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Abstract. It has been claimed that the representation of satellite motion in the vicinity of the critical 
inclination is a matter of practical, as well as theoretical interest, since "the perturbations in the 
coordinates are of the order of 25 times greater near the critical inclination than away from it" 
(Message et aL, 1962). In this paper we show, using Encke's method of numerical integration for 
satellites which are at, near, and away from the critical inclination, that there are no discernible 
features in the coordinate perturbations which distinguish the critical inclination from any other. 

1. Introduction 

Since the advent  of  the space age the calculation of  the orbits of  artificial satellites 

about  an oblate spheroid has been a problem of  great interest, bo th  theoretical and 
practical. Another  problem, of  some theoretical interest, is the representation of  the 
satellite mot ion  when the orbit  plane is in the vicinity of  the so-called 'critical '  
inclination, and, to first order, the mot ion of  perigee vanishes. Some authors attach 
an intrinsic physical significance to the critical inclination, even going so far as to 
suggest that  numerical integration would disclose its extraordinary character (Message 
et aL, 1962). 

In the following discussion we show, using Encke's  method of  numerical integra- 
tion for satellites which are at, near, and away from the critical inclination, that  the 
critical inclination presents only a theoretical problem, since there are no discernible 
features in the coordinate perturbations which distinguish the critical inclination 
f rom any other. 

2. Discussion 

Some analytical treatments of  the artificial satellite problem are not  valid when the 
satellite inclination, i, is near the critical inclination, i.e., when i is a solution o f  the 
equation 

5 cos z i - 1 = 0. 

A partial list of  such treatments includes Garfinkel (1959), Kozai  (1959), and Brouwer 
(1959). A c o m m o n  feature of  these methods which are not  valid near the critical in- 
clination, is the desire to obtain satellite elements at some arbitrary future time, 
given elements at an initial time, without  obtaining elements at intermediate times. 
Thus the long-periodic components  of  the satellite perturbations must  be obtained 
explicitly, and it is here that  the difficulties arise, unless the critical inclination is 
treated as a special case (Garfinkel, 1960; Hori,  1960). 

In orbit  prediction for communicat ion satellite applications, as discussed by Claus 

and Lubowe (1963), the requirement for high accuracy prediction exists but  the 
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requirement that there be no intermediate steps does not. Indeed, since one must 
predict all passes visible to all ground stations, an integration step of one satellite 
period is as desirable as a n  integration step of several weeks or months. A method 
which obtains the secular perturbations, to order j2,  for example (where J2 is the 
coefficient of the second harmonic of the geopotential), and updates the orbital ele- 
ments every period (using the secular second-order perturbations) will be as accurate 
as the above three treatments, since it can be shown that it obtains the long-periodic 
perturbations implicitly by the updating procedure. Also, it avoids any difficulties 
at the critical inclination. As an illustration, a 2000 period prediction (8 months) 
was made for a satellite orbit similar to that of TELSTAR I, except that the orbit 
was initially at the critical inclination, in the reference by Claus and Lubowe (1963), 
and the perturbations were in no way exceptional. 

An interesting study by Kikuchi (1967) indicates that with proper treatment of 
the initial conditions even the mathematical methods which usually yield singular 
results around the critical inclination can be made uniformly valid. His heuristic 
explanation that then "the long-periodic term continuously transfers to the secular 
term" seems reminiscent of the way the method of Claus and Lubowe (1963) obtains 
the long-periodic perturbations by rectification of the secular perturbations. 

However, the claim has been made (Message et al., 1962) that the critical inclination 
problem is indeed a physical one since the coordinate perturbations may be 25 times 
greater near the critical inclination than away from it. They base this claim on an 
order of magnitude argument, stating that perturbations away from the critical 
inclination are of order J 2 ,  while those near the critical inclination are of order x/J2 
(Garfinkel, 1960) and the ratio of these quantities is about 25. This statement has been 
repeated in at least two survey articles (Brouwer, 1963, p. 230; Cook, 1963, p. 411). 

Unfortunately, the statement is not correct. This is indicated by the result of 
Claus and Lubowe (1963) described above but even more directly by the results 
presented here. Message et aI. (1962) suggest "Perhaps numerical integration in 
coordinates, including cases both near to, and far from, the critical case, could provide 
additional verification". We follow this suggestion in this paper. 

3. Numerical Results 

Encke's method of numerical integration for satellites acted upon by the 2nd (J2) 
and 4th (J4) harmonics of the geopotential was used on satellites initially at, near, and 
away from the critical inclination. (Specifically, values of  i=60.0  ~ 63.0 ~ 63.4 ~ 
cos-  1 (l/x/5), 63.5 o, 64.0 o, and 67.0 ~ were used.) * Also, since there is even no theoret- 
ical difficulty when the eccentricity is zero or when J22 +J4  = 0 (Garfinkel, 1959, 1960), 
these quantities were also treated as parameters. Values of e=0 .0  and e=0.9,  and 
j 4 = 0 ,  j 4 =  _ j 2 ,  and j 4 = _  1.532755259JaZ (the Apollo mission values) were used. 
The perturbations in spherical coordinates were examined for all these cases. The 
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TABLE I 

Initial Conditions 

Series I (J~--0, J4--0) 
Series I I  (J2 = 1082.3 • 10 -6, J4--0) 
Series I I I  (J2-- 1082.3 • 10 -6, J 4 =  --1.8 • 10 .6--. --  1.5Jz 2) 

ao --4545.4546 miles 
eo =0 .0  
coo =Qo=To- -O 

Series IV (d2 =0 ,  J4=0)  
Series V (Jz=1082.3 • 10 -6, J4=0)  
Series VI (J2 = 1082.3 • 10 -6, J 4 =  --1.17 • 10 - 6 ~  --J2 z) 

ao =41000.000 miles 
eo =0 .9  
coo =520-- ~'0 = 0 

Series I -VI :  Run  1:i0 = 60.0 ~ 
2 63.0 ~ 
3 63.4 ~ 
4 63.43...~ 
5 63.5 ~ 
6 64.0 ~ 
7 67.0 ~ 

TABLE II  

Perturbations for eo=0.0 

--Ar(miles) da(10 -4 radians) Aft(10 -4 radians) A0(10 -4 radians) 

t = l  hour:  
i = 6 0  ~ 5.6 14.1 --46.3 35.8 

63 5.3 10.4 --43.6 32.6 
63.4 5.3 10.0 --43.2 32.2 
63.43... 5.3 10.0 --43.2 32.2 
63.5 5.3 10.0 --43.1 32.1 
64 5.2 9.3 --42.7 31.6 
67 4.9 6.4 --39.9 29.0 

t = 2  hours:  
i = 6 0  ~ 2.2 55.2 59.9 47.9 

63 2.2 47.2 57.5 42.8 
63.4 2.2 46.1 57.2 42.2 
63.43... 2.2 46.0 57.2 42.1 
63.5 2.2 45.8 57.1 42.0 
64 2.2 44.5 56.7 41.2 
67 2.2 36.9 54.0 37.1 

t = 24 hours:  
i = 6 0  ~ 1.1 361.3 970.3 683.8 

63 1.2 274.5 912.5 609.7 
63.4 1.2 263.4 904.2 600.7 
63.43.,. 1.1 262.5 903.5 599.9 
63.5 1.1 260.9 902.4 598.8 
64 1.2 247.7 892.3 588.3 
67 1.2 175.5 831,6 532.2 
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per tu rba t ions  in the longi tude  in the orb i t  (the sum of  the longi tude of  the node,  the 

a rgument  of  perigee, and  the true anomaly) ,  were also examined.  

Six series of  numer ica l  integrat ions,  each consist ing of  7 runs,  were made.  The 

ini t ia l  condi t ions  are t abu la ted  in Table  I. (Fo r  simplici ty these are given in terms of  

orb i ta l  elements.)  The numer ica l  in tegrat ion me thod  used is known to p roduce  errors  

o f  less than  0.1 mile in coord ina tes  after 24 hours  by compar i son  with exact  conic 

rout ines  and with double  precis ion in tegra t ion  rout ines  using Cowel l ' s  Method .  (Thus 

the results in Tables  II  and  I I I  are correct  to within at  least  1 digit  in the last  figure 

given.) 

TABLE III 

Perturbations for e0=0.9 

--Ar(miles) ,dot(10 -4radians) Ad(10 -4radians) AO(10 -4radians) 

t = l h o u r :  
i=60 ~ 9.1 1.6 7.2 2.4 

63 9.0 0.7 6.7 1.9 
63.4 8.9 0.6 6.6 1.8 
63.43... 8.9 0.6 6.6 1.8 
63.5 8.9 0.5 6.6 1.8 
64 8.9 0.4 6.5 1.7 
67 8.8 --0.4 5.9 1.4 

t -- 2 hours: 
i=60 ~ 21.7 1.34 10.6 5.7 

63 21.5 0.49 9.9 5.1 
63.4 21.5 0.39 9.8 5.0 
63.43... 21.5 0.38 9.8 5.0 
63.5 21.5 0.36 9.8 5.0 
64 21.5 0.34 9.6 4.9 
67 21.4 --0.40 8.9 4.4 

t=24 hours: 
i = 60 ~ 869.6 24.3 53.4 55.1 

63 869.5 21.4 53.6 54.2 
63.4 869.4 21.0 53.7 54.1 
63.43 ... 869.4 21.0 53.7 54.1 
63.5 869.4 20.9 53.7 54.1 
64 869.4 20.4 53.7 54.0 
67 869.2 17.7 53.8 53.3 

The pe r tu rba t ions  in radius  (Ar), r ight  ascension (A~), decl inat ion (A6), and lon- 

gi tude in the orb i t  (A 0), are given at  1, 2, and  24 hours  after the s tar t  of  the in tegra t ion  

in Tables  II  and  III .  Table  II  gives the per tu rba t ions  for the runs with eo = 0.0 (Series I 

and  II  in the no ta t ion  of  Table  I) and  Table  I I I  gives the pe r tu rba t ions  for  the runs 

with e o = 0 . 9  (Series IV and V). The effect of  different values o f J  4 (Series I I I  and  VI) 

is not  visible in the figures re ta ined  as significant in the tables. (Order  of  magni tude  

est imates,  unencumbered  by the crit ical incl inat ion mystique,  could  have indica ted  

this f rom the start.)  
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4. Conclusion 

The numerical  results presented here show that  for zero or non-zero eccentricity and 

for zero or non-zero values ofJ~ +J4  there are no discernible features in the per turba-  

t ions in the coordinates of a satellite of an oblate spheroid which distinguish the 

so-called critical incl inat ion from any other. 
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