hence  rank  M ~< 2. We can show that  r ank  M = 2 implies z 1 , z z, z a are parallel,  
and thus the endpoints  of  the posi t ion vectors  q 1 . . . . .  q4 f rom the origin are collinear. 

Clearly r ank  M > 0, since otherwise all R;k = 0; i.e. all rjk = 1, (1 ~<j < k ~<4), which 
is geometr ical ly  impossible.  Hence  

rank  M = 1 on every non-col l inear  c.c. {q; m}4 in E 2 = of. 

In this case every 2-by-2 subde te rminan t  of  M vanishes,  which yields 

R12R34 = R13R24 = R14R23 = :R*, R g R *  = - R I 4 R z 4 R 3 4 ,  R ; R  4 = R j  2 ; 
(5) 

and it can be shown tha t  R* ~ 0 on any non-col l inear  c.c. Then  

3 

R4Ri;  = - Ri4.R;4 ~ O, (1 ~< i < j  ~< 3), ~ Rk4Zk = 0 (6) 
k = l  

the last f rom M z  = 0. Conversely,  we can show tha t  (6) implies r ank  M = 1 and 

M z  = 0, and  that  the result ing qk given in (3) de te rmine  a non-col l inear  c.c. {q ; m}4. 
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The p roo f  of  the latter fact is difficult. (6) represents  5 sca lar  equat ions  for 6 unknowns  
(the real and  imaginary  par ts  of z 1 , z 2, z3), bu t  we m a y  choose lrnz 3 = 0, which 
am oun t s  to a ro ta t ion  of  the c.c. 

We shall consider  only non-col l inear  c.c. ; i.e. (6), and  achieve for this case a further 
reduct ion by int roducing barycentr ic  coordinates  for q4 with respect  to q~, q2, q3 ; 
i.e. if qx - q3 and q2 - q3 are l inearly independent  over  R, we write 

3 3 

q4 = ~ bfl j ,  ~ bj = 1 ; (q4 =~ b l ,  b 2 , b a uniquely). (7) 
1 1 

Indeed the required independence follows f rom the last equat ion  in (6) with 

Zk = qk -- q4, since {q ; rn}4 is non-coll inear .  Tha t  same equat ion  and  (7) then  imply  

Setting 

b k = R k J R  4, (k = 1, 2, 3), R 4 @ 0. (8) 

and 

Pk 2 = r2(1 + miSJrnjS i )  + r~(1 + m)Sj /m,S , )  - rZrnZS2/mimjSiSj  (14) 

by (11) and  (8). N o w  (13) const i tutes  3 equat ions  in the 3 unknowns  r I , r2, r 3 . The  
steps leading f rom (6) to (13) can actual ly be reversed, and  thus any solut ion (r x , r 2 , r a) 

of  (13) with r k > O, 0 < Pk < Pi + Pi and r k ~ 1 (k = 1, 2, 3) so that  all R~j ~ 0, yields a 
non-col l inear  c.c. {q ; rn}4 and  every such c.c. can be so obtained.  

T o  find solutions of  (13) with given masses  satisfying (2) we first de termine  all 
solut ions of  (13) when rn 4 = 0 and then try to cont inue them to small  posi t ive m 4 
by the implicit  funct ion theorem.  Therefore  it is required tha t  the associated Jacob ian  
functional  de te rminan t  

0 ( F  x , F 2 , F 3 )  
D 3 - - -  - -  at Pl = P2 = P 3  = 1, m 4 = 0 (15) 

6t(r  I , r 2 , r 3 )  

pk : = rij for (i,j ,  k) = (1, 2, 3), (2, 3,1),  (3,1,  2) ; rk : = rk4, (k = 1,2, 3) (9) 

we derive using (7) 

r2k ---- bi2 p j2 ..~ bj2 Pi2 .j~ blbj(p2 + Pi2 _ p2), (k -- 1, 2, 3 ; i , j  as before). (10) 

Consider ing this as a system of l inear equat ions  for p 2 , p22 , p 2 we obta in  

p2=bTXb~Xk . [(b, + bi)bir2 + (b, +bj)b72-b2r2qk k J, (k = 1,2, 3" etc.). ,  (11) 

Setting 

m4Fk:  = R 4 R i j  + RI4Rj4  , S k : = r k  3 - -  1, (k = 1, 2, 3 ; etc.) (12) 

we obta in  f rom (6), (4) and (9) the condi t ions 
3 

f I ---- F 2 - -  F a = 0 w i t h  F k = ( p k  3 - -  1 ) ~ m t S ,  + maSiS  j (13) 
1 
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does not vanish on the considered solution. A tricky calculation using (14) and 
(12) yields 

D3 = - 27 R3 rlrar3 [ 1 -  3 ~ bkr~3 S~ l -4 
blb2b3 1 

with 

rk2 = b~ + b 2~ + bibj ' bk = m k S k  R I, 

27 blb2b 3 3 1 
4 S 1 $2S 3 (rl r2r3)-5 E1 bkr~ Sk 

(16) 

3 

(k = 1, 2, 3), R: = ~ miS ! ~ 0 (17) 
1 

by (10), (8) and (12). The fact that this calculation ofD 3 becomes possible at all provides 
additonal motivation for our reduction of (1) to (13). 

3. Central Configurations with m 4 : 0 and their Continuation 

Again we consider only non-collinear c.c. and obtain for these from (13) as m 4 ~ 0 
the conditions 

3 

E : ~ mkS k = 0, or L : Pl = P 2  = / ) 3  = 1. (18) 
1 

In the first (Eulerian) case R = m 4 1R 4 = 0 and the use of barycentric coordinates 

is impossible. In fact we can show that in this case the endpoints of ql ,  q2, q3 drawn 
from the origin lie on a straight line and thus {q;m}3 is an Eulerian collinear c.c. 
Furthermore in this case, using (1) with m 4 = 0 we can show by direct calculations 
that there are exactly 2 solutions for q4 such that {q, m}4 with rn~ = 0 is non-collinear. 
Clearly these c.c. are symmetric to the Euler-configuration. Also, the relevant Jacobian 
determinant does not vanish, so that exactly two mirror symmetric non-collinear 
{q;m}4 for small m 4 > 0 arise from each of the 3 collinear c.c. {q;m}3. Palmore 
(1982) has shown (with a much more elegant proof  than ours) that, more generally, 

every collinear c.c. {q;m}N for N >~ 2 generates for small raN+ 1 > 0 exactly 2 non- 
collinear c.c. {q ; m}N + i (besides the N + 1 collinear c.c. of Moulton). 

In the second (Lagrangian) case q~, q2, q3 point to the corners of an equilateral 
triangle with side 1, by (9) and (1). Thus {q;rn}3 is a Lagrangian c.c., and q4 with 
(7) is to be determined so that (8), (10) and (18) case L, hold; i.e. so that (17) holds. 
This requires 2 equations for 2 barycentric coordinates, say, or 

3 3 3 

0 : Rq4 - Z mkSkqk : Z mkSkZk = Z mkr[ a Zk + q4, rk = I Zk I, (19) 
1 1 1 

since 

3 3 

Zk = qk -- q4, ~,mkqk = O, • m  k = 1, m 4 = 0. (20) 
1 1 
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Set t ing 
3 

z : = q4 = x + iy, qk = 3 -  1/2e2~ik/3 - -  q, q = 3 -  1/2~mkez~ik/3 (21) 
1 

then (19) is equivalent  to 
3 

91 = 92 = 0, where 91 + i92 = 9(z): = z + ~ m k r ] 3 ( q k  -- z). (22) 
1 

This  const i tu tes  2 equa t ions  for 2 unknowns ,  x and y, wi th  3 pa rame te r s  m l ,  rn2, m 3. 

These equa t ions  also follow f rom (1) wi th  m 4 = 0 directly.  Any  so lu t ion  z of  (22) 

on which D 3 in (16) is no t  zero, generates  a non-co l l inea r  c.c. {q ;m}4 for small  

rn~ > 0, as seen in Sect ion 2. 

W e  in terpre te  m 1, m 2, m 3 as ba rycen t r i c  coord ina te s  of  a po in t  m in the  mass  

t r iangle  T : m k > 0 ,  m I + m 2 -k- m 3 ---- 1. Any  so lu t ion  z = z(rfi) of  (22) for given 

m = rh can be uniquely  con t inued  as a so lu t ion  of  (22) to nea rby  m, if the Jacob ian  

de t e rminan t  

3 

D 2  : = glxg2r - -  g z x g l y  ---- D z ( z '  m)  = R 2 - 3R ~mkrZ 3 + 
1 

27 3 
+ -  Z mlrnbZr~ 5r7 5 (23) 

4 k = l  J 3 

does  not  vanish  at  z = z(n]), m = rh. N o w  from (22) fol lows (19); i.e. (17) using (7), 

and  especial ly rn k = RbkS  ~ i. Hence  D2(z(m), m) = 0, iff. 

3 27 3 
D * : =  l - -  3~ f~bkSk l rk3  + ~ b l b z b 3  ~ b k S ~ a S ] - l r ~ - S r [ 5 = O .  (24) 

I k = l  

F u r t h e r m o r e  
3 

m k =  SiSjbk S -  1, S : = ~, SiS~b k ; (S k = r k 3 __ 1) ; (25) 
k = l  

i.e. every so lu t ion  z = z(m) of (22) de te rmines  m = m(z) in T uniquely.  N o w  it turns  

out  tha t  the so lu t ions  (ba, be, b3) of (24) const i tu te  a 1-dim. mani fo ld  on which 

q4 of  ( 7 )  descr ibes  a s imple c losed curve C* con ta ined  ent i rely in the equi la tera l  

t r iangle  T de t e rmined  by  q l ,  q2, q3" The p r o o f  of  this fact is compl i ca t ed  and  is 

based  on sui table  local  power  series expans ions  of  the re la ted  funct ion 

3 1 3 3 e21~kk 
- ~, - " ,el~ (26) F(Z)  : = 2 bkSk  l r~  3 bkS]  1 rk = Zk/r k 

1 

near  the m i d p o i n t  and  the corners  of T, since (24) is equiva lent  to F(z) = 2/3. 

By (25) the image  C = re(C*) is a s imple closed curve in T m, which divides  T m 

into two connec ted  regions,  say U conta in ing  the m i d p o i n t  of  T and  V = T - U - C. 

If m is at  the m i d p o i n t ;  i.e. m~ = m 2 = m 3 = 1/3, we can show tha t  every so lu t ion  

z of  (22) lies on one of  the 3 s t ra ight  lines r 1 = r 2, r 2 = r 3 , r 3 - - r  1, and  tha t  each 

of these lines carr ies  exact ly  4 so lu t ions  inc luding  z = 0, which they  have in common .  
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Hence there are exactly 10 solut ions of(22) for this m. Since D* :~ 0 in U, it follows tha t  

for every m in U there exist exactly 10 solut ions z of  (22), and exactly 4 of  these are 
in T. Fur ther ,  since D* :~ 0 in the connected region V, (22) has one and  the same 

n u m b e r  of  solutions z for all m in V. To  de termine  these solutions let m 2 = m 3 and  
m 1 > 0 very small, so that  m is in V. Then a detailed analysis of  the algebraic curves 
C u in the z-plane with equat ions  

m i ( r 7  3 - -  1 ) b j  = m j ( r j  3 - 1 ) b l ,  (i,j) = (1, 2), (2, 3), (3, 1) (27) 

by (17) and (7) with (21), reveals that  these curves intersect in exactly 8 points  z, 

of  which 2 are in T. Hence  it follows tha t  (22) has for m on the singular curve C exactly 
9 solutions z, one of those is on C*, which is a manifo ld  of  double  points.  Summariz ing ,  
it follows the t h e o r e m :  Any equilateral  t r iangle c.c. {q ;m}a  generates exactly 8, 9 

or  i0 p lanar  c.c. {q;m}4 with m 4 = 0 depending on whether  m in T m lies outside, 
on or inside the curve C. 

We now ask for the cont inuabi l i ty  of  the cor responding  solutions of (13) with 

m 4 = 0; i.e. of (18) L, to posit ive m 4. We choose differentiable functions m k ( # ) >  0 

such that  

4- 3 

mk(#) = 1, m4(#) = # />  0 and ~ rhj : = 1, thj : = mi(0 ) > 0 (28) 
1 1 

and consider (13) and (14) with m k = ink(#). F r o m  (16) and (24) follows the impor t an t  
fact that  D* divides D 3, hence D 3 = 0  on {q;m(0)} 4, iff. q4 = z = z(rh) is on the 
critical curve C*. I t  follows that  every {q;m}4 with m 4 = 0 (given in the above  
theorem) and  with q4 not  on C*, can be cont inued uniquely to a c.c. {q, m } ,  for 

small  m 4 > 0, by  Section 2. However ,  if q4 is on C* (and thus rh on C), the cont inuabi l i ty  
is in doubt .  In  this case one can expand the F k in (13) into power  series in r l -  r* 
(i = 1, 2, 3) and # abou t  the cor responding  solut ion r~ = r*,  # = 0 of  (13) with (28). 
We find that  the matr ix  ((~Fk/~r~))* at  this solut ion has rank  2. Hence  2 of the equa-  
t ions in (13) can be solved by linear e l iminat ion and the result ing third equat ion  
can, with the help of  the Weierstrass  p repa ra t ion  theorem,  be conver ted  into a 
po lynomia l  equat ion  in one unknown  (say x = r 3 -- r~) with coefficients depending 
on # and of  degree at least two, since D* = 0. The  explicit compu ta t i on  of  this poly-  
nomia l  is quite labor ious  and has not  yet been accomplished.  We conjecture 

that  its roots  x for small  # > 0 are not  real, for all q4 on C*. If  this is true, then we 
m a y  conclude that  every equilateral  c.c. {q, rh}3 generates for sufficiently small  

m 4 > 0 either 8 or  10 p lannar  c.c. {q, m}4 with (28), depending on whether  m lies 

outside or  inside (including on) C. 

4. Concluding Remarks 

By the foregoing there is a c5 = • ( m l ,  m2, m 3 ) >  0 such that  for any  choice of 

m I , m 2, m 3 > 0 and  m 4 with 0 < m 4 < c5 the n u m b e r  of  equivalence classes of  c.c. 
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{q;m}4 is either 34 or 38, namely 3(4 + 2 )=  18 arising from Eulerian c.c. and, 
if our conjecture holds, 2(8 or 10) arising from Lagrangian c.c. For  the case m 4 = 0 
exhaustive numerical computations of the positions of m 4 in the Lagrangian case 
have been performed by Pedersen (1944). There also the singular curves C* and 
C are being numerically exhibited. Further extensive numerical computations 
of {q ;m}4 have been carried out by Sim6 (1978), who traces their evolution as 
m moves from the midpoint of the mass tetrahedron to one of its faces (say m 4 = 0). 
The numerical findings are consistent with the analytical results described in this 
paper. The careful mathematical analysis and rigorous calculations required to 
prove these results are contained in the Ph.D. dissertation (1981) of my student 

J. R. Gannaway. 
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