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Abstract. A new family of periodic orbits of the three-dimensional restricted three-body problem which 
continue off from a consecutive collision orbit are numerically studied. Their behavior for varying energy 
is unexpected. In particular, associated with our system is a countable set of resonant energy values and 
each time the energy passes through one of them the periodic orbit forms a loop by self-intersection. Any 
number of loops can form by this process and the resulting orbits take on an interesting .appearance. 

1. Introduction 

(a) We consider the three-dimensional  restricted three-body problem in a rota t ing 

coord ina te  system q = (ql, q2, q3) of  rota t ional  frequency equal to 1. In  this frame 

we put  the larger p r imary  m I of  mass 1 - # at the origin and the smaller pr imary  

m 2 of  mass # at the posi t ion e 2 = (0, 1, 0) (see Figure 1). 

The Hamil tonian  which governs the mot ion  of  the zero mass particle m 3 is given by 

H=!~ pl~ -Iq[- '  + e)(q2Pl - P 2 q , ) + # G ( p , q ) ,  

G = l q l - t - A - t - p l ,  A = l q - e 2 l ,  (1) 

where p = (Pl, Pz, P3) are the m o m e n t u m  variables conjugate  to the qt. F o r  # = 0 
we consider the consecutive collision orbit  ~*(t)= (p*(t), q*(t)) which oscillates 

on the positive q3-axis. Let ~o* denote  the frequency of  ~b*, then the following result 
was proven  by the au thor  [1]. 

T H E O R E M  1. There exists a unique cont inuat ion  (~(t, #) to dp*(t) on H = - h < 0 
for I#1 :# 0 sufficiently small of  period T(~) = 2u/o~* + 0(~) provided 

1 
c o * : # - ,  j =  1 ,2 ,3 , .  .... 

J 

Moreover  ~b(t, #) is symmetr ic  with respect to reflection in the q2q3-plane in q-space. 

The p roof  of  this Theorem was accomplished by a Poincar~ cont inuat ion  argu- 
ment,  however  this must  be done  in regularized coordinates  since every time ~b* 

collides with ml ,  q = 0 w h i c h  is a singularity of  the differential equat ions 0 = Hp, 

l) = - -  H q ,  " - -  d/dt ,  defined by H. The m a p  (I) that  was used to regularize the flow 
at q = 0 is equivalent to a simple rat ional  map  and is valid in n-dimensions. It is 

also dimension preserving which is not  the case, in particular,  for the KS-map  which 

l'o~= I 
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increases dimension [1]. This increase of dimension in the KS-map is not advantage- 
ous for numerical work and causes unpleasant degeneracies to occur as far as the 
analysis is concerned [1]. The above theorem was also proven by Guillaume at 
an earlier time [3]. The regularized coordinates chosen in that proof were the KS- 
coordinates. 

(b) The main goal in the following numerical investigation is to numerically 
reproduce the continued orbit qS(t, #) and to study the geometric behavior of qS(t, #) 
for different parameters. ~b(t,#) is found by translating the Poincar~ continuation 
argument used in the proof of Theorem A into a numerical scheme whereby a differen- 
tial correction procedure is used. This is described in Section 2. The results obtained 
for the behavior of qS(t, #) are now briefly described: Theorem A gives the existence 
of qS(t, #) on each fixed energy surface H = H(p, q) = h < 0 provided 1/co* ~ j, j = 1, 
2, 3, . . . ,  for # sufficiently small. Therefore, Kepler's equation, T * =  2re(-  2h) -3/2 
where T* is the period of qS*(t), rules out a discrete set of energies hj since co* = 2re/T*. 
We now fix # > 0 sufficiently small; then for - Go < h < h i the orbit in q-space 
which must be symmetric with respect to the q2q3-plane, is inclined with respect 
to the q3-axis and is a simply closed curve. (This inclination and the shape of the 
orbit Will be explained fully in Section 2.) As h passes through h 1 this inclination 
changes in a discontinuous manner, and further on in the open interval h 1 < h < h 2 
our symmetric orbit develops one self intersection, i.e. two loops. Within the interval 
(h 1 , h2) the new angle of inclination with the q3-axis to the orbit is maintained. As h 
passes through h 2 this angle of inclination of the orbit again reverses itself dis- 
continuously and is then maintained throughout the interval (h2, h3). Within this 
interval the orbit develops another self intersection so that it now has 3 loops, etc. 
In general, the numerical work suggests that in each open interval I t = (h i, hi+l) 
our orbit makes a continuous transition from j to j + 1 loops as h increases within 
I t where j = 1, 2, 3 . . . . .  and where there is a discontinuous change of inclination 
at each value h i which is then maintained in the subsequent interval I t. These results 
will be seen in detail in Section 2. 

In this paper we do not perform a stability analysis. This will be presented at a 
later time in another paper. 

We finally mention that if one takes # = 0.001, a physical example of our problem 
would be m I = Sun, m 2 =Jupi ter ,  rn 3 = comet, minor planet or meteor-stream 
traveling approximately perpendicular to the plane determined by rna and m 2 . 
It turns out, 1-5], that such minor planets are indeed observed traveling in highly 
eccentric close approach orbits about the Sun approximately perpendicular to the 
Sun-Jupiter plane. It is also interesting to note the orbits presented in Section 2 
need not be elliptical in shape; thus, observationally determining comet orbits about 
the Sun which are approximately perpendicular to the Sun-Jupiter plane to be 
elliptical, which is the usual practice, might well be in error. 
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2. Numerical Investigations 

The goals and results for our numerical work were briefly discussed in Section l(b). 
It is recalled that our main goal was to graphically reproduce our orbits on the 

computer  and investigate their behavior. This behavior was described in l(b) in a 
brief way. We will now make the description more precise; however, before doing 
this we first describe the numerical procedure used to obtain the symmetric periodic 

orbits on the computer. The numerical technique is a translation of the proof  of 
Theorem A into a numerical scheme. This scheme can in general be viewed as a 
N e w t o n - R a p h s o n  scheme, or more specifically as the method of differential correc- 
tion. Before we present the numerical procedure, the method of proof  of Theorem A 

is briefly outlined. 
We will let (P, Q) denote the regularized coordinates cooresponding to the co- 

ordinates (p, q) under the map  �9 referred to above in Section l(a). This map  is fully 
developed [1]; however, we record it here, 

[ r P I 2  - 
/ t p + e l l 2 ,  k = l  

Pk 

[ - -  2Pk k = 2, 3 
[ I P + e x l  2' 

1-1pt - - ~ -  ql + (P, q)(Pl + 1), k = 1 

Qk = 

~ P } ~ q k  + Plqk -- Pkql -- (P' q)P*' k = 2, 3, 

where (p, q ) =  ~ =  lPkqk' e, = (1, 0, 0). As is proven in reference 1 the Hamiltonian 
flow corresponding to (1) is regular at collision with m I if one transforms to the 
coordinates P, (2 above. The collision state q = 0, p = co on H = - h < 0 goes into 
P = ex, I Q] = 1 - / ~  on F(P, Q) = 0 where F(P, Q) is the transformation of the Hamil-  
tonian H in the new coordinates (P, Q) after a change of the independent variable 
t ~ s. We will let X*(s) denote the special collision orbit  (I)*(t) in our new coordinates. 

Now, let L denote the hyperplane Q1 = P2 = P3 = 0. One can prove, [1] that if a 
solution X(s) to the restricted problem intersects L at s = 0 and again at s = S then X(s) 
is a periodic orbit of period 2 S. One verifies that X*(s) for p = 0 has such a property, 
thus we are led to the following system, which clearly has X*(s) as a solution for 

/~=0,  

o o QI( S, Q2, Qa, po) = 0 

n2( S, O2, O~, P~) = 0 (2) 

o o o P3( S, Qz, Q3, PI) = O, 
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o o o where we assume X(s)eL at s = 0 which implies Q1 = P 2  - -  Pa = 0. Now, by virtue 
of the fact Fe3 = - 1 :p 0 at X*(0) we can solve for 

o po o 
Q3 = f ( 1 , Q 2 )  (3) 

P~ 0 ~ for independent variables on L for s = 0. In fact, we can and therefore use 1, ~2 

reduce system (2) even further by noting that FQ~ -- - 1 @ 0 at X*(O) which implies 
dP3/dS ~ 0 so that we can determine the time S of the next intersection with L as 

S = g(Q~,f(P], Q~), P]) (4) 

in view of (3). This reduces (2) to the 2 x 2 system 

S o QO P ~ ) = 0  01( ,Q2, 3, 

P2(S, Q~, Q;, P]) = 0 (5) 

for P~, Q~ where S and Q; are given by (2), (4) respectively. By Theorem A, System (2) 
has a unique solution P] ,  Q~. 

o o We now translate the above into a numerical scheme: Step 1 . -  Input Q1 - -P2 = 
o o P3 = 0, Q~ = Q* (0), P1 = P* (0) and determine Q~ from F(P ~ Q~ = 0 by a Newton-  

2 2 3 

Raphson scheme. This brings us to (2), (3). Step 2. - Integrate the system of differential 
equations with P~ Q~ determined in step 1 until a time S is reached such that Pa(S) = 0 

o which brings us to (4), (5). Step 3 . -  With Q;,  P~, Q2, S determined above we can't 
yet expect to satisfy (5), however, we will find corrections AP],  AQ~ to P] ,  Q~ so 
that (5) is satisfied. These corrections will be found in an approximate form at first; 
then the above procedure is iterated by starting at step 1 with P~ o ~ replaced by 

1 ~ 2  

P~ + AP], Q2 + AQ2 until a desired accuracy is obtained. We require an accuracy 
of at least 10 significant digits throughout. 

To calculate the corrections AP],  AQ2 we proceed as follows: Clearly, one would 
like to satisfy 

o QI(Q2 + AQ2, P1 + AP~) = 0 

P ~ ~ ~ AP~) 0 2(Q2 4- AQ2, P1 + = (6) 

where we have suppressed the dependence on S and Q~. Now, we form the difference 

o o o o o QI(Q2 + AQ2, P1 + AP]) - QI(Q2, P]) = A,AQ~ + A2AP1, (7) 

and similarly, 

o o o 
P2(Q2 + AQ2, P1 + AP~) - P2(Q2, P~) = BIAQ2 + B2AP~ (S) 

where 

0Q 1 0Q 1 0P 2 B2 0P2 A 1 - -  ~ Q ~ ,  A2 -- ~p~, B 1 -  ~Q~, - ~p] .  
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When computing these partial derivatives one must be careful, e.g., 

o o o Qx(PI , Q~ = Ol( S, Q2, QO 3, P1), 
o o o o o o where Q3 = f ( P ] ,  Q2), S = 9(Q2, Q3, P~); thus, to compute, e.g., c?Q1/~3Q 2 by a first 

order forward difference formula 

Q,(QO + ag. ) - Q1(9. ) 

we have to compute QI(Q~ + 6Q~ �9 This is done by keeping P~ fixed and with Q~ 
replaced by Q~ 2 + bQ~ we go back to step 1 to recompute Q~ 3 and S. We then integrate 
the differential equations up to S and see what value Q1 takes o n -  which will be 

o QI(Q~ + 6Qz ). With this value, the difference formula is readily computed. The 
other derivatives are similarly computed. It was found that for the derivative OQ~176 
an optimum choice of fiQ~ was 10- 5. In fact, this was the case with all the increments 
for the computations of all the other derivatives. 

Now, with A i, B i, i = 1, 2, computed we go back to (7), (8) and set Pe(Q~ + AQ~ 
o o o o P1 + A P] ) =  QI(Q2 + AQ2, P1 + AP~)= 0 and uniquely solve the resulting 2 x 2 

linear system 

_ 

B1 B2/\AP~ \P2(Q2, P] ) /  

for the corrections AQ~, AP]. 
It was found that to achieve an accuracy of 10- lo, approximately 3 or 4 iterations 

were needed. 
The integration of the system of differential equations was accomplished by an 

implicit Adams method J: The above numerical scheme is similar to one used [4]. 
As described in Section l(b), the following behavior of our orbit was observed 

in the q-space: With # fixed sufficiently small, e.g. # = 0.001, our symmetric orbit 
on the energy surface H(p, q )=  - h  < 0 makes a continuous transition from j to 
j + 1 loops, i.e. f r o m j -  1 to j self-intersections, in each open interval Ij = (hi, h~+ 1) 
where hj < 0 corresponds to the frequency (l/j) = co* = ( - 2h) 3/2 of @*, and where 
j = 1, 2, 3 , . . . .  In addition, the orbit changes its inclination to be defined below, 
in a discontinuous manner with respect to m 1 and rn 2 as h passes through hj. These 
results are now graphically illustrated. 

For the energy values h = -  1 . 5 , -  0 . 3 8 , -  0.27, which lie in the consecutive 
intervals I t for j = 1, 2, 3 respectively, we observe the corresponding loop states in 
Figures 2, 3, and 4 respectively where the view is along the q/-axis, i.e. projected 
on the qt q3-P lane' Now, if we look at the orbits, for the above energy values, projected 
on the ql q2-P lane we have Figures 5, 6, and 7. Finally, the views projected on the 
q2q3-plane, the symmetry plane, are shown in Figures 8, 9, and 10. In this set of figures 

4: All numerical work was done on a CDC 6600 computer. 
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we see that the orbits are constrained to lie on their own planes which are folded but 
not twisted. One also notes the following phenomenon in this set of figures; If  we look 
at the tip of each curve, i.e. the point where the mass rn 3 turns around to approach m t 
which is marked,  for example, by the point A in Figure 8, then one sees that this point 
alternates between pointing in the positive and negative q/-directions in each con- 
secutive figure. This is what we previously referred to as the change of inclination of 

our orbit as h passes through hj,j = 1, 2 . . . . .  In this context we also numerically 
observe that the loop formation in each interval Ij  occurs only after the orbit changed 
its inclination at h i . 

tl 3 

/ : ~- cir. 
1 

Fig. 1. The rotat ing coordinate  system. 

A particularly interesting orbit is illustrated in Figures 11, 12. This orbit corres- 
ponds to the case h = - 0 . 0 5 5 e I 2 7 .  

In Figures 13, 14, and 15 we illustrate a loop transition in the interval I a from 2 

to 3 loops which is projected in the qxq3-plane. 
We illustrate the discontinuous behavior of the change of inclination in Figures 16, 

17 which are the projections on the qzq3-plane for h - -  -0 .52 ,  - 0 . 4 8  respectively 
where one notes that h 1 = - 0.5 is the first resonance energy value. 

The loop formation is clearly a resonance phenomenon corresponding to the 

additional number  of times m a completes its period before m 3 completes one period. 
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