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Abstract. The number of equivalence classes of central configurations (abbr. c.c.) in the planar 4-body
problem with three arbitrary and a fourth small mass is investigated. These c.c. are derived according
to their generic origin in the 3-body problem. It is shown that each 3-body collinear c.c. generates exactly 2
non-collinear c.c. (besides 4 collinear ones) of 4 bodies with small m, > 0; and that any 3-body equilateral
triangle c.c. generates exactly 8 or 9 or 10 (depending on m,,m,, m,) planar 4-body c.c. with m, =0.
Further. every one of these c.c. can be continued uniquely to sufficiently small m, > 0 except when there
are just 9 ; then exactly one of them is degenerate, and we conjecture that it is not continuable to m, > 0.

1. Introduction

Consider N mass points with masses m, > 0 and position vectors g, (k=1,..., N)
in the euclidean plane E2. They form a central configuration {q,, ..., gy ;m,. ..., My},
or abbreviated: a c.c. {g; m},, belonging to the masses m,, if the vectors g, satisfy the
system of algebraic equations

N

fi=+-=fy=0, where fk:-——ijrjf(qk—qj)—qk,rjk::[qj—qk|>0.
i=1
itk

0y

These configurations describe the ultimate geometry of motion near a collision
singularity or for expansion to infinity in the N-body problem, and they furnish
homographic solutions of this problem through

z,(t) = q,z(t), (k =1, ..., N), where z = z(t) satisfies # = — cz|z|>;

i.e. z(t) is any solution of a Kepler-problem (c > 0) and g, and z are considered as
complex numbers. When N =3 and m,,m,, m, arbitrary, all solutions (q,,q,,q;)
of (1) are known: They are the 3 collinear configurations of Euler and the 2 equilateral
triangle configurations of Lagrange. For N 24 and given masses the solutions
(@, ...,4qy) of (1) are not yet all known, nor have their equivalence classes been
completely enumerated. We shall make here a small contribution to the latter task
when N = 4, which we assume from now on. Then (1) constitutes 8 scalar equations
for 8 unknowns (the vector components of the g,) with 4 parameters m,. At first we
derive an algebraic reduction of (1) to 3 equations in 3 unknowns, and then we reduce
the problem to the case m, = 0. We can here only outline the ideas and techniques
being used and refer for a more detailed treatment and complete proofs to a forth-
coming paper in Celestial Mechanics.
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2. Algebraic Reduction
Applying in (1) the scaling (and then dropping the primes)
N 4
m,=mm,q,=qm’? m=Yym, yields Y m =1 ()
1 3

Now (1) with N = 4 implies

4 4 3
mg, = —3mf,=0and withz,:=q, —g, theng, =z, —Ymz. (3)
1 1 1

Setting
4
R,:= mjmk(rj;f —1),(GFk,R;:= ) Ry, k=1,...,4) 4)
Je
yields

4 3

mfi= 2 Rz —z) =Rz, — ) Rz (24 = 0,1 = |Zj_Zk|)
j=1 ji=1
J¥k j*k

and it becomes visible that (1) is equivalent to Mz = 0, where

R, —R;, =Ry Z m, f,
M:=| —R,, R, —R,;},z:=| z, |;sincef m,f, |=Mz.
—R;; —R;, R, Z3 myf,

Since |zk| =r,>0;ie z+#0 in 4> (considering g,,z, as complex numbers), det
M = 0.Hencerank M < 2. We canshow thatrank M = 2implies z, z,, z, are parallel,
and thus the endpoints of the position vectors g, , ... , g, from the origin are collinear.
Clearly rank M > 0, since otherwise all R = 0; ie. all a = 1,(1 €j <k <4), which
is geometrically impossible. Hence

rank M = 1 on every non-collinear c.c. {g;m}, in E*=%.
In this case every 2-by-2 subdeterminant of M vanishes, which yields

R ,R3,=R;3R,, =R ,R);=:R* RR*= —R R, ,R;,, RR,= R},

j4 2

&)

and it can be shown that R* # 0 on any non-collinear c.c. Then

3
R,R;=—R, R, #0,(1<i<j<3), ¥ R,z,=0 (6)

k=1

the last from Mz = 0. Conversely, we can show that (6) implies rank M =1 and
Mz =0, and that the resulting g, given in (3) determine a non-collinear c.c. {g;m},.
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The proof of the latter fact is difficult. (6) represents 5 scalar equations for 6 unknowns
(the real and imaginary parts of z,,z,,z,), but we may choose Imz, =0, which
amounts to a rotation of the c.c.

We shall consider only non-collinear c.c. ; i.. (6), and achieve for this case a further
reduction by introducing barycentric coordinates for g, with respect to q,,4,,4;;
ie. if g, — g, and g, — g, are linearly independent over R, we write

q4=213:b}qj,2j:bj=1;(q4=>b1,b2,b3 uniquely). N
Indeed the required independence follows from the last equation in (6) with
z, = 4, — 4, since {q;m}, is non-collinear. That same equation and (7) then imply

b= R, /R, (k=1,2,3), R, +0. (8)
Setting

Py =1y for (1,7, k)=(1,2,3),(2,3,1),(3, ,2); r,i=r,, (k=1,23) )
we derive using (7)

rp=blpl +bip} +bb(p? + p? — p), (k=1,2,3;i,j as before). (10)
Considering this as a system of linear equations for p?, pZ, p2 we obtain

P2 =b71b; \[(b,+bbr2 + (b, +b )by —b¥2], (k=1,23;etc). (11)

Setting
m,F,:=R,R;+R,R,,S,:= rid—1, (k=1,23;etc) (12)
we obtain from (6), (4) and (9) the conditions
3
Fl=F2=F3=0witth=(pk‘3—I)Zm,S,+m4SiSj (13)
1
and
pi=r{{1+mS,/mS)+ri(l+mS,/mS,) —rim?St/mmS,S, (14)

by (11) and (8). Now (13) constitutes 3 equations in the 3 unknowns r,,r,,r,. The
steps leading from (6) to (13) can actually be reversed, and thus any solution (r,, 7, r;)
of (13) withr, >0,0<p, <p, + p;and r, # 1(k=1,2,3) so that all R;; #+0, yields a
non-collinear c.c. {g; m}, and every such c.c. can be so obtained.

To find solutions of (13) with given masses satisfying (2) we first determine all
solutions of (13) when m, =0 and then try to continue them to small positive m,
by the implicit function theorem. Therefore it is required that the associated Jacobian
functional determinant

_O(F,,F,,F,)

3 5(r1,r2,r3)ap1 Py ="P; m, (15)
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does not vanish on the considered solution. A tricky calculation using (14) and
(12) yields
_ 27 bbb,
:—27R3 bb [1—3Zbkr S+ 4SSS(123) SZbrk ]

17273

(16)
with
ry =b} +b? +bb,

i’

3
by=mSR Y, (k=123), R:=YmS,#0 (17)
1

by (10), (8) and (12). The fact that this calculation of D, becomes possible at all provides
additonal motivation for our reduction of (1) to (13).

3. Central Configurations with rn, = 0 and their Continuation

Again we consider only non-collinear c.c. and obtain for these from (13) as m, —» 0
the conditions

3
E:)mS,=0, or L:ip,=p,=p,=1. (18)
1

In the first (Eulerian) case R =m, 'R, =0 and the use of barycentric coordinates
is impossible. In fact we can show that in this case the endpoints of g, , q,, g, drawn
from the origin lie on a straight line and thus {g;m}, is an Eulerian collinear c.c.
Furthermore in this case, using (1) with m, = 0 we can show by direct calculations
that there are exactly 2 solutions for g, such that {g, m}, with m, = 0 is non-collinear.
Clearly these c.c. are symmetric to the Euler-configuration. Also, the relevant Jacobian
determinant does not vanish, so that exactly two mirror symmetric non-collinear
{q;m}, for small m, >0 arise from each of the 3 collinear cc. {q;m},. Palmore
(1982) has shown (with a much more elegant proof than ours) that, more generally,
every collinear c.c. {g;m}, for N =2 generates for small m,, , >0 exactly 2 non-
collinear c.c. {g;m},, , (besides the N + 1 collinear c.c. of Moulton).

In the second (Lagrangian) case q,, q,,q, point to the corners of an equilateral
triangle with side 1, by (9) and (1). Thus {g;m}, is a Lagrangian c.c., and g, with
(7) is to be determined so that (8), (10) and (18) case L, hold; i.e. so that (17) holds.
This requires 2 equations for 2 barycentric coordinates, say, or

(19)

3
0=Rq, — kaSqu kaS 2= kark Lt den=
1

since

3 3
4 — 4, 2mg,=0,Ym =1m,=0. (20
1 1
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Setting
3
zi=q,=x+iy.q,= 312203 _ g g 3—1/2kae2nik/3 1)
1
then (19) is equivalent to

3
g,=9,=0, where g, +ig,=g(z):=z+ ) mr. g, — z) (22)
1

This constitutes 2 equations for 2 unknowns, x and y, with 3 parameters m, ,m,, m,.
These equations also follow from (1) with m, = 0 directly. Any solution z of (22)
on which D, in (16) is not zero, generates a non-collinear c.c. {g;m}, for small
m, > 0, as seen in Section 2.

We interprete m,,m,, m, as barycentric coordinates of a point m in the mass
triangle T, :m >0,m +m,+m,=1. Any solution z=z(#) of (22) for given
m = i can be uniquely continued as a solution of (22) to nearby m, if the Jacobian
determinant

3
D,:=9,4,,~92.9,,= D,(z.m)=R* 3RY my. *+
1
27 3 .
+ —4—1211 mmblr (23)

does not vanish at z = z(m), m = m. Now from (22) follows (19); i.e. (17) using (7),
and especially m, = Rb, S, *. Hence D, (z(m), m) = 0, iff.

3 27 3
D¥*:=1-3%bS 'r. >+ 2 bibabs Y b SIS e =0, (24)
1 k=1
Furthermore
3
m, = SiSjka“ 1S = z Sl.Sjbk (S, = rk‘3 —-1); (25)
k=1

i.e. every solution z = z(m) of (22) determines m = m(z) in T, uniquely. Now it turns
out that the solutions (b,,b,,b,) of (24) constitute a 1-dim. manifold on which
q, of (7) describes a simple closed curve C* contained entirely in the equilateral
triangle T determined by q,,q,,q,. The proof of this fact is complicated and is
based on suitable local power series expansions of the related function

3

2B, M te

1

3
F2):=bS 'r > — eV =z, fr, (26)
1

near the midpoint and the corners of T, since (24) is equivalent to F(z) = 2/3.

By (25) the image C =m(C¥*) is a simple closed curve in T, which divides T
into two connected regions, say U containing the midpointof 7, and V=T _-U-C.
If m is at the midpoint; i.e. m, =m, =m, = 1/3, we can show that every solution
z of (22) lies on one of the 3 straight lines r, =r,,r, =r,,r, =r,, and that each

of these lines carries exactly 4 solutions including z = 0, which they have in common.
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Hence there are exactly 10 solutions of (22) for this m. Since D* # 0in U, it follows that
for every m in U there exist exactly 10 solutions z of (22), and exactly 4 of these are
in T. Further, since D* # 0 in the connected region V, (22) has one and the same
number of solutions z for all m in V. To determine these solutions let m, = m, and
m, >0 very small, so that m is in V. Then a detailed analysis of the algebraic curves
C,; in the z-plane with equations

m(r7> = Db, =m % — Db, ()=(L2,(23),06,1) 27)

by (17) and (7) with (21), reveals that these curves intersect in exactly 8 points z,
of which 2 are in T. Hence it follows that (22) has for m on the singular curve C exactly
9 solutions z, one of those is on C*, which is a manifold of double points. Summarizing,
it follows the theorem: Any equilateral triangle c.c. {g;m}, generates exactly 8,9
or 10 planar c.c. {g;m}, with m, =0 depending on whether m in T, lies outside,
on or inside the curve C.

We now ask for the continuability of the corresponding solutions of (13) with
m, =0; ie. of (18) L, to positive m,. We choose differentiable functions m,(x) > 0
such that

4
Ymw=1m,u)=p>=20 and 28)

- M w
3
Il
=
It
3
E
\
o

and consider (13) and (14) with m, = m,(u). From (16) and (24) follows the important
fact that D* divides D,, hence D, =0 on {q;m(0)},, iff. g, =z =z(rii) is on the
critical curve C*. It follows that every {q;m}, with m, =0 (given in the above
theorem) and with g, not on C*, can be continued uniquely to a c.c. {g,m}, for
small m, > 0, by Section 2. However, if g, is on C* (and thus 7ii on C), the continuability
is in doubt. In this case one can expand the F, in (13) into power series in r, — r¥
(i=1,2,3) and p about the corresponding solution r, = r¥, u =0 of (13) with (28).
We find that the matrix ((OF,/0r;))* at this solution has rank 2. Hence 2 of the equa-
tions in (13) can be solved by linear elimination and the resulting third equation
can, with the help of the Weierstrass preparation theorem, be converted into a
polynomial equation in one unknown (say x = r, — r¥) with coefficients depending
on p and of degree at least two, since D¥ = 0. The explicit computation of this poly-
nomial is quite laborious and has not yet been accomplished. We conjecture
that its roots x for small ¢ > 0 are not real, for all g, on C*. If this is true, then we
may conclude that every equilateral c.c. {g,ni}, generates for sufficiently small
m, > 0 either 8 or 10 plannar c.c. {g, m}, with (28), depending on whether m lies
outside or inside (including on) C.

4. Concluding Remarks

By the foregoing there is a 6 =d(m , m,, m;) >0 such that for any choice of
m,,m,,my; >0 and m, with 0 <m, <J the number of equivalence classes of c.c.
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{q;m}, is either 34 or 38, namely 3(4 + 2) =18 arising from Eulerian c.c. and,
if our conjecture holds, 2(8 or 10) arising from Lagrangian c.c. For the case m, =0
exhaustive numerical computations of the positions of m, in the Lagrangian case
have been performed by Pedersen (1944). There also the singular curves C* and
C are being numerically exhibited. Further extensive numerical computations
of {g;m}, have been carried out by Simoé (1978), who traces their evolution as
m moves from the midpoint of the mass tetrahedron to one of its faces (say m, = 0).
The numerical findings are consistent with the analytical results described in this
paper. The careful mathematical analysis and rigorous calculations required to
prove these resuits are contained in the Ph.D. dissertation (1981) of my student
J. R. Gannaway.
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