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Abstract. An improved theory is presented of long period perigee motion for orbits near the critical incli- 
nations 63.4 ~ and 116.6 ~ Inclusion of lunisolar perturbations and all measured zonal harmonic coefficients 
from a recent Earth model are significant improvements over existing theories. Phase portraits are used to 
depict the interaction between eccentricity magnitude and argument of perigee. The Hamiltonian constant 
can be chosen as the parameter to display a family of phase plane trajectories consisting of libration, cir- 
culation, and asymptotic motion along separatrices near equilibrium points. A two parameter family of 
phase portraits is defined by the other two integrals, the average semimajor axis and component of angular 
momentum resolved along the Earth's polar axis. There are regions of-the parameter space where the 
stability and total number of equilibria can change, or two separatrices can coalesce. These phenomena 
signal large qualitative changes in phase portrait topology. Numerical studies show that lunisolar per- 
turbations control stability of equilibria for orbits with semimajor axes exceeding 1.4 Earth radii. Moreover, 
a theory which includes lunisolar perturbations predicts larger maximum fluctuations in eccentricity and 
faster oscillations near stable equilibria compared to a theory which models only the zonal harmonics. 

1. Introduction 

Since the first artificial satellite was launched in 1957, many  authors  have investi- 

gated the long period dynamics  of orbits critically inclined at 63.4 ~ and  116.6 ~ . If  
gravitat ional  per turbat ions  due to the geopotent ial  alone are considered and if 

tesseral and sectorial ha rmonic  resonances are avoided, it is well k n o w n  that  only 

the zonal  harmonics  cause secular and long period perigee fluctuations. A m o n g  

those who first reported results on  the 'main  problem'  (J2 and J4 only) were Garfinkel 
(1960), Hor i  (1960), Pet ty  and Breakwell (1960), and Hagihara  (1961). The averaged 

Hami l ton ian  expanded about  the critical inclinations revealed very slow (on the 
order  of  a century) simple pendulum-type oscillations in eccentricity magni tude  

and a rgument  of  perigee. Garfinkel  (1973) developed analytic solutions of the main  

problem in terms of  elliptic functions. 
In other  refinements of  the theory, the effect of  J6 was analyzed by Aoki  (1963a) 

whereas Kozai  (1961) and Aoki  (1963b) included the odd zonal harmonics  J3 and 
Js" Fo r  orbits with small and moderate  eccentricities, not  more  than five phase 

plane equilibria were predicted. In a recent paper  treating nearly circular orbits 

and taking all the zonal  harmonics  into account,  Jupp  (1980) identified six possible 

phase portraits.  For  orbits with large eccentricities under  the influence of  the zonal  

harmonics  th rough  J s ,  Jupp  (1975) predicted seven phase plane equilibria for certain 
non-coll ision orbits with eccentricities exceeding~/6/13 (semimajor axes necessarily 

larger than 3 Earth  radii). 
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All of these investigations neglected the secular and long period perigee fluctuations 
caused by lunar and solar gravitation. Results on related critical inclination problems 
reported by Hensley and Breakwell (1967) and Vagners (1967) indicate a significant 
third body perturbation at high altitudes, especially for orbits with large eccentrici- 
ties. As this paper will show, lunisolar perturbations have a significant impact upon 
the long period perigee dynamics of subsynchronous Earth orbits near critical 
inclination. Orbits with small and large eccentricities are considered. Moreover, 
the zonal harmonic expansion of the geopotential includes all measured zonal 
harmonic coefficients from a recent Earth model. 

Aside from the introductory and concluding sections, this paper has four main 
parts (Sections 2-5). Section 2 discusses how the method of averaging (Brouwer 
and Clemence, 1961) was used to eliminate short and intermediate period fluctuations 
from the Hamiltonian. Using the averaged Hamiltonian thus obtained, Section 3 
discusses how phase plane methods were used to analyze the long period perigee 
motions. It is shown that changes in infinitesimal stability and separatrix coalescence 
cause large qualitative changes in phase plane topology. In Sections 4 and 5, two 
families of phase plane portraits are compared to illustrate the impact of lunisolar 
perturbations. If the zonal harmonics only are modeled (Section 4), it is shown that 
the results are sensitive to the total number of zonal harmonics retained. Comparisons 
are made with the small eccentricity results of Aoki (1963b) and with the large eccen- 
tricity results of Jupp (1975). Section 5 discusses how the lunisolar perturbations 
completely change the foregoing results, particularly the possible types of phase 
plane behavior. 

2. Development of the Averaged Hamiltonian 

At the critical inclinations 63.4 ~ and 116.6 ~ the average perigee location is unchanged 
to first-order in J2 by Earth oblateness. Near the critical inclinations, second-order 
north-south gravitational forces cause slow changes in the perigee distance and 
angular location of perigee (perigee resonance). These forces arise because of the 
Earth's distortion from an oblate spheroid, the Moon, and the Sun. 

Non-gravitational forces caused by atmospheric drag and solar radiation pressure 
can disrupt perigee resonance. For example, atmospheric drag will cause any orbit 
with perigee altitude less than 700 km to decay. An accurate drag model takes into 
consideration the geophysics of the upper atmosphere and the attitude dynamics of 
the spacecraft. It is therefore beyond the scope of this paper to model drag. Conse- 
quently, the results apply only to orbits with perigees higher than 700 kin. Solar 
radiation pressure causes long period and, if the orbit is shadowed, secular changes 
in the perigee. These effects are pronounced at altitudes exceeding 1000 km, parti- 
cularly for balloon-type satellites. Moreover, the reflective properties and attitude 
dynamics of the satellite can, together with the Earth's shadow, modulate the 
amplitude and frequency of the solar pressure force which, if properly rectified, can 
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also disrupt resonance. Solar pressure effects upon perigee resonance will be examined 
in a future paper dealing with Sun synchronous orbits near the critical inclination 
116.6 ~ 

The methods of Hamiltonian mechanics are used because only conservative 
effects are modeled. The second-order Hamiltonian may be written as a sum of 
negative potential energies: 

H 2 = -- U e - U( - U s . (1) 

U e models terrestrial gravitation and is written (Kaula, 1966): 

U e - -  ~ J ,  P(S(8))+ 
r ( n~>2 

" / R  \~  ] 
+ ~ ~ J~m{*'e | n m(s(cs))C(m(~ - 0 e - 2m))~. (2) 

n~2~ m=l \ r /  

where ~ is the right ascension and 8 is the declination of the satellite in an Earth- 
centered inertial frame. S(') and C(') are abbreviations for sin(.) and cos('). It is 
noteworthy that U e attenuates with increasing radial distance r, where R e is the 
Earth's equatorial radius. The zonal harmonic coefficient Jn is the amplitude of 
pure latitudinal variations in the geopotential modeled by the Legendre polynomial 
Pn(.). The other terms model longitudinal variations. J~m represents a tesseral (n @ m) 
or a sectorial (n = m) harmonic coefficient. P~m(') is an associated Legendre polyno- 
mial. The Greenwich hour angle 0 e appears in the same argument with the satellite 
right ascension and the constant phase 2 , ,  because longitudinal variations are 
carried East with the Earth as it rotates on its axis. 

Third body disturbing potentials may also be expressed in terms of spherical 
harmonics of the satellite and third body. The lunar potential U~ (Giacaglia, 1973) 
and the solar potential U s (Kozai, 1973) are written: 

Ur = + P.(S(8))Pn(S(~r )) + 
?'~ n ~ > 2 \  (/ I_ 

m = l ( Fl _.[_ D,l ) ! n 

U@ # e  1 + P(S(cS))n~(s(cSe) ) + 

+ 2 m)f,m(S(~))P,m(S(~e))C(m(~ - % ) )  . (3)  
m = 

where (~,  6~) and (ae, 6e) are the (right ascension, declination) of the Moon and 
Sun, respectively. Significantly, both U~ and U e amplify with increasing radial 
distance r. In order that these disturbing potentials remain second-order with 
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increasing semimajor axis, an upper semimajor axis limit of 3 Earth radii will arbitra- 
rily be imposed (Section 5). Under these circumstances, it is meaningful to truncate 
U o at n = 2 and U~ at n = 4. In other words, the lunar and solar gravity gradients 
(n = 2) and two higher order lunar gradients are retained. 

The Sun and Moon also raise bodily and oceanic tides on the Earth, thereby 
affecting the geopotential and hence the orbit dynamics. Tides can be modeled as 
corrections to the zonal, tesseral, and sectorial terms in U e. According to Lange 
et al. (1969), corrections to the zonal terms, for example, are comparable to the 
uncertainties in the estimates of the zonal harmonic coefficients. Hence, tidal effects 
are third-order in J2 and not modeled. 

The second-order secular and long period Hamiltonians may be extracted from (1) 
using Von Zeipel's method (Brouwer and Clemence, 1961). It will later be shown 
(Sections 4 and 5) that long period perigee oscillations are very slow, of the order one 
hundred years. Averaging the Hamiltonian eliminates short and intermediate period 
fluctuations which are much faster than perigee oscillations. If other resonances 
(e.g. tesseral resonance) exist, the argument of perigee may not be the only slow 
variable. Under these circumstances, the averages performed here must be modified 
to include the additional resonant terms. However, the following analysis assumes 
that these other resonances have been avoided. 

The geopotential is averaged over the satellite mean anomaly and ascending 
node, rendering the conjugate DeLaunay momenta L and H constants of the motion. 

L = x f ~ a ,  H = Lx/1  - e2C(i). (4) 

The constancy of L is clearly equivalent to the constancy of the average semimajor 
axis a. Moreover, fluctuations in the average eccentricity e are accompanied by 
fluctuations in the average inclination i such that the polar angular momentum H is 
conserved. These averages eliminate the tesseral and sectorial harmonic terms in (2). 
The lunisolar potential is also averaged over the satellite mean anomaly (preserving 
the constancy of L), and over the lunar and apparent solar orbital motions. Despite 
these averages, the lunar potential is time dependent due to the motion of the lunar 
argument of perigee and ecliptic lunar ascending node. These lunar elements precess 
due to solar gravity gradient torques on the lunar orbit. The lunar argument of perigee 
completes one cycle in 8.9 yrs. Lunar nodal precession causes 18.6-year periodic 
fluctuations in the equatorial elements of the lunar orbit plane. Averaging U~ over 
these cycles eliminates all remaining explicit time dependence from the Hamiltonian, 
rendering it a constant of the motion. Moreover, averaging over lunar perigee preces- 
sion eliminates the n = 3 term in the expansion (3) of U(. 

Secular and long period terms in the second-order Hamiltonian come from the 
Legendre polynomial terms (m = 0) in the terrestrial (2) and third body (3) disturbing 
potentials. The secular term/~z and the long period term H* have the forms: 

/~2(L, G, H) = - -  ~ AMm(L, G, H)e M, 
M = 0 , 2 , 4 . . .  

m = 0  
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H*(L, G,H,g)= ~ooDBM",(L,  G,H)eMS(mg)+ 

+ ZZEVEN CM"(L, G, H)eMC(mg)} �9 
M m  

The coefficients AM, " and CM" . contain even-order zonal harmonics and lunisolar 
perturbations. The coefficients Bu", contain odd-order zonal harmonics only. All 
the coefficients depend on the parametric constants L and H, and the fluctuating 
orbital angular momentum G. It will subsequently be shown that these Hamiltonian 
coefficients may be meaningfully approximated as being constants. 

At the critical inclinations: 

~ -  = -  

5' 

3(. yj 0, 
4 \  L / 21 a J \ G /  1 -  \ G /  AGe = 

2 G = + x / ~ H  = Lx/1 - e~ (5) 

Following Garfinkel (1960), the averaged Hamiltonian is expanded about G = G c 
as follows: 

~ - ~  {~/~x)6~o(G - G~) 2 + [fl2(L, G~, H) + H*(L, G,  H, 9)]} + 

+ {(B1)GoGcGo(G -- a )  3 + [(/~2)Gc + (H*)~c](G - Go)}- (6) 

If the second-order Hamiltonian and all its partial derivatives are 0(J~), it is clear 
that the quantity (G - G)/G~ is at most 0(V/J2) during libration (Garfinkel, 1960). 
It then follows that the first-bracketed term in (6) is the dominant term (0(J22)), 
whereas the second-bracketed term is a higher-order term (O(J~/2)) and therefore 
negligible. It is noteworthy that the lunisolar perturbations do not remain 0(J 2) 
with increasing semimajor axis. For example, the lunisolar terms are O(Jz) for an 
orbit with synchronous semimajor axis 6.6 Earth radii, necessitating separate treat- 
ment. Since semimajor axes below 3 Earth radii are under consideration (as noted 
earlier), only the dominant term in (6) need be retained. 

Hamiltonian dependence on G occurs in the coefficients AM.,, BM", and CM, ., 
and in powers of eccentricity e M appearing explicitly. If the latter terms are expanded 
about G = G~, the higher-order term in (6) will contain a term that is 0(J2 z) whenever 
the eccentricity is 0 ( ~ 2  ) or smaller. For example, (H*)a would contain (1/e)S o 
if the eS o term is differentiated. However, if only the Hamiltonian coefficients are 
expanded, the higher-order term is 0(J~/z) even for very small eccentricities. Accord- 
ingly, (i) only the coefficients are evaluated at G = G~ in the dominant term (rendering 
them constants), and (ii) only the coefficients are differentiated in (/4Z)G and (Hz) ~. 
Explicit powers of eccentricity (e.g. e, e z, e 3, e 4, etc.) are allowed to fluctuate. 

The retained dominant term of (6) is now written in ascending powers of eccentri- 
city: 
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H2(L, Go, H) ~- - -  {Aoo(L, G c , U ) -  �89 G ,  H)e 2 - 

- A40(L, Go, H)e4}, (7B) 

It*(L, Go,/4, g) --_ { - [2B 11(L, Gc, H) + B 3 I(L, Gc, I-I)e2]eS(g) + 

+ [C22(L, G ,  H) + C42(L, G c, H)e2]e2C(20) + 

+ B33(L, G c, H)eaS(3g) - C44(L, G ,  I-I)e4C(40)}. (7C) 

Equations (7) are truncated at the fourth power of eccentricity despite the fact that 
the eccentricity can be large. (For example, ec is 0.63 for an orbit with semimajor 
axis 3 Earth radii and lowest permissible perigee altitude of 700 km.) The rationale 
for performing this truncation is that terms proportional to J2(e 2 -  e~) 3 may be 
neglected in (7A) on the grounds that only the eccentricity difference (e - e), rather 
than e or e individually, need remain small. Moreover, the ratio of the (neglected) 
B51(G)e s term to the (retained) Bsl(G~)e 3 term in (7C) never exceeds 0(x/J2) for 
semimajor axes less than 3 Earth radii. Formulae for the nine Hamiltonian coefficients 
in (7B) and (7C) appear in Appendix A. Although J3 appears in Bt~, the amplitude 
of the J3 inclination function is identically zero at the critical inclinations. (A term 
proportional to J 3 ( G - G ) e S  9 appears in the neglected higher-order term in (6).) 
The expanded first-order secular term (7A) is incorporated in (7B) by modifying the 
second-order secular coefficients (hence the tildes): 

21(/-71)a~a~(G -- G~) 2 +/-)2(L, Go, H) = 

-- ~A20(L, G~, H)e 2 - .440(L, G ~, H)e 4} 

/loo(L, G~, H) ~ Aoo (L, Gc,n  ) - ]~dJ2 e 4 
c 

-~-J2\ a // \ G J  

\ a /# \ G , ]  ' (8) 

The well known Von Zeipel correction terms proportional to J~ (Brouwer and 
Clemence, 1961) are incorporated in Aoo and C22 (Appendix A). 
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3. Analysis of the Long Period Dynamics 

The complicated interactions between the eccentricity magnitude and argument 
of perigee are best visualized in the modified phase plane (rather than the more 
conventional momentum-coordinate plot) whose coordinates are: 

= eC(9) ,  r~ = eS(,q). (9) 

In this representation, the i-direction is toward the ascending node of the orbit 
with the argument of perigee measured positive counterclockwise along the orbit. 
The r/-axis is always in the northern hemisphere. Curves in the ~r/plane, which is 
the plane of the orbit, trace the locus of the tip of the eccentricity vector moving 
under the influence of the Earth zonal harmonic and lunisolar gravitational fields. 

The Hamiltonian is a quartic polynomial in ~ and r/: 

- ocf(~, r/) = ~2[fl~2 + P2(r/)] + P4(r/), (10) 

where P2 is a quadratic polynomial in r/given by: 

P2(r/) = ~')2r/2 d- ~')lr/q- ~0 '  

f~2 = 2[A4o - 3C44], ~11 = B31 - 3B33, fl0 ~A2o - C22, (11) 

whereas P4 is a quartic polynomial in r/given by: 

P4 (tl) ----- 0{4 -q4 "J- 0~3 ?/3 "J- 0{2r/2 "J- ~ l q  ~- 6 0 '  

0{ 4 : ~Z~40 + C42 --1- C44 , c~ 3 =- B31 q- B33 ,  {Z 2 2A2o + C22 ,  

% = 2Bll ,  % = eioo, (12) 

and fl is a constant given by: 

= & o  - + c . .  (13) 

All the Hamiltonian coefficients are evaluated at G = G~. 
The { and r/differential equations are: 

c~J~cf dr/ 0J{' 
d~ -x / (1 -~2- r /2 )dz  0r/' dz - x / O - ~ 2 - r / 2 ) ~  -, z = n t .  (14) 

Equilibrium solutions satisfy: 

c~jf ! 
0r/ ~2P'2(t/) + P4(t/) = 0, (15A) 

0 J r  
0{ - 2{[2fl{2 + P2(r/)] = 0. (15B) 

Primes denote differentiation with respect to 17. Since the coefficients are constants, 
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they are no t  differentiated with respect to q. 'Axial' equilibria have CE = 0, and equili- 
brium values of q satisfy: 

P4- = 4~4~3 + 3ct3q3 + 2ctzq + ~1 = 0. (16) 

This equation may be rewritten as: 

G = 4"4{ (q - w) 3 + u(q - w) + v} = 0,  

3a3 ~ 2  - -  1. 2 
w = 4 - ~ ,  u = 2 ~  ~ ~ w ,  

= 9 W - -  . v ~ 4  + ~ w  z 2 (17) 

The total number of axial equilibria can be one, two (one double root), or three 
depending on whether the index 4u 3 + 27v 2 is positive, zero, or negative, respectively. 
'Off-axial' equilibria (r # 0) are found by solving first for r as a function of q: 

2/~2 + P2(q) = 0. (18) 

Clearly, off-axial equilibria will occur in pairs symmetrically placed about the q-axis. 
After substituting for 4 2 in (15A), the following equation for equilibrium values 
of q results: 

Q'4 = P'4 -- ~ P 2 P 2  = 0 2 4 q  4 + 023 q 3  "q- 0 )2  q 2  + 021/'] -~- 020 = O, 

1 
024 = ~4 - @ f ~ ,  % = ~3 - ~ tallY:, 

022 = - + 2 o 2], 

1 
021 = ~1 - f~lf~O, 020 --  So - @ t~o 2" (19) 

Admissible (~E real) off-axial equilibria are constrained to the conic section (18). 
This conic intersects the q-axis i fP a = 0 has real zeroes q = Z and q = ~. The intercepts 
coincide with these zeroes. Equation (19) may be rewritten as: 

Q~, = 4024{ (q - co) 3 + #(q - 02) + v} = 0, 

3 0 2 3 ,  022 _ 1 2 

02-4024 #=2024 ~02 , 

v = - -  + ~tu.~w - . (20) 
4024 L 2 0 2 A  

If admissible, the total number of off-axial equilibrium pairs can be one, two (one 
pair of double roots), or three depending on whether the index 4# 3 + 27v 2 is positive, 
zero, or negative, respectively. Axial and off-axial equilibrium values of q are known 
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analytic functions (roots of cubics) of the Hamiltonian coefficients. These coefficients 
are complicated functions (refer to Appendix A) of the average semimajor axis and 
polar angular momentum (parametric constants). Moreover, the numerical values 
of the Hamiltonian coefficients depend on the parameters modeling the gravitational 
field. 

Infinitesimal stability of an equilibrium solution is determined by the eigenvalues 
g of Equations (14) linearized about an equilibrium point: 

Gc 
+ ~- x / ~ -  {H}, det {H} ~ 2 (21) = = ~ r  - -  3 r 1 6 2 1 6 2  n.  

The Hessian determinant det {H} for axial equilibria is: 

det {H} = - 2P](qA)P201A), 

whereas for off-axial equilibria it is: 

(22) 

det {H} = + 4Q](tlo A)P2 (tlOA). (23) 

Equilibria are stable (unstable) if the Hessian determinant is negative (positive). 
For certain values of the Hamiltonian coefficients, the Hessian determinant can 

be identically zero. A small parametric variation in any or all of the Hamiltonian 
coefficients can render the determinant positive or negative. This signals a large 
qualitative change, or 'catastrophe' (after Thorn, 1975), in the topology of phase 
plane trajectories near such an equilibrium. If the eigenvalues of the linearized 
system pass through zero, this will be called a catastrophe of the first kind, abbre- 
viated 'CFK'. In addition to changing the stability of an equilibrium, CFK causes 
an increase or decrease in the total number of equilibria. 

For the dynamical system under consideration, C F K  can occur in three possible 
ways. Type I (denoted CFK(I)) occurs at equilibrium solutions which are double 
roots. Axial CFK(I) occurs if 4u3+ 27v 2=  0(P~ = 0) whereas off-axial CFK(I) 
occurs if 4/~ 3 + 27v z = 0 (Q] = 0). Type II, or CFK(II), occurs if an equilibrium 
solution coincides with one of the two real zeroes ~/= )~ or r /= ~ of P2 = 0. Type III, 
or CFK(III), occurs if an equilibrium solution is a double root and if it coincides 
with )~ or (. Axial CFK(III) occurs of P~ = P2 = 0 whereas off-axial CFK(III) occurs 
if Q] = P2 = 0. Clearly, a necessary condition for CFK(II) and CFK(III) is that 
P2 = 0 have real zeroes. As will be shown in Sections 4 and 5, each catastrophe type 
has trajectories with unique topology near the equilibrium point. 

The averaged Hamiltonian (10), a constant of the motion by virtue of its autonomy, 
uniquely specifies ~ as a function of t/. Such a trajectory is the locus of all points of 
intersection of a plane of constant ~ = ~fo with the two dimensional Hamiltonian 
surface in three space. The numerical value of ~ o  is determined by initial conditions. 
The explicit functional dependence of ~ on t/is determined by the zeroes of the follow- 
ing biquadratic: 
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fl~4 + [p2(t/)]~2 + [p4(t/) +Jr0]  = 0, 

~2(t/) = - ~fl P2(t/) + / -  ~ [Q4(t/) +W0] .  (24) 

Since all real solutions occur in pairs ( +  ~ , -  ~), all trajectories are symmetric 
about the//-axis. 

If two (or more) separatrices coalesce, this will be called a catastrophe of the 
second kind, abbreviated 'CSK'. As a result of coalescence, one separatrix passes 
through all of the equilibria associated with the individual separatrices before (or 
after) coalescence (see Figure 9 in Section 4). Separatrix coalescence is catastrophic 
because it dramatically alters the topological connectedness of the phase plane. 
In other words, changes occur in the relative sizes and shapes of domains of libration 
and circulation. For example, if two phase portraits which evolve from CSK (e.g., 
Figures 7 and 8 in Section 4) are compared, the same set of initial conditions in 
each can generate trajectories with significantly dissimilar features such as amplitude 
and frequency of libration. As in the case of CFK, parametric variation of the Hamil- 
tonian coefficients can produce CSK. 

Mathematically, CSK occurs if the Hamiltonian constants are equal for (at least) 
two unstable equilibria. Clearly, the same level curve of the Hamiltonian surface 
passes through each of these equilibria. For example, consider the negative 
Hamiltonians evaluated at an axial equilibrium t/a or an off-axial equilibrium r/o A : 

- 3r r/a) = P4(t/A), -- ~ (  + {~, rloa ) = Q4(r/oa). (25) 

If the quartic polynomial P4 has three extrema, two of which are unstable, the 
numerical values of P4 at the two unstable extrema are equal if v = 0. Similarly, if 
Q4 has three extrema, two of which are admissible and unstable, CSK occurs if 
v = 0. Under certain other conditions, separatrices passing through axial and off- 
axial equilibria can coalesce. Moreover, CSK is possible with (at least) two CFK 
equilibria, provided these have separatrices, or with combinations of unstable and 
CFK equilibria. 

4. A Two Parameter Family of Orbits Near Critical Inclination, Excluding 
Lunisolar Perturbations 

A two parameter family is presented of orbits near critical inclination perturbed 
by the geopotential only. The two parameters are the average semimajor axis and 
polar angular momentum. All measured zonal harmonic coefficients from Goddard 
Earth Model 10B, abbreviated 'GEM10B', are used. The numerical values of all 36 
zonal harmonics appear in Table I, based on Lerch et al. (1978). Since lunisolar 
effects are not included, an upper semimajor axis limit of 3 Earth radii (abbreviated 
'ER') is unnecessary. The results apply only to orbits with perigee heights above 
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TABLE I 

GEM10B zonal harmonic coefficients 
(based on Lerch et al., 1978) 

n J,  

2 1.08263D-03 
3 - 2.53648D-06 
4 - 1.62330D-06 
5 - 2.26194D-07 
6 5.42635D-07 
7 - 3.63286D-07 
8 - 2.07805D-07 
9 - 1.17254D-07 

10 - 2.41502D-07 
11 2.28761D-07 
12 - 1.95500D-07 
13 - 2.22915D-07 
14 1.24936D-07 
15 - 1.39194D-08 
16 3.56163D 08 
17 - 9.28825D-08 
18 - 6.32607D 08 
19 - 1.06165D-08 
20 - 1.56877D-07 
21 5.90169D 09 
22 2.61620D-08 
23 1.39855D 07 
24 9.10000D-09 
25 - 2.85657D-09 
26 - 1.38322D 08 
27 - 4.82053D- 08 
28 1.09473D-07 
29 5.06956D 08 
30 1.24964D-08 
31 5.55'608D-09 
32 5.80483D-08 
33 3.11043D-08 
34 6.22997D- 08 
35 - 7.83632D-08 
36 3.41760D-09 

700  k m  b e c a u s e  a t m o s p h e r i c  d r a g  is n o t  m o d e l e d .  A c c o r d i n g l y ,  for  s e m i m a j o r  axes  

b e t w e e n  1 a n d  10 ER,  t h e  e c c e n t r i c i t y  r a n g e s  b e t w e e n  0 .00 a n d  0.89. 

T h e  f a m i l y  is a c o l l e c t i o n  o f  d i f f e ren t  (~, t/) p h a s e  p o r t r a i t s  for  e a c h  p o i n t  in  a t w o  

d i m e n s i o n a l  p a r a m e t e r  s p a c e  w i t h  c o o r d i n a t e s  (a, ]H/LI). T h e  a b s o l u t e  v a l u e  of  

H / L  is u s e d  b e c a u s e  t h e  r e s u l t s  a p p l y  to  p r o g r a d e  ( H  > 0) a n d  r e t r o g r a d e  (H  < 0) 

c r i t i c a l l y  i n c l i n e d  o rb i t s .  E a c h  p o r t r a i t  is a c o l l e c t i o n  o f  level  c u r v e s  o f  t h e  a v e r a g e d  

H a m i l t o n i a n ,  d i s p l a y i n g  t he  c o m p l i c a t e d  i n t e r a c t i o n s  b e t w e e n  e c c e n t r i c i t y  m a g n i -  

t u d e  ( the  r a d i a l  c o o r d i n a t e )  a n d  a r g u m e n t  o f  p e r i g e e  ( the  p o l a r  angle) .  D y n a m i c a l  
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fluctuations in eccentricity and inclination occur simultaneously such that polar 
angular momentum is conserved. Since the inclination is always close to critical 
( ( H / G c ) 2 =  1/5), it is meaningful to define a 'critical' eccentricity ec as a reference: 

e~ = x / 1  - 5 ( H / L )  2 . (26) 

A small annulus (maximum width 0 ( ~ 2 )  in eccentricity) centered on a circle of 
radius e~ is the 'resonance band'. Libration, characterized by long period oscillations 
in eccentricity and argument of perigee, can occur for initial conditions within the 
resonance band. Apsidal circulation (argument of perigee increasing or decreasing 
without bound) occurs outside the resonance band. Circulation is prograde, or 
in the direction of orbital motion, if e > e~(i < 63.4 ~ or i > 116.6~ and retrograde if 
e < e (63.4 ~ < i < 116.6~ in agreement with elementary orbit theory. 

The GEM10B parameter space (Figure 1) is subdivided into five structurally 
stationary, abbreviated 'SS', subspaces: SS1, SS3A, SS5A, SS7A(i), and SS7A(ii). 
W i t h i n  these subspaces, the stability and total number of phase portrait equilibria 
do not change, nor does separatrix coalescence occur. If the average semimajor 
axis and polar angular momentum are changed parametrically, quantitative changes 
in the phase portraits occur, such as frequency and amplitude of libration. The 
qualitative appearance of the portrait is the same. Physically, these parametric 
variations change the size of the orbit thereby redistributing the average orbit torque. 
Large qualitative changes in a phase portrait occur if the boundaries between sub- 
spaces are crossed. These include changes in stability and total number of equilibria 
(CFK), and separatrix coalescence (CSK). 

SS1 portraits (Figure 2) have one stable axial equilibrium, and only prograde 
circulation PC. SS3A portraits (Figure 3) have three axial equilibria. The axial 
separatrix S through o-~ resembles a plane polar geometric curve called a limacon. 
Unlike SS1, both prograde circulation (large e) and retrograde circulation RC 
(small e) occur. The asymmetry of SS1 and SS3A about the i-axis is due to the odd 
zonal harmonics. Axial CFK(I) portraits (Figure 4) are transitions between SS1 and 
SS3A. Separatrix topology is cuspodial near (r* (a double root of (16)). Such a separa- 
trix is characteristic of the appearance or disappearance of two axial equilibria with 
opposite stability. 

SS5A portraits (Figure 5) have three stable axial equilibria and a pair of unstable 
off-axial equilibria. The off-axial separatrix S divides the SS5A phase plane into 
northern L 1 and southern L 2 hemispheric domains of libration. SS5A tends to be 
more symmetrical about the i-axis than SS3A, especially with increasing semimajor 
axis. The even zonal harmonics are less severely attenuated than the odd zonal 
harmonics within the parameter space region SS5A. CFK(II) portraits (Figure 6) 
are direct transitions between SS3A and SS5A, possible only if e c < 0.458. In passing 
from SS5A to SS3A, two unstable off-axial equilibria 22 coalesce with one stable 
axial equilibrium % on the q-axis. 

SS7A(i) portraits (Figure 7) and SS7A(ii) portraits (Figure 8) interrupt the direct 
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transition between SS3A and SS5A if e c > 0.458. Although both have seven equilibria 
and two separatrices, they are topologically dissimilar�9 Compare, for example, 
librations labeled L 2 in both portraits. The amplitude of L e argument of perigee 
oscillations is much larger in SS7A(i) than in SS7A(ii). CSK portraits (Figure 9) 
are transitions between SS7A(i) and SS7A(ii). The CSK separatrix S passes through 
all of the unstable equilibria in the portrait. Unlike CFK, CSK does not cause a 
change in stability or a change in the total number of equilibria�9 Rather, C S K  causes 
transfer of libration. For  example, initial conditions near a I in SS7A(i) predict 
libration L 2 about a 3 . The same initial conditions in SS7A(ii) predict libration L 3 

about 21 . 
Off-axial CFK(I) portraits (Figure 10) are transitions between SS3A and SS7A(i). 

Separatrix topology is cuspoidal near 2* (a double root  of (18)). Such a separatrix 
is characteristic of the appearance or disappearance of two pairs of off-axial equilibria 
with opposite stabilities. A new CFK(II) portrait (Figure 11) separates SS5A and 
SS7A(ii). In the transition SS7A(ii) to SS5A, two stable off-axial equilibria 21 coalesce 
with one unstable axial equilibrium a 1 on the q-axis. 
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The foregoing results agree qualitatively with similar results reported by Jupp 
(1975). For purposes of comparison, regions SS3A, SS5A, SS7A(i) and SS7A(ii) 
correspond to Jupp's cases (1), (3), (2.2), and (2.3), respectively. Off-axial CFK(I) 
and CSK correspond to Jupp's loci hoh 2 = 1 and R = 0, respectively. The entire 
CFK(II) boundary corresponds to Jupp's locus h o + h: = 1. Some significant quanti- 
tative differences exist. For example, compare the parameter space coordinates 
of off-axial CFK(III) portraits (Figure 12). Jupp would have predicted CFK(III) 
at e c = 6 x / ~  (independent of Earth model) and semimajor axis 3.960 ER (using 
GEM10B). It is worth noting that Jupp truncated his second-order long period 
Hamiltonian at Js and e 3. When zonal harmonics J6 through J36 and e 4 terms 
are included, CFK(III) shifts to e c = 0.458 and semimajor axis 6.011 ER (Figure 1). 
A sensitivity analysis shows that, of all the 36 harmonics modeled, the zonal harmonics 
J6 through J9 are the primary contributors to this shift. Of these, J6 caused the 
most significant departure from Jupp's numerical predictions (see also Jupp, 1980). 
Lunisolar perturbations cause even more drastic alterations of these results (refer 
to Section 5). 

The axial equilibrium o- 3 is stable throughout the parameter space. The periods 
of small oscillations near a 3 are of the order of 100 yrs for semimajor axes less than 
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Fig. 12. Off-axial CFK(III) portrait. 
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2 ER. These librations get slower with increasing semimajor axis due to the attenua- 
tion of the zonal harmonic restoring torques. At a semimajor axis of 10 ER, libration 
periods decrease from 106 yrs at e~ = 0.25 to 104 yrs at e c = 0.83 because restoring 
torque amplitudes grow with decreasing perigee height. Small oscillations within 
the resonance band are clearly much slower than any of the periodic fluctuations 
averaged out of the long period Hamiltonian. 

The tolerance is extremely small on initial conditions which predict such librations. 
A measure of this tolerance is the maximum radial separation of two branches of a 
separatrix (usually at q-axis crossings). For example, at a semimajor axis of 2 ER 
and for an initial argument of perigee of 90 ~ libration occurs if the initial eccentricity 
is 0.200 _+ 0.016. For a semimajor axis of 5 ER, libration occurs if the initial eccentri- 
city is 0.200 + 0.005. It is clear that the maximum change in eccentricity is small 
(as predicted by Garfinkel, 1960), justifying the linearization of the Hamiltonian 
about ec (refer to Section 2). 

5. A Two Parameter Family of Orbits Near Critical Inclination, Including 
Lunisolar Pertcrbations 

A two parameter family is presented of orbits near critical inclination perturbed 
by the geopotential with lunisolar effects included. The two parameters are the 
average semimajor axis and polar angular momentum. Earth model GEM10B is 
used. Atmospheric drag is not included. Semimajor axes between 1 and 3 ER, and 
eccentricities between 0.00 and 0.63 are considered. 

Lunisolar perturbations considerably modify the appearance of the GEM10B 
parameter space (Figure 13). Four structurally stationary regions are observed: 
SS1, SS3A, SS5A, and SS3B. (SS5A occupies the remainder of the parameter space 
between I H/LI = 0.420 and the collision orbit boundary (not shown).) Although 
SS1, SS3A, and SS5A reappear, the direct transition between SS3A and SS5A occurs 
for orbits with semimajor axes less than 1.556 ER, and for eccentricities greater 
than 0.040. SS3B is a new region created by the lunisolar perturbations. A direct 
transition between SS3B and SS5A is possible for semimajor axes greater than 
1.556 ER and eccentricities greater than 0.040. Phase portraits in all four regions 
have but one separatrix each, precluding CSK for semimajor axes less than 3 ER. 

Off-axial CFK(III) occurs at e c = 0.316 and semimajor axis 1.421 ER (a collision 
orbit, not shown in Figure 13), provided zonal harmonics J8 through J36 are not 
included. It is noteworthy that, for this Earth model, Jupp would have predicted 
off-axial CFK(III) at ec = 0.679 and semimajor axis 3.960 ER without the Sun and 
Moon. Under those conditions for which off-axial CFK(III) is observed, regions 
SS7A(i) and SS7A(ii) as well as CSK would occur for larger eccentricity (e > 0.316) 
collision orbits. 

SS1 portraits (Figure 2) are precluded for semimajor axes greater than 1.8 ER 
because the Sun and Moon destabilize the origin of the (4, t/) phase plane. For semi- 
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major axes less than 1.4 ER and e c = 0.1 or larger, torques arising from odd order 
zonal harmonics destabilize cr 1, creating asymmetrical SS3A portraits (Figure 3). 
With increasing semimajor axis, lunisolar torques assist the even order zonal harmo- 
nics in stabilizing ~i ,  creating SS5A portraits (Figure 5) and SS3B portraits (Figure 14). 
Each has a northern L 1 and a southern L 2 hemispheric domain of libration. Due to 
the lunisolar effects, SS5A and SS3B portraits become more symmetrical about 
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the i-axis as the semimajor axis is increased. Moreover, any admissible off-axial 
equilibria in SS3B are precluded. Note that the equilibrium % is unstable (Figure 14) 
because it is close to the origin of the phase plane. The SS3B separatrix S passing 
through % resembles a plane polar geometric curve called a lemniscate. Outside 
the lemniscate, circulatory apsidal motion PC is always prograde. 

Axial CFK(I) portraits (Figure 15) are transitions between SS1 and SS3B. The 
CFK separatrix S has a cusp whose pointed end is convex toward negative t/. This 
feature distinguishes Figure 15 from Figure 4, also an axial CFK(I) portrait. In the 
transition between SS1 and SS3A (Figure 4), the separatrix cusp is convex toward 
positive q. Either transition, SS3B to SS1 or SS3A to SS1, causes the two axial equili- 
bria o-1 and % to coalesce. If % is stable whereas o- 2 is unstable, Figure 15 results. 
If a 1 is unstable whereas ~2 is stable, Figure 4 results. 

CFK(II) portraits (Figure 16) are transitions between SS3B and SS5A. The CFK 
separatrix S has two circular branches which are tangent to each other at %. This 
feature distinguishes Figure 16 from Figure 6, also a CFK(II) portrait. In the transi- 
tion between SS3A and SS5A (Figure 6), the separatrix branches are tangent at 
%. Either transition, SS5A to SS3B or SS5A to SS3A, causes a pair of unstable 
off-axial equilibria to coalesce with one stable axial equilibrium, forming the point 
of tangency of the two separatrix branches. 
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The CFK(I) and CFK(II) parameter space boundaries are mutually tangent at 
e c = 0.040 and semimajor axis 1.556 ER, creating an axial CFK(III) portrait 
(Figure 17). The transition from SS5A to SS1 through axial CFK(III) causes a pair 
of unstable off-axial equilibria 22 and a pair of stable axial equilibria o 1 and a2 to 
coalesce at G*. This portrait is quite dissimilar to an off-axial CFK(III) portrait 
(Figure 12), the latter precluded by the inclusion of the lunisolar perturbations. 

The axial equilibrium a3 is stable throughout the parameter space. Small oscilla- 
tions near a 3 are slowest (250 yrs) for e c close to zero and semimajor axes between 
1.7 and 2.1 ER. Faster oscillations are observed with increasing semimajor axis 
due to the amplification of the lunisolar restoring torque. (The zonal harmonic 
torque attenuates.) At a semimajor axis of 3 ER, libration periods decrease from 
150 years at ec = 0.06 to 100 yrs at e~ = 0.21. The zonal harmonic restoring torque 
amplifies with decreasing perigee height, and the lunisolar torque amplifies with 
increasing apogee height. Highly eccentric orbits with semimajor axis 3 ER exhibit 
oscillatory periods of 18.6 yrs, commensurate with lunar nodal precession. It is 
therefore anticipated that periodic lunar gravity gradient torques can disrupt perigee 
resonance, necessitating a separate treatment. 

Equilibrium inclinations begin to differ significantly from the critical values 63.4 ~ 
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and 116.6 ~ as the semimajor axis is increased. Moreover, with the lunisolar pertur- 
bations included, the tolerance is larger on initial conditions which predict libration. 
For example, at a semimajor axis of 3 ER and for an initial argument of perigee of 
90 ~ equilibrium inclinations are 63.1 ~ for prograde orbits and 116.9 ~ for retrograde 
orbits. Liberation can occur if the initial eccentricity is 0.10 _+ 0.10. These trends 
suggest that the Hamiltonian cannot be linearized about inclinations 63.4 ~ or 116.6 ~ 
because, with the Sun and Moon included, the critical inclination changes with 
increasing semimajor axis. 

For  semimajor axes between 3 and 6 ER, the dominant perturbations affecting 
the long period motion of perigee are Earth oblateness and the lunisolar gravity 
gradient. For  inclinations away from 63.4 ~ and 116.6 ~ the oblateness effect on apsidal 
motion is clearly much more significant than higher order zonal harmonics. With 
increasing semimajor axis, the lunisolar effects amplify while the higher order zonal 
harmonics attenuate. Since oblateness forces also attenuate, the Sun and Moon 
effects become as large as oblateness near synchronous altitudes. Consequently, 
Earth oblateness and lunisolar gravity must both be treated as first-order effects 
at high altitudes. 

6. Smnmary and Conclusions 

Orbits near the critical inclinations 63.4 ~ and 116.6 ~ exhibit long period fluctuations 
in perigee distance and angular location of perigee (perigee resonance). Since the 
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average perigee location is unchanged by Earth oblateness at the critical inclinations, 
perigee resonance is caused by North-South gravitational forces due to the Earth's 
distortion from an oblate spheroid, the Moon and the Sun. Non-gravitational forces 
caused by atmospheric drag and solar radiation pressure can disrupt perigee reso- 
nance, but these effects were not modeled. Drag could be neglected for orbits with 
perigee altitudes above 700 km. Solar radiation pressure effects will be examined in a 
future paper dealing with Sun synchronous orbits near the critical inclination 116.6 ~ 

Phase portraits were used to depict perigee resonance. The Hamiltonian constant 
was chosen as the parameter to display a family of phase plane trajectories consisting 
of libration, circulation, and asymptotic motion along separatrices near equilibrium 
points. A two parameter family of phase portraits was defined by two other integrals 
of motion, the average semimajor axis and polar angular momentum. Large quali- 
tative changes in phase portrait topology occurred when the total number and in- 
finitesimal stability of equilibria changed, or when two separatrices coalesced. These 
changes occurred abruptly despite continuous parametric variation in one or more 
of the integrals of motion. 

Two families of phase portraits were compared to illustrate the significant impact 
of the lunisolar perturbations. Without lunisolar effects, certain phase portraits 
with seven equilibria where predicted for eccentricities exceeding 0.458 and semimajor 
axes greater than 6.011 Earth radii. These predictions agreed qualitatively but not 
quantitatively (due to J6) with similar results first reported by Jupp (1975). With 
lunisolar effects included, Jupp's phase portraits reappeared, but for collision orbits 
only. Lunisolar gravity was shown to control stability and the total number of phase 
plane equilibria for orbits with semimajor axes exceeding 1.4 Earth radii. With in- 
creasing semi-major axis, the physical properties of stable perigee motions changed 
significantly. Periods of small oscillations ranged between 250 yrs and 20 yrs. Maxi- 
mum possible fluctuations in eccentricity about equilibrium were + 100% at a semi- 
major axis of 3 Earth radii. 
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Appendix A: The Second-Order Hamiltonian Coefficients 

Analytic expressions for the second-order Hamiltonian coefficients are presented. 
Define the parameter: 

J ,  = J,  (27) 
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where J ,  is a zonal harmonic coefficient of order n. The satellite orbit semimajor 
axis is denoted by 'a' and R e is the radius of the Earth. Also define: 

L#. \ae ) ~ t , , - ~ )  2 

v~ = ~_~_(R. ~Sp4(c(e))p4(c(e ~ )), (28) 
u. \a~ / 

where #@, ~ ,  and Pe are the gravitational parameters of the Earth, Moon, and 
Sun respectively. The semimajor axes of the Moon>s orbit and the apparent solar 
orbit are denoted by a~ and a s . The symbol e is the obliquity of the ecliptic, and 
e~ is the ecliptic inclination of the lunar orbit plane. P2 and P4 are Legendre poly- 
nomials, not to be confused with other polynomials with the same symbols appearing 
in Section 3. The numerical values of 2e~ and v~ are 6.2 x 10 -8 and 4.7 x 10 -12 

(dimensionless), respectively. 
The second-order secular coefficients Aoo, Azo, and A4o contain higher even 

order zonal harmonics and lunisolar perturbations: 

Aoo (L, O, H) = qSz(L, G, H) + ~ a -~ F ../E(G, H) - 
n > / 4  E V E N  

--s,t| ~ Ps(C(i)) - 9v~ ~ P4(C(i)), (29) 

Azo(L, G, H) = - ~" a, -~ F,,,/z(G, H) + 
n > / 4  E V E N  

4, P,,(c(i)), (30) + ~2er Pz(C(i)) + 77v~ 

3 2 J, ~ f,,,/z(a, H) + 
A4o(L, G, H) - 8 ,>--6 EVEN 

+ 7Ygv~as" P4(C(i)) ' (31) 

L, G, and H are DeLaunay momenta. F,.q is a form of Kaula's inclination function 
(Kaula, 1966) adapted for zonal harmonics: 

F,,,q(G, H) = 2 ~, ( - 1) s T.s 1 - 
j=O 

( 2 n  - 2 j ) !  
T,s - 22,- 2jj !(n - j) !(n - 2j) ! 

q* = �89 - q). (32) 
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q5 z is the Von Zeipel correction to the second-order secular term (Brouwer and 
Clemence, 1961): 

32 1 - 2  ~ - 7  . (33) 

The second-order long period coefficients B 11, B31, and B33 contain only higher 
odd order zonal harmonics: 

_ / L \  z " - I  

Bil(L'G'H)=- .~> 32ODD l(n--1)J"tG) F"'("-i>I2(G'H)' (34) 

- / / L  "~2n-  1 

B3~(L'G'H)=- ,~ s ~ooo~(n-1)(n-2)(n-3)'l"tG) F"'('-~)I2(G'H)' 
(35) 

_ I ~ L \  2n-1 
B33(L'G'H)=- E ~(n-1)(n-2)(n-3)J l'-d}\ / x 

n >~ 5 ODD 

x F,,(._ 3)12(G, H). (36) 

The second-order long period coefficients C22, C,2 , and C44 contain higher even 
order zonal harmonics and lunisolar perturbations: 

- f L \  2n-1 
C2~(L,G,H)=->~LEN�88 ) F~,<.-:)/2(G,H)- 

~3J2(L'~7F1-6, 2\G ] k 1 6 ( H )  2 + 1 5 ( H ) 4 1 -  

( a )  3 ( a )  s 
~2o( ~ Pz2(C(i))-~v c ~ P,,:(C(i)), (37) 

i/ L X~2n-1 
C42(L,G,H)=- ~ ~(n-1)(n-2)(n-3)(n-4)J|~}\ / x 

n>~6 EVEN 

x F(._2)I2(G, H) - ~-~v~ ~ P42(C(i)), (38) 

- [ ' L \  2 " - 1  

C44(L' G'H)= - n>~6~ 1 t ~ ) EVEN l~-(n - -  1)(n -- 2)(n - 3)(n - 4 ) J  x 

63  P44(C(i)), (39) x Fn,tn_,,)tz(G , H) + 4~Tgvr 
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where P42 and P44 are Legendre functions. The Von-Zeipel  correction to the second- 
order long period term, taken from Brouwer and Clemence (1961), is incorporated 

in C22. 
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