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Abstract. Certain it is that the critical inclination in the main problem of artificial satellite theory is an 
intrinsic singularity. Its significance stems from two geometric events in the reduced phase space on the 
manifolds of constant polar angular momentum and constant Delaunay action. In the neighborhood of the 
critical inclination, along the family of circular orbits, there appear two Hopf bifurcations, to each of which 
there converge two families of orbits with stationary perigees. On the stretch between the bifurcations, the 
circular orbits in the planes at critical inclinmation are unstable.A global analysis of the double forking is made 
possible by the realization that the reduced phase space consists of bundles of two-dimensional spheres. 
Extensive numerical integrations illustrate the transitions in the phase flow on the spheres as the system passes 
through the bifurcations. 

A delicacy so very susceptible of offence ... 
Hester Lynch PIOZZI, Observations and 

Reflections made in the Course of a Journey 
through France, Italy and Germany (1789) 

1. Introduction 

Orbits whose semi-major axis remains fixed on the average with respect to the line of nodes 

have drawn considerable attention in the theory of artificial satellites. The main problem, we 

recall, is the dynamical system with three degrees of freedom described in Cartesian 

coordinates (x, y, z) and momenta (X, Y, Z) by the Hamiltonian ~ = ' ~ 0  + J2 ~-~ 1-It is 

made of the Keplerian 

= X2 + y 2  + z 2) _  t/p 

as its principal part, and of the term 

~-~1 = (~/r) (o~/r) 2 Pz(z/r) 

as a first order perturbation in J2" Here P2(z/r) denotes the Legendre polynomial of degree 

two in the variable z/r. The three parameters of the main problem are the Keplerian constant It, 

the zonal oblateness coefficient J2,  

equatorial radius. 

and the length scale o~ which stands for the earth's 
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To our knowledge, Orlov was the first to signal that an unusual situation arises at the 

inclinations I = + tan -1 2 (mod rt). He had set himself to the task of extending the periodic 

orbits of ~ 0  into periodic orbits of ' ~ ,  dealing first with the circular ones (Orlov, 1953), then 

proceeding to the general case of the elliptic orbits (Orlov, 1954). According to his setting of 

the periodicity criteria, the conventional Lindstedt-Poincar6 algorithm which he refers to as 

the Lyapunov-Poincar6 algorithm fails not only at zero inclination but also at inclinations 

such that 4 - 5 sin2I = 0. Orlov put aside these exceptional situations, and went on with the 

formal developments, thus leaving the reader in doubt. Is the critical inclination truly an 

essential feature in artificial satellite theory, or is it a spurious effect caused by the method of 

solution if not by the type of variables adopted in the analysis? 

At about the same time, Krause (1952) was assessing the long term effects of J2 on a 

Keplerian ellipse. His formula for the angular velocity of the mean perigee contains (1 - 5 

cos2I) as a factor, a feature to which Krause attached no significance. Roberson (1957) who 

verified Krause's findings did not elaborate on that peculiarity either. Herget and Musen (1958) 

overlooked the difficulty in their treatment of the main problem by Hansen's method, at least 

not until it was pointed out to them by McVittie and Brouwer (1958, pp. 437--438). So 

casually did the enigma of the critical inclination slip in the theory of artificial satellites. Yet, 

fight at the outset, appeared the main pieces to be fitted in the global portrait of the phase space: 

the possible existence of families of orbits with stationary perigees on the one hand, and the 

termination, to all seeming, of the families of circular orbits at the critical inclination on the 

other hand. 

For a while Brouwer entertained the hope that Delaunay's method of eliminating periodic 

terms by canonical transformations would yield a solution free of singularities at small 

eccentricities and at critical inclinations (Brouwer 1958, p. 438, col. 1). Unlike Orlov who 

started with the Lagrangian equations in the map (a, e, I, h, g, 9.), Brouwer proceeded in the 

Delaunay variables (G, H, L, g, h, ~) from the Hamiltonian equations. Using Poincarr's 

rrMthode nouvelle rather than the conventional continuation adopted by Orlov, he removed the 

mean anomaly 9. from the Hamiltonian ' ~  by means of a canonical transformation (G, H, L, 

g, h, 9.) ---) (G', H', L', g', h', 9.') developed in the powers of the small parameter J2 

(Brouwer, 1959). Distinct methods and coordinate systems led still to the same conclusion: 

because of the divisor (1 - 5 cos2I), neither Orlov's periodic series nor Brouwer's condi- 

tionally periodic developments make sense in the neighbourhood of the critical inclinations. 
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Incidentally, because we deal exclusively with the main problem after it has been 

normalized, from here on we shall drop the primes on the mean Delaunay phase variables. In 

addition, as we did in our previous publications, we shall use the notations 

"q = G / L ,  a = L2/~t,  c = cos I = H/G, 

e = (1- r12)~, p = G2/~t, s = sin I = (1-  c2)~, 

n = ( ~ / a 3 ) ~ ,  q = H 2 / I t  

throughout the paper without referring explicitly to their definitions. 

Brouwer's elimination of the short period terms produced a Hamiltonian 

~"~' - ~'-'~'0 + J2~'~'.~'1 + J2 2 "~ '2 + O( J2 3) (1) 

in which the mean anomaly 9. is ignorable. Since the main problem retains only the second 

zonal harmonic in the earth's gravity field, the perturbation function "~1 is symmetric with 

respect to the earth's polar axis, which implies that the right ascension h of the ascending node 

is also ignorable in '~ '1.  Accordingly the averaged Hamiltonian (1) defines an integrable 

system with only one degree of freedom. Brouwer approached it as he had done with great 

success when he used Brown-Hill's variational techniques to build a theory of Jupiter's theory 

of Io (Brouwer, 1946). Past the Delaunay normalization which he had compressed nicely into a 

unique operation, he believed that the solution could be completed with only one more 

elimination of a periodic argument. With the independent variable replaced by the long time 

scale "C" such that 

J2 dt = d'~', (2) 

the flow on the phase cylinder (g, G) at the intersection of the integral manifolds L = 

and H = constant is determined by the canonical equations derived from the Hamiltonian 

Y,. = ~ (L, G, H, g) = ~ 0  + J2 ~?',1 + 0"( J2 2) 

constant 

(3) 

w h o s e  t erms  are 

~ 0  -- ~ 0  (L, G, H, g) = 4 n G ( ~  3 c2), 
P 

(4) 

3 o< )4 (m0, 0 + m0 1 Y[ + m0, 2 
~ 1 =  128 n G (  P 

the coefficients in (5) being the i nc l ina t ion  polynomials 

q-[ 2 + m2,0 s 2 e 2 cos 2g), (5) 
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m0, 0 = -  5 (8- 16 s 2 + 7 s4), 

m0, 2 = 8 - 8 s 2 - 5 s 4, 

m0,1  = - 4 (4  - 12  s 2 + 9 s 4 ) ,  

m2, 0 = 2 (14-  15 s2). 

Note that the right hand members of (4) and (5) are copied from (Deprit, 1981). They are 

arranged to display the algebraic structure of Hamiltonian ~ .  As a rule, state functions are 

decomposed into products of a factor carrying the physical dimensions in the most obvious 

way, and of a dimensionless expression involving only dimensionless quantities. For instance, 

at any order, a term in (3) is made to come out as a product of three factors: the energy nG, an 

even power of the parallax ratio cx/p, and a finite trigonometric sum in multiples of 2g whose 

coefficients are polynomials in the dimensionless variables ~ ,  e 2, and s 2. 

On the grounds that the angle g is ignorable in the principal term Y"0, it has been argued 

by analogy with the Hamiltonian 

~Jr = ~ Q)2 _ 03 2 cos 2(3 

that the average main problem behaves essentially like a generalized pendulum. Admittedly 

incorrect from a global standpoint, the analogy is nonetheless acceptable in the region of the 

phase space where the motions are of a circulatory type, the argument of perigee g varying on 

the average monotonically with the long time "C. In that open domain, the particle with the 

kinetic energy ~ 0  may be regarded as rotating at a fast rate (relatively speaking in the long 

time scale "C) on a circle while subject to an infinitesimal gradient arising from the perturbation 

1- This, Tisserand (1868) had explained, is the foundation on which rests the most common 

Delaunay operation. In that context, elimination of the argument of perigee is legitimate 

everywhere in the plane (L, H) save at the points where the Lie derivative 

3 ((z)2 OF 
~1 :F  > (F; Y"0)=- ~ n -p-- (1- 5 c 2) 3g 

is singular. Three kinds of exceptions arise thereby, not only the critical inclinations I such 

that tan I = +_2, but also the equatorial orbits with I - 0 (mod n) filling the integral manifold H 

= L, as well as the circular orbits e = 0 since the Delaunay transformation (R, |  r, e, 19) 

> (L, G,. H, 9., g, h) leaves indeterminate the fight ascension h for an equatorial orbit and the 

argument of perigee g for a circular orbit. 
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Astronomers are well acquainted with difficulties brought upon perturbed Keplerian 

problems by small inclinations and eccentricities; usually they can be disposed of by a change 

of coordinates. Singularities arising from non zero inclinations are of a different nature, 

though; they took everyone by surprise when they were discovered in the main problem of 

artificial satellite theory. The more so that engineers reported they did not detect adverse effects 

from the divisor (1 - 5 c 2) in their "guidance sensitivities" (Geyling, 1965) or in their 

numerical integrations (see e.g. Lubowe, 1969a and 1969b). Besides, answers the theorists 

gave the skeptics were not incontrovertibly convincing (see e.g. Message et  al . ,  1962; 

Kikuchi, 1967; Garfinkel, 1969; Allan, 1970; Hughes, 1981). All the same, while the debate 

lingered on, astronomers grew accustomed to the idea that singularities of that kind are 

common occurrences in perturbed Keplerian systems. Garfinkel (1959) discovered critical 

inclinations in his own separable intermediary 

1 (R 2 | t x | _~__2 1 3 2)(1 p 3 2 2e], 
~ =  ~ +--r2 r -  -J2(~-)( ) [ 3 (  2 4 -  s - r q-[ )+  -~- s cos 

or in the separable intermediary 

~2 ~2 (x)2 1 3 2) r ~_ 3 
1 (R2+__~_)_l.t-J2(--~-)(--ff- [ ( 2 -  ~s  ( )+  4 

~ = 2  r r r 
s 2 cos 2 e ] ,  (6) 

proposed earlier by Sterne (1957). They were also found in the zonal intermediary (Aksnes 

1965, 1966) 

2.1 (R 2 | 2 ~2)2 p(X 2 zl 43 3 O~ = + r 2 ) -  J~r - J ( r ( - - )  [(-=- s2) + ~s2 cos 2e], 

and in the radial intermediary (Cid and Lahulla, 1969 and 1971) 

(7) 

1 (R 2 | 6) 2 (x)2 (__2 1 3 
= 2 + -T)-r r - J 2 ( r 2 ) ( --p r ) ( 2 - ~ s 2) (8) 

and its extensions (Cid et  al. 1985). More significantly, critical inclinations appear in the 

quadratic Zeeman effect caused by weak magnetic fields (Delos et  al. 1983a, 1983b). 

Undoubtedly genuine singularities at non zero inclinations and eccentricities are to be expected 

even in simple perturbed Keplerian systems. This being the case, past the Delaunay 

normalization and before reducing further the averaged problem, one should stop to analyze in 

detail the global phase space, locate its singularities, determine their stabilities, and then select 

the second reduction methods according to the overall chararcteristics of the flow in the mean 

phase space. 

With the geometric structure of the phase space after a Delaunay normalization Brouwer 

had no concern; in particular he did not seem to have perceived a possible connection between 
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the singularities at the critical inclinations and those at zero eccentricities. The first to tackle tl 

issue, lzsak (1963) questioned very harshly the unfounded, yet commonly held, allegation th 

the main problem, after it has been averaged over the mean anomaly, is assimilable to 

perturbed simple pendulum. As for himself, he contended that the phase space of ~ may t 

modelled after the perturbed harmonic oscillator 

= 2 a (X 2 + x 2) + 2 b (X 2 - x 2) + 4 c (X 2 + x2) 2, 

in an open region containing the critical inclinations at the exclusion, though, of the poin 

where e = 0 or I = 0. Garfinkel explored the possibility offered by the parameters a, b, and 

in Izsak's Hamiltonian to cover indifferently stable and unstable equilibria. Not until lo1~ 

after Garfinkel closed his Ideal Resonance Theory did Cushman (1983) come with a glob~ 

representation of the phase space along the lines of global geometric solutions proposed for tt 

Stark effect (Deprit, 1983) and the Blamont problem 0Deprit, 1984). Relying on the invarianc 

of ~ with respect to the group of rotations around the polar axis, Cushman justifies the cycli 

character of the longitude of the node by way of a Meyer reduction (Meyer, 1973; see als 

Marsden and Weinstein, 1974--Quantum physicists name the technique after Kirillox 

Souriau and Kostant). Thus it turns out that, above each admissible point (L, H), the phas 

space is neither a cylinder as Brouwer trusted it to be, nor a plane as in Izsak's local mode 

but a two-dimensional compact manifold. 

Cushman's extension of the momentum mapping based on the integral H is somewh~ 

awkward. No attention is paid to invariance with respect to the group of similitudes determineq 

by the physical dimensions when defining the set of reducing coordinates. Indeed, one c 

Cushman's reducing coordinates is an action while the other two are squares of actions 

Insignificant as it may seem, the disparity causes unnecessary complications in th~ 

transformation formulas, the more so that it gives the phase space an unusual shape. In thi 

paper, we propose a set of coordinates homogeneous in physical dimensions, and an extensiol 

of the momentum mapping that assimilates the phase space above each point (L, H) to a twG 

dimensional sphere ~(L ,  H). Such representation makes it easy to explore how the singu 

larities change their relative positions in phase space as the base point moves in the plato 

(L,H), an aspect of the problem that has not yet been considered although it is of considerablq 

importance. 

When only the principal term ~ 0 is retained in Hamiltonian ~ ,  there emanates from th~ 

critical inclination a continuum of singularities. In the local chart (G, g), it is represented by thq 

line G = H~/5, while, in our global model, it consists of a small circle on each sphere ~ (L,H 
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above each point of the plane (L,H) in the wedge deffmed by the inequality 0 < H < L. This 

says that a degeneracy occurs at first order in the sense that the equilibria are not isolated 

points in the phase space [In some varieties of mathematical lingoes, one characterizes the 

situation by asserting that the Hamiltonian g 0  is not a Morse function over ~ (L, I-I), only a 

Boa-Morse function!]. Now the perturbation ~ 1 removes the degeneracy to leave only a finite 

number of isolated singularities. As long as the eccentricity is sufficiently far away from zero, 

there survive exactly four equilibria a shade above or below the criticial inclination; two of 

them, at g = 0 and x, are centers, and the other two, at g = x/2 and 3x/2, are saddle points 

(Strubble, 1960; Petty and Breakwell, 1960; Izsak, 1963). l_a)oking for a picture reminiscent 

of the phase space for a circular pendulum, Hori (1960a, 1960b) took only half of that figure 

for g between x/2 and 3~2. Can'ving out the seccond center on the opposite side of the spehre 

~/'(L, H) may lead one to assimilate the phase space to that of a simple pendulum. Yet the 

analogy should not be taken at face value. In the first place: the phase space of the pendulum 

presents only one center and only one saddle point, and nothing in the main problem of 

artificial satellite theory justifies identifying opposite equilibria. Besides, like Strubble, 

Petty-Breakwell and Izsak, Hori excludes the small eccentricities, that is to say in our 

representation, an open neighbourhood of the pole G = L on each sphere C (L, H). But that is 

precisely, our paper will reveal, the boundary layer where, in a two-step exchange of stability 

and instability, the saddle points at critical inclinations vanish first, and then the centers. 

To be sure, the case of small eccentricities has been studied in the past. Authors like 

Aoki (1963a, 1963c) and Jupp (1980) developed their analysis along conventional lines on the 

basis of appropriate estimates for the values of the eccentricity and the divisor (1 - 5 c 2) 

compared to J2- They took on more than the main problem. Aoki introduced the perturbations 

in J4; Jupp, responding to indications given by Chapront (1965), added terms in Jr, and even 

the odd zonal harmonics since they affect significantly stationary perigees (see e.g. King-Hele 

et al., 1967, p. 761, also 1969, p. 642; Brookes, 1976; Lyddane and Cohen, 1978; Zeis and 

Cefola, 1980). It could be interesting to strip Jupp's formulas of these additional terms and 

then check whether his analysis in terms of the local variables 

h = e cos g = ~3 + ( L2 + H2)/2'  k = e sin g = ~3 + ( L2 + H2)/2 

yields the same classification as this paper in the region of small eccentricities. What the global 

model gives that cannot be obtained by treating the problem in separate local charts, one for 
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e >> 0 and one for e ~ er(qJ2) is the ability to follow how the families of stable and 

unstable orbits with stationary perigees evolve as H runs over the interval 0 < H < L. The 

results may be phrased in Jupp's terminology as follows: the phase space in the neighborhood 

of e = 0 is of type 3 when 

0 < H  < L/,/-5 [1 -(J2/10) (cx/a) 2 + O(J22)], 

migrates through type 4 in the interval 

L/q/-5 [1 - (J2/10) (c</a) 2 + 0022)]  < H  < L/q/-5 [1 + (J2/10) (c</a) 2 + O(J22)], 

and ends up being of type I when 

L/~-5 [1 + (J2/10) ((x/a) 2 + 0022)]  < H  <L. 

One could probably follow part of this evolution, at least when the eccentricity is sufficiently 

small, in Jupp's analysis were the coefficients of his cubic equation (34) given explicitly in 

terms of the integrals H and L. 

Transitions from one type to the next are intrinsic, independent that is of the coordinate 

system in which one operates. They occur exactly where the families of orbits with stationary 

perigees branch off the family of circular orbits with non zero inclinations. It is remarkable that 

the origin of the critical inclinations can be traced back to a double bifurcation at the extremities 

of a short interval of instability along the sequence of mean circular orbits. From a practical 

standpoint, the most significant finding is the tiny gap of unstable circular orbits in the 

neighborhood of the critical inclination. 

2. The Delaunay reduction 

Because all orbits in bounded states of the Keplerian system are periodic, any smooth 

function F over its phase space may be decomposed in a unique way into a sum F = F ~ + F ~ 

with the following properties: 

a) (F~ ' ~ 0 )  = 0, i.e. F ~ belongs to the kernel of the Lie derivative ~ 0 :  F > ( F ; ~ 0 ) ;  

b) There exists a smooth function F ~ such that (F~; ~ 0 )  - F~,  i.e. F ~' belongs to the 

image of the operator ~ 0. 

On this theorem proved by Cushman (1984) rests the concept of a Delaunay normalization 

(Deprit, 1982), that is a Lie transformation in the sense of Deprit (1969) to convert the 

perturbed Keplerian Hamiltonian ~ into a Hamiltonian ~ '  belonging to the kernel of ~;0. 

Analytically a Delaunay normalization is usually carried out, at least implicitly, in the Delaunay 

variables because they reduce the Lie derivative ~ 0  to the single partial derivative nO/b9.. In 
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the Delaunay chart, the perturbation stands as a periodic function of the mean anomaly 9., and 

the Delaunay normalization amounts to averaging the vector field derived from ~ over the 

mean anomaly. However, since the time when Fock (1936) discovered that Keplerian 

Hamiltonians are invariant with respect to the group SO(4) of rotations in a four-dimensional 

space, quantum physicists tend to look at Delaunay normalizations from a geometric standpoint 

with a view of characterizing the phase space of the averaged perturbed Keplerian system in a 

global way, rather than dealing with it through local coordinate charts as it is done in 

conventional celestial mechanics. From that viewpoint, a Delaunay normalization is no less 

than a reduct ion in the sense of Meyer (1973; see also Abraham and Marsden, 1978, 296 - 

309). Cushman (1983) explains why it is so. Here is how we understand Cushman's 

geometric explanation in a somewhat intuitive way, at the risk though of sinning grievously 

against mathematical propriety. 

In principle at least, after the mean anomaly has been removed, the motion of the satellite 

is obtained by first solving the differential system 

d g _  ~Y,, dh c)~ dG ~Y,, dH ~gY,, 
d v  - bG ' d'~" - ~9--ff-' d'c" =-  bg d'c" Oh (9) 

and then performing the quadrature 

~ = n t + f ~  
~9 
~L 

]((L, G(z'), H, g('g')) dz'. (10) 

Thus, on the one hand, to each value of the (formal) integral L is attached the four-dimensional 

phase space ~/' (L) of a reduced dynamical system described by the Hamiltonian ~ at that 

particular value of L; on the other hand, quadrature (10) reconstitutes any orbit in ~ ( L )  as an 

orbit on the integral surface L in the 6-dimensional phase space (L, G, H, 9., g, h). An 

essential charasteristic of the phase space ~ (L) might go unnoticed in this conventional 

treatment of an ignorable variable. A point of ~ (L) stands not for an individiual state in the 

original system but for the class of states in the manifold L whose Delaunay coordinates differ 

only in the mean anomaly. Thus, given the momentum mapping 

r~: (x, y , z, X, Y, Z) ~ L : R  6 ~ R, 

and the one-parameter group ~ of transformations 
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qg: (L, G,H,  9, g ,h)  ) (L, G, H, 9. + ~, g, h) : R6--~ R 6. 

~ ( L )  is the reduced space " f f - l (L) /~ .  Along an orbit on ~ ( L )  that is a solution of the 

canonical system (9), the angular momentum and the Runge-Lenz vector 

G = x x X, A = (L/p) [X x G - (kt/r) x] (11) 

are invariant with respect to the group ~ since their Cartesian components 

G 1 = G sin I sin h, 

G2 = - G sin I cos h, 

G3=  H, 

(121) A 1 = L e (cos g cos h - sin g cos I sin h), (131) 

(122) A 2 = L e (cos g sin h + sin g cos I cos h), (132) 

(123) A 3 = L e sin g sin I (133) 

are independent of the mean anomaly. Furthermore these vectors are sufficient to determine 

unambiguously the equivalence classes that are the points of ~/' (L). They may therefore serve 

as a coordinate system on the reduced manifold. In those coordinates, ~ ( L )  

algebraic surface satisfying the equations 

II G II 2 + 11 All 2 = L2 G" A = 0. 

emerges as the 

(14) 

Clearly the Delaunay 

reduced Hamiltonian ]( can be made into a function of G 1, 

hence the Hamiltonian system (9) is equivalent to the system 

elements (G, H, g, h) can be expressed in terms of G and A, so the 

G2, G3, A 1, A 2, and A 3 alone, 

dG_GdT~ - VG~ x G + VA~•  A, dz'dA = ~ ~ •  A + VA~•  G. (15) 

In forming the right hand members of these equations one takes into account that all Poisson 

brackets (Gi; Gj), (Gi; Aj) and (Ai; Aj) for 1 < i, j < 3 are zero save 

(G1; G2) = G  3, (G2; G 3) = G  1, 

(G1; A2) = A 3, (G2; A 3) = A 1, 

(G3; G1) = G2 , 

(G3; A1) = A2 , 

(A1; A 2) - G  3, (A2; A 3) = G  1 , (A3; A 1 ) = G  2. 

Quantum phycisists arrive at a more intuitive description of if' (L) by 

(due probably to Jauch and Hill ): 

adopting the variables 
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(5i = ~ (Gi + Ai), 5i = ~ (Gi- Ai), ( 1 < i < 3 ) .  (16) 

Owing to the relations 

(512 + (522 + (532= ~ L 2, Sl 2 + S22 + S32= ~ L 2, (17) 

equivalent to equalities (14), the reduced phase space ~ ( L )  above each point along the L-axis 

exhibits itself as a kind of dumb-bell [not in the sense of Algebraic Geometry !] consisting as it 

were of a pair of 2-dimensional spheres, the radius of each sphere being equal to L/2 (see 

Figure 1). Let it be mentioned that there is also a practical advantage in using the Cartesian 

components of the vectors (5 = ((51, (52, (53) and S = (S 1, S 2, S 3) as the coordinates on the 

dumb-bell C (L) 

save 

because all Poisson brackets i; j), i; j), and (S i; j) are zero 

(0"1; (52) = (53, 

Sz) = S3, 

((52; 0"3)-- (51, ((53; (:51) = (52, 

(82; 8:3) = $1, (83 ;  81) = 82, 

hence fewer terms enter the fight hand members of the reduced equations. In those variables, 

dO' dS 
d'c = VO'Y" • B, dz" - ~ 8  ~ • $" (18) 

In particular, the form given the fight hand members of (18) makes it clear that 

(5" d(~ S" dS 
d'U = d----~= O, 

and so conf'mns that the orbits of the normalized system belong to the manifold C (L) at each 

level of the integral L, in other words, that each dumb-bell C (L) is an invariant manifold of the 

differential system (6).The reduction that ensued on the Delaunay normalization applies to any 

perturbed Keplerian system that is Hamiltonian in character, a wide class of dynamical sytems 

indeed, of which the main problem in artificial satellite is but an example. Further reduction of 

the phase space is usually not possible beyond this point unless the principal term ~ 0  in the 

reduced Hamiltonian itself presents in its turn a dynamical symmetry. 
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Figure 1. The phase space of a perturbed Keplerian system 

after a Delaunay normalization. 

3. Elimination of the ascending node 

The elimination of the mean anomaly consisted of two steps, first a Delaunay normalization to 

create a formal integral L by rendering the new mean anomaly ignorable in ~ ,  then a Meyer 

reduction to partition the original six-dimensional phase space into a row of four-dimensional 

shells, one for each integral manifold. By contrast, the next reduction is simpler in that, owing 

to the longitude h being ignorable in '7~, hence also in its average ~ over the mean anomaly, 

the Hamiltonian is invariant with respect to the group of rotations around the earth's polar axis. 

By virtue of Noether's theorem, the component 14 of the angular momentum is an integral. 

Although this is a well known fact in artificial satellite theory, there remains however, from a 

geometric standpoint, to explain how the conventional way of ignoring the longitude of the 

ascending node corresponds in fact to a Meyer reduction. 

Let G' and A' be the images of the vectors G and A by a rotation of arbitrary amplitude 

around the earth's polar axis. 

[1G' [I 2 + I1A' [I 2 = L2 and G "  A' 

rotation leaves invariant the reduced phase space ~/'(L). The Cartesian components of 

Evidently 11G'II = II G 1[ and II A'II = II A II; furthermore, 

= 0, which proves that the transformation induced by the 

G' and 
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A' are linked to those of G and A by the relations 

A 1 = A '  1 cos d - A '  2 sin E, 

A 2 = A' 1 sin E + A' 2 cos d, 

A3 = A'3, 

G 1 = GJ1 cos E - G' 2 sin E, 

G2 = G'I sin E + G'2 cos E, 

G s = G  3. 

There follows that the components of the image vectors (:/ 'and S' 

Jauch-Hill vectors ( / a n d  ~; by the equalities 

(51 = (5'1 cos ~ - (5'2 sin d, 

(52 = cY'I sin d + (5'2 cos d, 

(53 = (5'3, 

are related to those of the 

~1-- S 1cos  E-  S 2 sin E, 

J J 

S2 =S l sin ~ + S 2 cos ~, 

 3=8 3. 

Under the action of these rotations around the earth's polar axis, the tips of the vectors O" and 

S describe small circles on ~(L) ,  one at the height (5 3 on the C~- sphere, and the other at the 

height 83 on the 8- sphere. Now the Meyer-reduction corresponding to the longitude of the 

node being ignorable in Hamiltonian Y,. features a mapping of the dumb-bell ~/' (L) into a 

two-dimensional manifold ~/' (L, H) in such a way that the "orbits" on {/' (L) of the group 

SO(2) of rotations around the earth's axis coalesce into points of {/' (L, H). We shall now 

prove that the transformation = : ( L ,  G,H,  g) ) ~ = (:1, :2 ,  :3) 

: 1 - : 1( L, G, H, g) = G L e sin I cos g, 

~2 - ~2(L, G, H, g) = G L e  s i n I s i n g ,  

~,3 : :3( L, G, H, g) = G 2- :(L 2 + H 2) 

defined by the equations 

(191) 

(192) 

(193) 

has precisely that property 

being all three squares of actions. The inverse formulas 

. The coordinates (~1, ~ 2, ~3) are homogeneous in dimension, 

o=[::+ :(h2+ 

G cos I = H, 

H2)] ~, L e- (:I 2 + :22):/[:3 + ~(L2 - H2)] :, 

s e cos g = :i/[~3 + :~( L 2 -  H2)] :, 

L e sin g = :2/[:3 + : (  L 2 "  H21] ~ _ G sin I = [~3 + ~( L2 

serve to express the coordinates (G 1, G 2, G 3, A 1, A 2, A3) of any point on the dumb-bell 
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(L) in terms of the variables ~, L, H and h as follows: 

G 1 - G 1 (~; L, H, h) 

G 2 = G 2 (~; L, H, h) 

G 3 =- G 3 (~; L, H) 

A 1 - A 1 (~; L, H, h) 

i 2 - i 2 (~; L, H, h) 

i 3 ---- i 3 (~,; L, H) 

= [<3 + ~( L2- H2)] ~ sin h, 

= -  [ : 3  + ~( L2- H2)] ~ cos h, 

= H ,  

= (c  ~,cos h- H ~2 sin h) / [ (~3 + 

= (G ~ sin h + H ~Z cos h) / [(~3 + ~ L2) ~- 

= ~2 / [~3  + ~0 ~2 + H2)] ~- 

L2) 2-  ~ H4]~, 

H4]~, 

On account of (14), at every point of any dumb-bell ~ (L), 

~l 2 + (z 2 + ~32= ~ 0 2 - H 2 ) 2 .  (20) 

Thus, for any L and any H such that 0 < H < L, the transformation x projects the dumb-bell 

(L) onto a two-dimensional sphere ~ (L, H) of radius ~ (L2 _ H 2) centered at the origin in 

the three-dimensional space (~ 1, ~ 2, ~ 3)-Furthermore, by putting the projection rc in vector 

form as the transformation 

~1 = (G x A) "k, 

= IIGII ( A  " k ) ,  

~,3 = ~ ( [IG • 2 111112) 

(211) 

(212) 

(213) 

with k as the unit vector in the direction of the rotation axis, we establish ipsofacto that n is 

invariant, so to say, with respect to the group of rotations around the axis k. More precisely, 

all the points on a dumb-bell ~ (L) that are images of a given point (G, A) by the rotations 

around k are projected by r~ on the same point ~ = ~x(G, A) of the sphere ~ (L, H). Figure 2 

purports to evoke what happens to the phase space in the course of the second Meyer above 

each point of an L-axis; the projection ~ rearranges it as a flight of balloons taking off the floor 

of a convention: the delegate in seat H of row L holds on to the sphere (/' (L, H) of his 

private interest no matter how the keynote speaker spins the rhetorical yarn around the themes 

of the convention. 

Cushman (1983), we already said in the Introduction, deserves credit for having 

discovered that the elimination of the longitude of the ascending node amounts to a Meyer 

reduction. We only contribute a new version of the reducing projection. To recall, Cushman 
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. ':..:.. ~.. . .-.  ; : �9 

' ~  I l i  - 
-OJ" 

H o L  

I. 

Figure 2. The phase space of a perturbed Keplerian system that is axially 

symmetric, after a double Meyer reduction. 

proposed the transformation ( U l, 0 Z, 03 ,  ~ 1, S Z 

equations 

, S3) -~ (rt~, Tie ,  r13) determined by the 

121 = 2 ((3" 2 S 1 - d 1 82) = G L E cos g sin I ,  

T[2 = 2 (O1 81 + (32 8Z) = ~ ( 2 G 2 - L 2 - H 2 + L 2 

~3=d3+83=G. 

e 2 sin2g sin2I), 

It projects each dumb-bell  ~ ( L )  onto a surface of revolution whose equation in the space 

(rtl, ~e ,  rt3) is 

2 + ~q22 = [L 2 - (El + ~13) 2] [L 2 -  ( H -  Tl3)2]. 

From our coordinates to those of Cushman the conversion formulas are 

~ ~ [~' ~ ~ ~ [ ] ~ ~ I~3 ~ [I]~~2 ~ 
H 2 ) 
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By virtue of Liouville's theorem, 

d ~I = (~1; ~'), d ~2 _ (~2; Y'), d ~3 
dr" dr" dr" 

are the equations of motion on each individual sphere if' (L, H). In order to evaluate the 

Poisson brackets in the right hand members, we begin by observing that 

b .1 b 
b G  G s in  I = ' , and  

sm I bG 
G 

L e = -  
Le 

and deduce therefrom after a few straightforward 

~-----G L e sin I =-  2 ~3 _, 
~G L e s i n I  

manipulations that 

hence the Poisson brackets 

(<1; <2)= 2 G <3, (~2 ; ~3)= 2 O <I, (<3 ; z G <2, 

and, after the second Meyer-reduction, the equations of motion in a vectorial form 

d-'-~-= 2 G d ' c  '~ ~('  • ~" 

They prove in particular that, at each point (L, I-I), the average motions of the reduced system 

never leave the sphere ~(L,  H). 

Rather than face a redundant coordinate system subject to constraint (20), astronomers 

usually adopt (g, G) as a system of coordinates on the sphere. According to equations (191) - 

(193), the angle g is in effect the longitude along the equator in the plane ~3 = 0, and G 

being a function of ~ 3 alone measures the height above the equator. As one can see in Figure 

3, the chart (g, G) is analogous to a Mercator map for the sphere ~ (L,H); as such, it is 

singular at the poles ~1 = ~2 = 0 of the reduced phase space. It is now clear that the global 

flow induced by the perturbation is not determined adequately by the equations 

d g  = b ~  , d G  _ b ~  ( 2 2 )  

d'C bG dZ" 0g 

in the chart (g, G). While treating a symmetric perturbed Keplerian problem in the coordinates 
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(g, G), one excludes ipso facto the solutions in the orbit classes represented by the north pole 

(~ 3 > 0, ~1 = ~ 2 = 0) and by the south pole (~ 3 < 0, ~1= ~ 2 = 0) of each sphere ~ ( L ,  H). 

A/t3 

i O 

13 

/:2 

Figure 3. The angle and action (g,G) define a cylindrical 
projection of the sphere ~ (L,H) 

The condition ~12 + ~2 2 = 0, equivalent to the condition G 2 L 2 e 2 sin 2 I = 0, is satisfied 

either: 

a) for G = 0. This means in particular that H = 0 or that the excepted solutions belong to 

the sphere ~ (L, 0) representing the totality of average polar orbits in the integral 

manifold L. Owing to (191) - (19 3), there results also that ~ 1 = ~ 2 = 0, and 

~3 = - ~  L2; the exception is thus located at the south pole of ~ (L,0), the point 

representing the class of linear orbits in the integral manifold L; 

b) for sin I = 0. In those cases, G = H, and ~3 = - ~( L2 - H2) < 0. As in the previous 

case, the exception is located at the south pole of ~ (L, H), a point representing the 

average equatorial orbits of eccentricity e = (1 - H2/L2)~ in the integral manifold L; 

c) for e = 0. It means that G = L, hence that ~3 = ~( L2 - H2) > 0. Therefore the exception 

is located at the north pole of ~ ( L ,  H), and represents the class of average circular orbits 

with an inclination I = cos-1 (H/L)  over the earth's equator. 
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That the cylindrical chart (g, G) excludes both equatorial and circular orbits explains the 

difficulties encountered in dealing with small eccentricities and small inclinations while solving 

equations (22). 

when applying 

theory in the neighbourhood of the critical inclinations; they are called 

Witness the normality conditions (Garfinkel 1972, 1973a-b) to be imposed 

the Theory of the Ideal Resonance to the main problem in artificial satellite 

for cordoning off the 

north pole on each sphere ~ (L, H). 

4. The families of orbits with stationary perigees 

As we enter a detailed analysis of the equations of motion, we face a fair amount of algebraic 

manipulat/ons. Needless to say, they were performed by machine. Eliminations of the parallax 

and Delaunay normalizations were executed by MAO. This is a large package of functions 

written in an applicative language called LISP (McCarthy et al 1960, see also Winston and 

Horn, 1984). MAO's programming philosophy is documented elsewhere (Miller and Deprit, 

1986). It is enough to say here that MAO specializes in handling generic operations in the 

abstract category of commutative algebras with a unit element over tings of coefficients that are 

domains of integrity. The concept of "object oriented programming" introduced by Dahl and 

Nygaard (1966) is the key structure on which MAO (Rom, 1970 and 1971) has been rebuilt. 

Ever since Sconzo advocated using FORMAC (a macro processor to generate PL/I 

source programs), to reproduce Kozai's extension of Brouwer's solution, there have been 

various attempts at applying general purpose algebraic processors to solve analytically the main 

problem in artificial satellite theory. To our knowledge, the most advanced ones have been 

those of Zeis (1978) (see also Zeis and Cefola, 1978) with MACSYMA (Mathlab Group, 

1983; Moses, 1974; see also Rand, 1984, and Sloane, 1986). For the extensive symbolic 

evaluations needed to weave chains of Poisson brackets in the development of Lie 

transformations, we prefer MAO to MACSYMA. Past that stage, the calculations become less 

extensive, but more varied and less structured algebraically; at that point we found 

MACSYMA convenient and resourceful, and we made extensive use of it. 

We propose now to locate the classes of orbits with stationmy perigees on the spheres 

~/' (L, H). To this end, one could operate at once in the global coordinates (~ 1, ~2, ~ 3). 

Instead, we shall proceed for a while in the cylindrical chart (g, G). In places where the 

analysis breaks down because of small eccentricities, we transfer to the global coordinate 

system. This compromise, we hope, makes it easy for the reader to relocate the classical results 

in our spherical model. 

For the main problem in artificial satellite theory, the fight hand members of the 

differential equations (22) are: 
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p D 1 - D I ( L ' G ' H ' g ) = -  ~gg = J 2 n G (  ) 4 s 2 ( 1 4 -  15s2)e2sin2g+O(J22), (231) 

D 2 -- D2(L, G, H, g) = 

[2;0,0+ 

DK 3 0<.2 
~ 3  = 1 2 8  n ( 

) 
P 

{ 32 (4- 5 s 2) + J2 (__._:_)2e< 
P 

X 

~'0,I TI. + 2)'0,2 T[ 2 + ( ~'2,0 + ~2,2 q'[ 2) cos 2g] } + (9"(J22), (232) 

the coefficients in the right hand member of (232) being the inclination functions 

~0,0 = 440-  860 s 2 + 385 s 4, 

2;0,1 = 192- 528 s 2 + 360 s 4, 

2/0,2 = - 56 + 36 s2 + 45 s4. 

2,0 = 56 - 372 s 2 + 330 s4, 

2; 2,2 = - 56 + 316 s 2 _ 270 s 4, 

Coordinates of the critical points are solutions of the system of transcendental equations D 1 = 

D 2 = 0. At order 0, the system degenerates into the unique equation 

3 p 2  
D2,0= ~ n (  ) ( 4 - 5 s 2 ) = 0 .  

It would thus appear that, 

perigees. On the spherical model ~ (L, H), 

of latitude at the height ~3 = ~0, where 

at order 0, all orbits at the critical inclination have stationary 

orbits of stationary perigees lie on the small circle 

: 0  = :0 (  L, H) = : (9 H 2-  L2); 

conversely, all points on the small circle at the height ~0 represent orbits with stationary 

perigees. In view of the inequalities- ~(L 2-  H 2) < ~0 < ~( L2-  H2) expressing that the small 

circle belongs to the sphere iY' (L, H), there follows that orbits with stationary perigees exist if 

and only if 

H _< H 0 - H0(L ) = L / f 5 ,  

i. e. only on spheres ~ ( L ,  H) above points in the base plane (L, H) in the wedge between the 

lines H = 0 and H = H 0. One arrives at the same conclusion by observing that orbits of 

stationary perigees are ellipses with the eccentricity 
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e 0 - e0(L , H) = (1 - 5 H 2/L2) 2. 

To our knowledge, Cushman (1983) was the first to state this restriction explicitly. It seems 

strange that it did not surface earlier, not even in the controversy between Lubowe (1969) and 

Garfinkel (1969), although, for orbits in Lubowe's Series II, H > L/~5 ,  and thus Lubowe is 

vindicated in his claimi that the inclination I = tan-12 is not critical in that series. 

The history of the family of orbits with stationary perigees in a given integral manifold L 

is depicted schematically in Figure 4: the small circles of equilibria stem from the south pole 

representing a linear orbit on the sphere ~ (L,0), then bubble up on the spheres ~(L,H) with 

decreasing eccentricities to terminate at the north pole of the sphere ~(L,  H 0 ) with a circular 

orbit. 

e - I  

L 

e --- 0" 

,.H 

H - L  

- L  

145 

Figure 4. Evolution of the orbits with stationary perigees 
(Degeneracy at order O) 

Broadly speaking, the perturbation terms do not alter this evolutionary pattem; they only 

remove the degeneracy by wiping out all but four at the most of the zero-order equilibria in the 

cylindrical chart above each point of the base plane (L, H). On the whole, they simplify the 

problem, yet, as we shall see in the next Section, at the cost of delicate complications in a thin 

layer on both sides of the separatrix H = H 0. The factor sin 2g in the right hand member of 

(231) is responsible for removing the degeneracy, while the first order term in (232 ) determines 

a correction to the value of the critical inclination. Two cases must be distinguished: 
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a) The equation D 1 = 0 is satisfied for g - 0 mod re. 

both equilibria is a root Of the equation 

In which case the value of G at 

D2(L, G, H, 0 mod ~) = D2,0(L , G, H) + J2 D2,1( L, G, H) = 0, 

the f'wst order coefficient being 

3 
n ~ [~0,0 + ~ '2,0 + D2'1 = 128 p '~'0,1 T'[ + ('~'0,2 + "~'2,2) 1"1. 2 ]" 

The equation is readily 

Thus, in the root 1" 1 as a series 

F 1 = G I ( L  , I--I) = H f 5  [1 + J2 ~1 + •(J22)], 

solved to the first order in J2 by a Newton-Raphson approximation. 

(241) 

the first order correction ~I is given by the formula 

H',]5 '~'1 - -  D2,1( L ,  H~/5, H) / ~9 
t)G 

D2,0(L, H~/5, H). 

With the help of MACSYMA, one calculates that 

D2,1(L, H ~ 5 ,  H )  - -  
3 _ ~ 4 (  H 2 

2500 n (  1 - 4  ~--~), 

a 345 n 
~G D2 '0 (L 'H45 'H)  = -  250 H ( 

to arrive at the result 

5_10 q H2 ~I - ~I(L, I-I) - -  ( )2 ( 1 - 4  ~-~ ) .  (250 

Let S 1 and S 3 designate the equilibria at g = 0 and g = ~ respectively. In the interval 0 < H < 

H 0, the factor (1 - 4 H2/L 2) in (251) is > 0, hence ~1 is < 0 and 1-" 1 is < H  ~/5, which means 

that, for the orbits whose perigees lie permanently on the line of nodes, the inclination is 

slightly less than the so-called critical inclination I c = tan-1 2. Geometrically, on the sphere 

~ (L ,  H ), the equilibria S 1 and S 3 fall slightly below the critical parallel at the height ~0. 
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b) Another way of satisfying the equation D 1 = 0 is by taking g - x/2 mod x. For a 

point in the meridian perpendicular to the line of nodes to be an equilibrium, the norm of the 

angular momentum must be a root of the equation 

D2(L, G, H, x/2 mod x) = D2,0(L, G, H) + J2 D'2,1(L, G, H) = 0, 

the first order coefficient being this time 

3 n (o<)4 [ 25,0, 0 _ ~2,0 + D'2'1 = 128 p '~'0,1 T[ + ('~0,2- '~'2,2) ~2]. 

For the Newton-Raphson approximation, one calculates by MACSYMA that 

D'2, I(L, Hx/5, H) =-  
H 2 

35 000n (-~) 4 (9- 35 ---~-2), 

and thus find that, in the power series 

1-" 2 - I '2(L , H ) =  H f 5  [1 + J2 ~ 2  + @(J2 2)], (242) 

the first order coefficient is 

1 
~2 - 2;2(L,H)= 5OO 

( c><. )2 (9-  35 
q 

H 2 
L 2 ). (252) 

By S 2 and S 4 we designate the equilibria respectively at g = x/2 and g = 3x/2. In the interval 

0 < H  < H  0, the factor (9 - 35 H2/L 2) in (252) is > 0, hence 25" 2 is > 0, F 2 > H  a]5, and, for 

the orbits whose perigees are permanently perpendicular to the line of nodes, the inclination is 

slightly greater than the critical inclination. 

Not for all values of H do these points belong to the phase shells iC'(L, H) even though 

they belong to the chart (g, G). The value H 1 at which the equilibria S 1 and S 3 reach the north 

pole of the sphere ~/' (L, H1) is the root of the equation 

Raphson approximation to find that 

F 1 = L We solve it by a Newton- 

1 j2 ( c<)2 + O (J22)]. (26) H 1 - H I ( L  ) = H 0 [ 1 + 10  a 

Likewise we find that the equilibria S 2 and S 4 coalesce at the north pole of the sphere 
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~/' (L,H2), where H 2 is the root of the equation 1"2 = L. A Newton-Raphson approximation 

yields that 

H 2 = H2(L) = H 0 [ 1 - 1 j2 (o<)2 + ~ (J 2 2)]. (27) 
10 a 

Cushman (1983) makes two statements concerning the families of orbits with stationary 

perigees: 

(i) they do not exist in the interval H 0 < H < L; 

(ii) there are exactly four of them at every point in the interval 0 < H < H 0. 

Cushman's statements, our analysis shows, ought to be amended in the following way: 

(i) there are no families of orbits with stationary perigees in the interval H 1 < H < L; 

(ii) there are two such families in the interval H 2 < H < H1; 

(iii) there are four of them in the interval 0 < H < H 2. 

We believe Cushman has overstated what he proved in his theorem. Concerning the equilibria 

S 1 - S 4, one should observe that Cushman's proof is merely local. In order to by-pass the 

involved differentiations leading to our equations (231) and (232), Cushman proposed to 

construct a tubular neighbourhood of the small circle of latitude ~3 = ~0, and a function N 

depending on the small parameter J2 which, although simpler than the Hamiltonian ~ 0  + J2 

Y'-1, would have the same critical points. We surmise that a careful review of Cushman's 

estimate for the width 8 of the tubular neighbourhood would restrict his construction to be 

valid only in the interval 0 < H < H 2. As for the equilibria S O and S 5, one should note that 

Cushman's analysis is limited to order zero. Had he thrown in Y'-I as well, Cushman would 

have discovered the segment of instability along the families S o . 

5. Stability and bifurcations 

Stability at the equilibria is decided by solving the variational equations 

d 8G d 3G 
d'c 8G = -nG (P 3g + Q G )' dL" 8g = n (Q 8g + R G )' (28) 

Straightforward differentiations executed by means of MACSYMA deliver the dimensionless 
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coefficients 

P - P(L, H, G, g) = nG1 ~)g2~)2---K = ~ 6 J 2  (O<)p 4s2 (- 14 + 15 s 2) e 2 cos 2g + ~'(J2 2), (291) 

1 32K 32 (x)4 [(_ 28 + 186 s 2 - 165 s 4) Q --- Q(L, H, G, g) = n ~ g  = J2 (  p 

+ ( 28 - 158 s 2 + 135 s 4) q-[ 2] sin 2g + ~(J22)],  (292) 

R -- R(L, H, G, g )=  
G 
n 

~)2K (c<.2 3 3 ( o<)2 
oqG---- ~ = -p--) {-~- (- 13 + 15 s 2) + ~ J2 -p-- x [ ~,0,0 + 

+ ~,0,1 q-[ + ~0,2 ,q2 + (~,2,0 + ~2,2 T[ 2) COS 2g] + 1~(J22 ) }, (293) 

the coefficients in the right hand member of (293 ) being the inclination functions 

(0,0 = - 2620 + 5070 s 2 - 2310 s 4, 

(0,1 = - 1200+ 3096 s 2 - 1980 s 4, 

~,o,2 = 204-  54 s 2 - 225 s 4. 

(2,0 = - 596 + 2520 s 2 - 1980 s 4, 

(2,2 = 484-  1804 s 2 + 1350 s 4, 

With g and G being given their values at equilibrium in the partial derivatives, the eigenvalues 

at the equilibria are the roots of the characteristic equation 

X 2 + n 2 (p R -  Q2) = 0 

On the one hand, the argument of perigee being a multiple of n/2 for the equilibria at crfical 

inclinations, there follows that sin 2g = 0, hence that Q(L,G,H,0 mod r~/2) = @022), and the 

characteristic equation reduces to 

X 2 + n 2 p R = 0 .  

when terms of order 2 and higher are omitted. On the other hand, 

R ( L , H , G ,  0 m o d ~ ) =  ( 2 {___~(_ 13+ 1 5 s 2 ) +  ~4J2 ( x 

[ ~,0,0 + ~,2,0 + ~,0,1T[ + (~,0,2 + ~,2,2) "I"[ 2 ] + (~(J22) }, 
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R(L, H, G, rd2 rood ~) = 
3 3 ( 2 {~_ (_  13+ 15s2)+ ~4J2 (__~2 X 

[ ~,0,0 - ~2,0 + ~,0,111-[ + (~,0,2 - ~2,2) q-[ 2 ] + I~(J22) }; 

hence, in the vicinity of each equilibrium, 

3 (0<)2 
R(L, H, H45, 0 rood x/2) =-  50 ~ + O(J2)' 

is negative. Consequently the question of deciding whether the equilibrium is a center or a 

saddle point on the sphere r (L, H) rests with the sign of the partial derivative P. In this 

regard, one sees immediately that 

P(L, H, G, 0 mod ~) = - 3 J2 (o<)4 e2 s2 (14 - 15 s 2) + 0"(J22 ) , 
16 p 

P(L, H, G, ~/2 mod ~) = 3 ((x)4 e2 s2 (14 - 15 s 2) + O022) 16 J2 p 

from which there follows that, at the equilibria, 

P(L, H, H45, 0 mod re) D 3 J2 ( % 4  
6250 q 

e0 2 + 0(J22), 

P(L, H, H%/5, 7d2 mod ~) = 
3 J2 (o<)4 

6250 q 
eo 2 + 0 (J22). 

This means that, the terms of order 2 and higher being omitted, P is < 0 at S 1 and S 3, and > 0 

at S 2 and S 4, or that S 1 and S 3 are stable equilibria whereas S 2 and $4 are unstable (Strubble. 

1960). Needless to say, the stability may change drastically when higher zonal harmonics are 

incorporated into the perturbation, not only J4 (Hori, 1960b; Aoki 1962, 1963b) but also the 

harmonics of odd degree (Petty-Breakwell, 1960; Aoki, 1963 a, 1963c; Jupp, 1975; Lyddane 

and Cohen, 1978) or even the attractions by sun and moon (Hough, 1981). 

In the global model set up for the phase space in the main problem of artificial satellite 

theory, we can sharpen these classical results by showing that the families S 1 and S 3 of stable 

equilibria as well as the families S 2 and S 4 of unstable equilibria bifurcate from the family S O 
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of equilibria corresponding to the circular orbits. Bifurcations might indeed occur at the points 

in the base plane (L, H) where the families terminate if the characteristic exponents of the 

boundary orbits are zero (see e.g. Deprit and Henrard, 1968). 

In the coordinates (~1, ~2, ~3), 

P - P(L, H, < I, ~2, <3) m 

( o <  <i 2 - <2 2 
6J2 ---p--) (15 c 2 - 1) G2L  2 + @(J221. 

The equilibria S 1 and S 3 belong to the meridian plane ~2 = 0, the equilibria S 2 and S 4 to the 

meridian ~1 = 0; in those meridian planes, 

3 ( o<)4 
V - P(L,H, (1, 0, (31 = + ~6J2 ~ (15 c 2- 11 

~(L 2 - H2) 2 - <3 2 
G2 L2 + ~(J22), 

v _-- V(L, H, 0 ,  <2, < 3 ) = - ~  
3 ( ~)4 ~(L 2 - H2) ~ - <3 2 
~6J2 --if- (15 c 2- 1) ' + 0 '(J22).  

G2L 2 

With each family terminating at the north pole of the spheres {/'(L, H0), there follows that P = 

0, hence that the characteristic exponents vanish at the boundary orbits. There remains now to 

check that, along the family S O itself, the characteristic exponents are flipping from stability to 

instability or vice versa precisely at the bifurcation orbits. 

6. Bifurcations on the family of circular orbits 

At the time it was discovered, we said in the introduction, the critical inclination manifested 

itself in two ways, through the existence of manifolds of orbits with stationary perigees, on the 

one hand, and as the spot in phase space where conventional continuation methods fail in 

extending families of circular orbits, on the other hand. Having completed a detailed analysis of 

the cross-sections of the manifolds of orbits with stationary perigees on the orbit spheres ~(L,  

H), we now turn to the families of circular orbits. We shall find that there is a geometric 

reason, independent of the variables used and of the method employed, why the families of 

circular orbits cannot be continued analytically beyond the critical inclination. 

The cylindrical chart (g, G) being inappropriate for orbits of zero eccentricity, we shall 

operate instead in the Cartesian coordinates (~ 1, ~ 2, ~ 3) since they are defined globally on the 

spheres ~/'(L, H). In those coordinates the reduced Hamiltonian (5) becomes the function 
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Y' I -  128 nG (_~4 (m0,0 + m0,1 'q. +m0,2 q.[2 + m2,0 ~12 -.~.2 2 L2G2 )" (30) 

In application of LiouviUe theorem's, the global equations of motion are 

d ~1 = ( ~,1; ~) ,  
d'C" 

d ~2 = ( ~2; Y-,.), d ~,3 = ( ~3; ~) .  
dZ:" d'C' 

Building the right hand members of these canonical equations is a rather surprisingly simple 

task in global coordinates. The Poisson brackets are evaluated as sums of the form 

((k; Y") = ((k; G) 
a g  ay,. a g  
aG + (~k; P) c3p + (~k; ~q) o')----~ 

+ ((k; s2) aY.,. aY,. ay-.. as 2 + (~k; "~I) c-)~ I + (~k; '~2) c3(2 

in which all partial derivatives are taken for ~ as an explicit function of the variables (G, p, 1"[, 

s2, ~ 1, ~2). The Poisson brackets ((j; (k) have been evaluated in Section 3. The others are 

easily deduced from the basic identities 

(~1; G) =- ~2, ( ( 2 ;  c;) = ((3;G)=0. 

On account of the formulas 

follows at once that 

bp/~G = 2 p/G, a'q/~G = l/L, and Os2/~)G = 2 c2/G, there 

(~I;P) =-  2 G ( 2 ,  ((2;P) = 2 - ~  (1,  (~3;p)=O, 

((~; "q) = -  
L ((~;~)= L ~I , ( (3 ;  r t )  = o, 

((1; s2) =- 2 c 2 ~2 2) c 2 ~1 G (~2;s =2  (~3; S2) = 0. 

After introducing the dimensionless functions 

3~__. 32 ~--) (x0,0 +x0,1 T[ +x0, 2 T[2+x2,0 G2L2)+ 0'(J22), M1 =- 4 ( )2(1" 5c2) + 8 J2 ( o< 4 ~12 
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M 2 = - - ~ (  )2(1-5c2)  + J2(--cc')4(y0,0+Y0,1q-[ +Y0,2q'[ 2 +Y2,0 
P 

,~22 
G2 L 2) + ~(J22), 

3 (0<)4 1 
M3 = 8 J2 )--  L2 ~ z 2 ,  0 + O(J22) 

involving the inclination polynomials 

x0, 0 = - 49 + 378 c 2 + 55 c 4, 

x0,1 = 24-  192 c 2 + 360c 4, 

Y0,o = - 21 - 198 c 2 + 715  c 4,  

Y0,1 = 24- 192 c 2 + 360 c 4, 

x0, 2 = 35 - 350 c 2 + 315 c 4, Y0,2 = 15 - 98 c 2 - 225 c 4, 

x2, o = 36 - 660 c 2 Y2,0 = - 36 + 660 c 2 z2, 0 = 1- 15 c 2, 

one finds that the differential equations in the global variables are of the form 

d~l  d ~ 2  = n ~ 1 M 2 ,  d ~3 
d'c" = -  n ~2 M1, d'C" d'C" = - n  L2 M3, (31) 

The right hand members of equations (31) vanish together at ~1 = ~ 2 = 0, that is to say, 

at the poles of the spheres ~'(L, H). If the reader will remember, the north pole of ~ ( L ,  H) in 

an averaged perturbed Keplerian problem corresponds to the class of circular orbits in orbital 

planes whose inclination is equal to cos-1 H/L, whereas the south pole stands for the ellipses 

of eccentricity (1 - H2/L2)~ in the plane whose inclination is I rood n = 0. These are precisely 

the additional classes of equilibria needed to account for the phase flow on each sphere ~ ( L ,  

H) in a manner consistent with Morse's Theory in Global Analysis. In fact little of Global 

Analysis is needed beyond the intuitive idea that, if a function is sufficiently smooth and 

regular, its level contours on a sphere must evoke a relief much like a landscape on earth. The 

Meyer-reduction having converted the averaged main problem into a system with only one 

degree of freedom, hence integrable, the curves described by the solutions of the global 

equations are the level contours of the Hamiltonian ~ on the sphere ff'(L, H), hence 1( 

defines the height in a kind of topography on the sphere. North and south poles are readily 

shown to be minima of ]( .  When the first order term ~1 is omitted, the small circle of 

degenerate equilibria at the critical inclination delineates the ridge of a zonal bulge. The second 

order term in cos 2g destroys the axial symmetry in the first order profile. By raising the 
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bulge at one place while lowering it in compensation elsewhere, it creates a dome at S 1 and 

another one of equal height at S 3. The equilibria S 2 and S 4, when they exist, are located at the 

top of the mountain passes connecting the domes in one direction and the polar depressions in 

the other direction. When the families S 2 and S 4 terminate, the passes have come to 

coincidence at the north pole of the sphere ~ (L, H2). As H increases from H 2 to H1, the top 

of the gap at the north pole rises with respect to the domes, hence its floor gets flatter and 

H = 0.4Se L 

H �9 0.449 L 

H �9 0 .448 L 

H �9 0.44? L 

H �9 0.446 L 

H �9 0.445 L 

H �9 0.444 L 

Figure 5. Phase flow in the orbit space. 
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flatter. Finally, at H 1, the domes are smoothed out, and the north pole has become the point 

where Hamiltonian ]( now reaches its maximum. (For a formal survey of the terrain at the 

north pole, see Cushman, 1986).The curves plotted on the spheres in Figure 5 were not 

obtained by connecting points of equal values of ]( over the sphere a technique proposed 

first by Kozai(1963) in relation with lunar orbiters, apparently re-discovered by J.C. Smith 

(1986) for designing orbits for TOPEX satellites. 

numerically equations (31), since the level contours of 

the solutions of the equations of motion. 

averaged Hamiltonian, the flow on each sphere ~/'(L, H) 

rotation around the ~ 3-axis with the angular velocity 

3 = - n (c~) 2 (1 - 5 c 2) b, 
4 p 

Rather they result from integrating 

are precisely the orbits followed by 

As long as the perturbation ~1 is ignored in the 

acts in the manner of a differential 

where b is the direction of the ~ 3-axis. The poles as well as the points on the small circle of 

latitude at the height ~ 3 = ~0 are fixed under that rotation. The rotation is direct in the 

equatorial zone - ~0 < ~ 3 < ~0 , and retrograde on the polar caps. The perturbation ~1 

affects the global circulation pattern by fostering counterclockwise eddies at the equilibria S 1 

and S 3. The evolution in the circulation patterns on the spheres ~ (L, H) for a given L as H 

goes from 0 to L is depicted in Figure 5. For each value of H, the bit-map created to draw the 

integrated curves, sequentially as they were actually computed, in an orthographic projection of 

the sphere on the screen was stored in the memory of the workstation. Fetching them back 

from memory, and using drawing tools designed by B. R. Miller, we arranged them 

immediately on the screen of the workstation to compose Figure 5. 

Miller's package of LISP graphics functions proved an invaluable instrument in the 

course of the research leading to this paper. The Mathematical Doodler, as we came to call this 

program, is more than an artist's toolbox for illustrating concepts and results; it is an 

instrument for numerical explorations, with the operator at the console of the terminal passing 

graphic or mathematical commands as he reacts on the spot to the results unfolding in front of 

his eyes. 

In principle, the variations from an orbit in the global coordinate system are of the form 
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OM I OM I 
d dZ:" 8~i =-  n M 1 8~2-  n ~2 oq~1 ,2 3 (321) 

d alL" 8~2 n M 2 8~i + n ~I ( OqM2 ~ 03M2 8~3), = a~1 8~i+ a~2 8~2 + a~3 (322) 

d'L" M3 (~1 S~2 + ~2 S~1)-n ~1 ~2( aM3 oqM3 oqM3 
8~3 = -  n L 2 L 2 @~1 ~1 + o~2 S~2 + a~ 3 ~3)" (323) 

Of the solutions of this differential system, only the variational curves lying on the spheres ~/'(L, 

H) must be considered, that is to say, only those satisfying identically the constraint 

~I 8~I-!- ~2 8~2 + ~3 8~3 - 0 .  

Along a circular orbit, ~1 = ~ 2 = 0, hence 8 ~ 3 = 0, and the variational equations reduce to the 

elementary system 

d d 
d'~" 5~1 = -  n M 1 8~2, dV g~2 = n M 2 8~1. (33) 

There follows that the characteristic exponents for a circular orbit are the solutions of the 

quadratic equation: 

~.2 + n 2 M1 M2 = 0. (34) 

Thus the stability of a circular orbit is decided by the sign of the product M 1M 2. 

pole, 

At the north 

H 2 3 (cx)4  H 2 
3 (0<)2 (1-  5 ) + J2 (5 - 82 

M1=-4 a ~ 6-4 a L 2 + 365 
H 4 

L 4 
) + O(J22), 

3 a~__)2 H2 3 ~ao~ 4 H__~ 2 
M2 =-  4 ( ( 1 - 5  ~--~)+ 64 J2 ( ( 9 -146  L 2 + 425 

H 4 

L 4 
) + 0'(J22). 

The terms of order 1 and higher being omitted, the graphs of the coefficients M 1 and M 2 as 

functions of H are parabolas reaching their minimum at H = 0 and crossing the abscissa axis at 

H = H 0. It would then seem that the product M 1 M 2 is always > 0 in the interval 0 < H < L, or 

that the characteristic exponents are purely imaginary so that the circular orbits are always 
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stable. But  the first order  correct ions  in M 1 and M 2 force us to revise  our  conc lus ion  

substantially in the neighbourhood of H o. Indeed it is readily checked that M 1 vanishes at H = 

H 1, and M 2 at H = H 2. So, whereas the product  M 1 M 2 is > 0 in the intervals 0 < H < H 1 and 

t-I 2 < H < L, it is < 0 in the interval H 1 < H < H 2, and there appears a segment  on the family 

S O where the circular orbits are unstable. This portion of  instability ties in with the fact that the 

families S 1 and $3 terminate at H 1 on an orbit belonging to S O , and so do the families S 2 and 

S 4 at H 2. In summary ,  for each value of L > 0, pitchfork bifurcations occur along the family 

S0(L, H), one at H = H 1 , and the other one at H = H 2. 

Un.aab/e 

Se 

82,. 114 

O.2L / " - ' ~ _  0.81.. I.OL 

x a -! I 

|~ 

st ,~ ,  -I  I I  / s,. ss 
8:  �9 | 3  

Se 

H 

| e  

85 

Figure 6. Stability of families of periodic orbits: X 2 vs H 

At the south pole, 

~__ 3 ._~_2 H 
M1=3( )2[ 1 +2-J2( ) (2+ - - )  + 0(12 2) ] 
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M 2 = 3 (cx)2 [ 1 + m 
q 

1 
J2 ( (31- 1 2 ~  

H H 2 
L - 7 L 2 ) + er(J 22) ], 

hence the product M 1M 2 is always positive, the characteristic exponents stay purely imaginary 

in the interval 0< H < L, and all the orbits in the family S 5 are stable. Nothing like the double 

bifurcation we encountered at the north pole occurs at the south pole. There, as H tends to 

zero, all four families S 1 - S 4 converge jointly toward the same collinear orbit, and they 

disappear simultaneously at H = 0.The curves ~ 2 versus  H plotted in Figure 6, especially the 

enlargement obtained by zooming onto a neighbourhood of H 0, encapsulate the interplay of 

stability and instability between the six families of critical orbits in the main problem of artificial 

satellite theory. 
7. Adequacy of some intermediaries 

Far from being an artifact due to the choice of coordinates or the selection of the perturbation 

algorithm, the circulation patterns depicted in Figure 5 belong intrinsically to the averaged flow 

of the main problem in the theory of artificial satellites. Therefore it stands to reason that, 

when choosing an intermediary Hamiltonian as an integrable approximation of the main 

problem, one should examine how closely the phase flow of the averaged intermediary 

resembles that of the averaged main problem. This issue has never been raised, perhaps 

because it is of a global nature whereas most of the attention has been directed toward 

assessing the merits of intermediaries in terms of formal asymptotic expansions and of analytic 

simplifications. At the very least an intermediary for the main problem of artificial satellite 

theory should induce a differential rotation on the phase spheres about the north-south axis, 

preferably one that leaves invariant a small circle of latitude in the vicinity of the critical 

inclination. Ideally one should also find in the second order part of the intermediary 

Hamiltonian a term in cos 2g in order to dispel the first order degeneracy and leave only four 

isolated equilibria in addition to the fixed points at the poles of the rotation axis. The latter 

condition may be exorbitant. Among the classical intermediaries we have studied, the one 

coming the closest to the ideal is the very first separable Hamiltonian (see Equation 6) 

proposed to coincide at the first order, after the Delaunay normalization, with the averaged 

main problem in artificial satellite theory. 

Steme (1957) was interested in a closed form approximation to the solutions of the main 

problem, and he found it in a complete solution by separation of the coordinates of the 

Hamilton-Jacobi equation based on (6). For our part we are interested in showing how closely 

the flow induced by Sterne's averaged Harniltonian resembles what we have seen in the full 

main problem of artificial satellite theory. To this end, overlooking the fact that ~ in (6) is 
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separable; we shall treat the system by conventional perturbation techniques. 

First, in order to make the Delaunay normalization simpler to execute by machine, we 

remove the argument of latitude e by an operation called the elimination of the parallax (Deprit, 

1981). The Lie transformation is generated by a series 

"UJI" = l ' lJtl + J2 11JI"2 + ~ J22 1]J1"3 + 0'(J23)" 

It has been calculated by machine to the third order. After seeing the ffl'st two terms, 

1 
~1"I"1 - 8 | ( c~ )2  [ (4 - 6s~) (S cos O - C sin O) - 3 s 2 sin 2 O], 

P 

5.0"I"2= 128 Q)(-~)4 { S (256-504 s2 + 288 s 4) cos e 

+ C (- 256 + 1032 s 2 - 864 s 4) sin O 

+ S C (+ 48 - 144 s 2 + 108 s 4) cos 2 O 

+ [ 144 s 2 c 2 + (S 2 - C 2) (24- 72 s 2 + 54 s4)] sin 2 O 

+ s 2 (72 - 96 s 2) (S cos 3 O - C sin 3 0) - 9 s 4 sin 4 0}, 

the reader will readily admit that the third order generator is boring to anyone but a handful of 

MAO partisans operating in LISP country. After all, the elimination of the parallax should have 

been stopped after the third order term had been extracted from the transformed Hamiltonian 

before performing the quadrature yielding "RI3. The quantities C and S in the generator are the 

elements labelled C* and S* in (Deprit, 1981, p. 115), that is to say 

C = e cos g, S = e s i n  g. 

From that paper we also borrow the notations 

13 = (1 + y[)-l, q0 = f _  ~. 

with f standing for the true anomaly so that q? designates the so-called equation of  the center. 

The elimination of the parallax converts Sterne's intermediary Hamiltonian into a series 

~1" - ~.I"(L ' G, H, .~, g) = ~I" 0 + J2 ~'I"1 + ~ J22 ~.t 

whose terms are: 

oato = 

2 + (1/6) J23 ~]'3 + @(J2 4) (35) 
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I~ 2 1 
,;, (_~)2 (_ 2 + 3 s2), (36) 

1 O 2 ( c <  4 4 s 2 $2) ], ~ f2=3-  2 r2 ~----) [-40+84s2-9s +(-12+36 -27s4)(C2+ 

1 |  _ ~ 6  
~ t 3  =1-28 r 2 ( ) [ - 1248 + 5832 s 2 - 9558 s 4 + 4860 s 6 

+ S 2 ( - 696 + 3888 s 2 - 6264 s 4 + 3159 s 6) 

+ C 2 ( - 696 + 2376 s 2 - 3132 s 4 + 1539 s 6) ]. 

The Hamiltonian ~ t still depends on the mean anomaly, but only through the factors @2/r 2. 

Thus it is still amenable to a Delaunay normalization, A quick glance at the first order solution 

developed in full by Sterne (1960, pp. 121-126) with the collaboration o fL .  E. Cunningham is 

enough, it is hoped, to convince the reader that averaging after the elimination of  the parallax is 

considerably simpler than a straightforward elimination performed immediately on the original 

Hamil tonian (6). The result is once again a power  series in the small parameter  J2. 

the principal term ~ t 0, and adopting the long time scale "C', we bring it to the form 

Dropping 

~* - ~* (L, G, H, g) = ~ ~0 + J2 ~ ~1 + ~ J22 ~'2 + ~(J23) (37) 

with the components 

~*0 = ~ 0 ,  as in Equation (4) 

3 
~'1= 64 - - n  G (____~4 [ _ 20 + 48 s 2 - 18 s 4 

P 
+ (- 8 + 24 s 2 - 18 s 4) q] + (4 -  12 s 2 + 9 s 4) q] 2] 

3 O (  6 
"2 = ~z(;'8 n G ( - )  [ - 280 + 1260 s2 _ 1936 s4 + 936 s 6 

P 
+ (- 120 + 468 s 2 - 540 s 4 + 162 s 6) "q 

+ (72 - 324 s 2 +486 s 4 - 243 s 6) ,q2 

+ (40-  180 s 2 + 270 s 4 -  135 s 6) q]3 

+ ( - 84 + 174 s 2 - 90 s 4) s 2 e 2 cos 2 g ]. 

Basically, for Steme's  intermediary like it is for the main problem in artificial satellite theory, 
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the flow on the spheres ~(L,  H) is the differential rotation induced by the Hamiltonian Y"0; 

the first order terms introduce corrections to the height of the small circle of degenerate 

equilibria and to the angular velocity of rotation. Belatedly, at the second order appears the 

term in cos 2g responsible for dissipating the degeneracy. In that regard, the intermediaries of 

Aksnes and Cid-Lahulla(1969) are def'mitely more rudimentary. When treated by perturbation 

techniques, both yield asymptotic approximations that depend exclusively on the actions L, G, 

and H, at least as far as the second order. 

In the case of Aksnes' intermediary, we find that the elimination of the parallax applied 

to Hamiltonian (7) yields a series of the type (35) with the same coefficients 

with 

t 0 and ~} 1, but 

@2 9 (o<)4 2 2_4) , - s (9 s  O&t2= 32 r 2 p 

9 @2 
O&t3 = 64 r 2 (c<) 6s2 (60- 303 s 2 + 270 s4). 

P 

As a side effect of the elimination of the parallax, the argument of perigee is made ignorable in 

Aksnes' intermediary at least up to the third order. Hence, without having to average over the 

mean anomaly, we can already conclude that, to the third order, the phase flow in Aksnes' 

system boils down to a mere differential rotation about the (3-axis  on the spheres {/'(L, H). 

Nevertheless, for the benefit of the reader interested in comparing Brouwer's solution with the 

one proposed in Aksnes (1970; see also Deprit and Richardson, 1982), we shall outline our 

procedure in full. The Lie transformation that eliminates the argument of latitude is generated 

here by a series in the small parameter of the form 

q.Lit qJJ~fl + J2 qLlt2 + ~ J2 2 q'LIt = 3 + O'(J2 3), 

the coefficients being 

3 | 
"ttJf  = - 8 (0<)2 s2 sin 2 @, 

P 

3 
qJJ f2  = 128 

| (p)4 
[ (80- 96 s 2) s 2 sin 2 (3 - 3 s 4 s i n 4  0 ], 
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9 | = (0<)6  
"l'Lr 1" 3 512 p-- [ (- 896 + 2712 s 2 - 2175 s 4) s 2 sin 2 0 

+ (380 - 432 s 2) s 4 sin 4 0 - 3 s 6 sin 6 0 ]. 

Then the Delaunay averaging leads to a reduced Hamiltonian of the form (37). As expected, 

Aksnes'  averaged intermediary agrees with Steme's in its principal term, and differs from it 

by the perturbation terms which are here: 

~ ,  1 __~~4 2 4) 4) 
1= 64 n G  ( [ - 8 - 1 2 s  + 6 3 s  + T l ( - 2 4 + 7 2 s 2 - 5 4 s  ], 

~ ,  1 _~_~6 
2 = 384 n G ( [ (- 16 + 360 s 2 - 1656 s 4 + 1431 s 6) 

+ ~ (- 48 + 486 s4 _ 567s 6) 

+ q'[ 2 (- 64 + 288 s 2 - 432 s 4 + 216 s 6) ]. 

The coefficients in the generator  of  the Lie 

normalization are: 

transformation which effected the Delaunay 

"LLI* 1 2 1 - G (c<) 4 p q? ( - 2 + 3 s  2 ) 

q.lJ* 1 (0<)4 
2 = 3 2  G P 

[ q0 ( - 8 -  12s 2 + 6 3 s  4) 

+ ~ ( - 1 6 + 4 8  s 2 - 3 6 s 4 ) e s i n  f 

+ 13 (- 4 + 12 s 2 - 9 s4) e 2 sin 2f ], 

"U J*  1 G { 
( o<)6 

3 512 
q9 (_ 192 + 4320 s 2 - 19872 s 4 + 17172 s 6) 

+ [ g (- 640 + 1152 s 2 + 2160 s 4 .  3672 s 6) 

+ T[ -1 (192 - 864 s 2 + 1296 s 4 - 648 s 6) ] e sin f 

+ [ 13 (-256 + 720 s 2 -108 s 4 - 594 s 6) 

+ 132 (-128 + 576 s 2 -864 s 4 + 432 s 6) 

+ q'1-1 (176 - 792 s 2 + 1188 s 4 - 594 s 6) ] e 2 sin 2f 

+ ( ~ + g 2 _ q-I-l) (-64 + 288 s 2 -432 s 4 + 216 s 6) e 3 sin 3f 

+ (  ~ + ,8 2 - q]-l)  (-8 + 36 s2 -54 s 4 + 27 s6) e 4 sin 4f  }. 
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The same techniques will now be applied to the Hamiltonian ' ~ 0  + J2 ~1 with 

I.t (o<)2 (.1 3 
~ 1 =  r r 2 - ~ s2)' 

which Cid (1969) proposed as an intermediary for the main problem in satellite theory. Thus a 

preliminary elimination of the parallax will yield a series like (35) with the coefficients 

0 0, 

~).t 1 (D 2 (c~)2 
1= 4 r 2 ~ ( - 2 + 3 s 2 ) '  

(}~t 1 @2 (o<)4 
2 = 32 r 2 p 

[ - 40  + 120 s2 _ 90 s 4 + (_ 12 + 36 s 2 - 27 s 4) (C 2 + S 2) ], 

~ t  1 O2 (cx)6 2 4 s 6 
3 = 128 ~ ~ [-  1248 +5616 s - 8424 s +4212 

+ ( - 696 + 3132 s 2 - 4698 s 4 + 2349 s 6) (S 2 + C 2) ]. 

Exactly like it did for Aksnes' intermediary, the elimination of the parallax removes the 

argument of perigee from Cid's Hamiltonian. After the Delaunay normalization, one ends up 

therefore with a Hamiltonian that, at least to the third order in J2, depends exclusively on the 

momenta L, G, and H. In the long time scale L" after omitting the Keplerian part, one finds that 

~*0 = Y-,0, 

~ ' 1  3 (c>< 4 
=6?4 n G  ~--) [ - 20 + 60 s 2 _ 45 s4  

+ (- 8 + 24 s 2 - 18 s 4) q-[ + (4-  12 s 2 + 9 s 4) T[2], 

~ ' 2  3 __~~6 
= i ? s n G (  [ - 280 + 1260 s 2 - 1890 s 4 + 945 s 6 

+ (- 120 + 540s 2 - 810 s 4 + 405 s 6) 1"l 

+ (72 - 324 s 2 + 486 s 4 _ 243 s 6) 1"[ 2 

+ (40 - 180 s 2 + 270 s 4 _ 135 s 6) q'[3 ]. 

It is not our task here to evaluate intermediaries for the main problem in artificial satellite 

theory. We focused rather on the global properties of the major representatives. Our trio of  

intermediaries reveals, despite their differences in analytical purposes, a common virtue and a 
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common deficiency: they all include the first order term of the main problem, and thus agree 

with it in determining a differential rotation in the reduced phase space, and they all fail in 

capturing at the second order the crucial term in cos 2g responsible for driving out the first 

order degeneracy. [Note. Most recently, in collaboration with Ferrer and Sein-Echaluce, Cid 

(1986) has extended his intermediary to the second order. We found that the additional terms, 

when averaged over the mean anomaly, 

two.] 

introduce the critical terms in cos 2g already at order 

Celestial mechanics, whatever mathematics happen to govern it, must be worked out in a 

specific computing milieu. The period following the theories of Brouwer and Vinti for artificial 

satellites witnessed a triumphant revival of analytical developments carried out manually. This 

is the context in which Sterne, Garfinkel, and their followers developed the concept of 

intermediaries with a view of alleviating the burden of developing asymptotic solutions by 

hand.The environment, since then, has changed dramatically. It took a little less than two 

hours, at the console of a LISP workstation, not only to perform all the reductions reported in 

this Section, but also to edit them in a readable form, Greek symbols, fractions - all reduced to 

their simple form -, subscripts as well as superscripts, all properly aligned the way one is used 

to finding them in a conventional mathematical text. If simplifications of long hand 

developments is no longer an issue, what then is the purpose of an intermediary when it fails to 

induce the global flow of the problem it claims to approximate? 

8. Conclusions 

A method has been designed to analyze a certain class of perturbed Keplerian systems 

after they have been reduced by a Delaunay normalization, namely those systems whose 

averaged form is invariant with respect to the group of rotations around a fixed axis. In which 

case, the fact that the right ascension of the ascending node is invariable permits a second 

Meyer reduction by which the averaged perturbed system is made equivalent to a Hamiltonian 

flow on a two-dimensional sphere. 

The method worked very well for the main problem in artificial satellite theory. It led to 

to the discovery of the phase events responsible for the critical inclination. At the points in 

phase space where the families of circular orbits become unstable, there stems a pair of families 

of stable orbits with perigees lying permanently on the line of nodes. A little later, when the 

families of circular orbits return to stability, a second bifurcation occurs, giving rise to a pair 

of families of unstable orbits with their perigees permanently perpendicular to the line of nodes. 

We shall report elsewhere how the method has been applied with equal success to the 

Zeeman problem (a charged particle in a Coulomb field immersed in a small uniform magnetic 

field). 
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In artificial satellite theory, we have considered only the perturbation due to the zonal 

harmonic of degree two. One of us (S.L.C.) is presently incorporating the zonal harmonics 

from degree 3 to 5; apparently the extension presents no difficulty other than a rapid 

complication of the analytical expansions. 

Nowhere in this paper have we touched the thorny question of developing analytically 

the solutions of the main problem in the neighbourhood of its singularities. When H is > H 1, 

the flow on the sphere ~/'(L, H) is globally a differential circulation admitting two fixed points, 

hence it looks as though Brouwer's third reduction a Delaunay operation to eliminate the 

argument of perigee might be adequate for any eccentricity. In the interval 0 < H < H 2, such 

a Delaunay operation would be adequate only over the polar capst, it would have to exclude a 

certain zone inluding the equilibria $1- $4. Is it true that it amounts to a Whittaker-Birkhoff 

normalization about the equilibrium S 5 at the south pole, and about the equilibrium S O at the 

north pole? How should one cover the zone of turbulence containing the equilibria S 1 - S 4 ? 

What should be done in the open interval H 2 < H < H 1 is not altogether clear. Yet to engineers 

designing clusters of artificial satellites, this is a problem of the utmost practical importance. At 

this stage we can only hope our analysis will assist in identifying the issues at hand. 

Acknowledgements 

Dr. Coffey expresses his thanks to the Center for Applied Mathematics for its warm hospitality 

in the year 1984-1985 while he was on a sabbatical leave from the U.S. Naval Research 

Laboratory. Dr. Miller is grateful to the National Research Council of the U.S. National 

Academy of Sciences for a two-year post-graduate research assistantship at the National 

Bureau of Standards. The authors benefited from consultations with Dr. Richard Cushman of 

the Rijksuniversiteit Utrecht, Professor Kenneth R. Meyer of the University of Cincinnati, Dr. 

Jan A. Sanders of the Vrije Universiteit Amsterdam. They followed the irenic suggestions 

made by Professor Carol Williams of the University of South Florida on the last version of the 

manuscript. There were lively discussions with Professor Sebastian Ferrer when the material 

of this research was presented at the University of Zaragoza. 

Authors of this paper are cited in alphabetical order. 



THE C R I T I C A L  I N C L I N A T I O N  IN A R T I F I C I A L  SATELLITE TH EO RY  405 

References 

Abraham, R., and Marsden, B. :1978, Foundations of Mechanics, The Benjamin/Cummings Publishing 
Company, Inc., Reading, MA. 

Aksnes, K. : 1965, Astroph. Norv. 10, 69--77. 
Aksnes, K. : 1966, Astroph. Norv. 10, 149--169. 
Aksnes, K. : 1970, Astron. J. 75, 1066--1076. 
Allan, R.R. : 1970, Celest. Mech. 2, 121--122. 
Aoki, S. : 1962, Astron. J. 67, 571--572. 
Aoki,'S. : 1963a, Astron. J. 68, 271--272. 
Aoki, S. : 1963b, Astron. J. 68, 355--365. 
Aoki, S. : 1963c, Astron. J. 68, 365--381. 
Brouwer, D. : 1946, Astron. J. 51, 223--231. 
Brouwer, D. : 1958, Astron. J. 63, 133--138. 
Brouwer, D. : 1959, Astron. J. 64, 378--397. 
Chapront, J. :1965, C. R. Acad. Sc. Paris 260A, 2131--2134. 
Cid, R., Ferrer, S. and Sein-Echaluce, MJ.,. : 1986, Celest. Mech. 38, 191--205. 
Cid, R., and Lahulla, J. F. : 1969, Publ. Rev. Ac. Cienc. Zaragoza 24, 159--165. 
Cid, R., and Lahulla, J. F. : 1971, Publ. Rev. Ac. Cienc. Zaragoza 26, 333--343. 
Cushman, R. : 1983, Celest. Mech. 31, 401--429. 
Cushman, R. :1984, in Differential Geometric Methods in Mathematical Physics, ed. S. Steinberg, 

D. Reidel Publishing Company, Dordrecht, 125--144. 
Cushman, R.: 1986. Notes for a manuscript to appear as a report of the Mathematisch Instittuut, 

Rijksuniversiteit Utrecht, The Netherlands. 
Dahl,, O.J., and Nygaard, K. :1966, Comm. ACM 9, 671--678. 
Delos, J.B., Knudson, S.K., and D.W. Noid : 1983a, Phys. Rev. Lett. 50, 579--583. 
Delos, J.B., Knudson, S.K., and D.W. Noid : 1983b, Phys. Rev. A 28, 7--20. 
Deprit, A. : 1969, Celest. Mech. 1, 12--30. 
Deprit, A. : 1981, Celest. Mech. 24, 111--153. 
Deprit, A. : 1982, Celest. Mech. 26, 9--21. 
Deprit, A. : 1983, Celest. Mech. 29, 229--247. 
Deprit, A. :1984, The Big Bang and Georges LemaZtre, 

Dordrecht, 151--180. 
Deprit, A., 

ed. A. Berger, D. Reidel Publishing Company, 

and Henrard, J.: 1968, A Manifold of Periodic Orbits, Advances in Astronomy and 
Astrophysics 

Deprit, A., and 
Fock, V. :1936, Z Physik 98, 10--154. 
Garf'mkel, B. : 1959, Astron. J. 64, 353--367. 
Garfinkel, B. : 1969, Celest. Mech. 1, 11. 
Garfinkel, B. : 1960, Astron. J. 65, 624--627. 
Garfinkel, B. : 1972, Celest. Mech. 5, 189--203. 
Garfinkel, B. : 1973a, Celest. Mech. 7, 205--224. 
Garf'mkel, B. : 1973b, Celest. Mech. 5, 25--44. 

6, 1-- 124. 
Richardson, D. : 1982, Celest. Mech. 28, 

Geyling, F. T. :1965, Astronautica Acta 11, 196--201. 
Herget, P. and Musen, P. : 1959, Astron. J. 63, 430--433. 
Hod, G. : 1960a, Astron. J. 65, 53. 
Hod, G. : 1960b, Astron. J. 65, 291--300. 
Hough, M. E. : 1981, Celest. Mech. 25, 137--157. 
Hughes, S. : 1981, Celest. Mech. 25, 235--266. 

253--273. 

Izsak, I. : 1963, The Use of Artificial Satellites for Geodesy, 
Company, Amsterdam, 17--40. 

Jupp, A. : 1975, Celest. Mech. 11, 361--378. 
Jupp, A. : 1980, Celest. Mech 21, 361--393. 
Kikuchi, S.: 1967, Astronom. Nachr. 289, 241--245. 

ed. G. Veis, North - Holland Publishing 



406  SHANNON L. COFFEY ET AL. 

Kozai, Y. : 1963, Publ. Astron. Soc. Japan, 15, 301--312. 
Krause, H. G. L. :1952, "Die Sakularst6rungen einer Aussenstationsbahn," in Probleme aus der 

Astronnautischen Grundlagenforschung, ed. H. H. K611e, Vortrage III lnternationalen Astronautischen 
Kongress, Stuttgart 1-6September 1952, 161--173. 

Lyddane, R.H. and Cohen, C.: 1978, Celest. Mech 18, 233--236. 
Lubowe, A. G. : 1969a, Celest. Mech. 1, 6--10. 
Lubowe, A.G.  : 1969b, Celest. Mech. 1, 143. 
NcCarthy, J., Abrahams, P. W., Edwrards, D. J., Hart, T. P., and Levin, M. I. : 1962, LISP 1.5 Programmer's 

Manual, The MIT Press, Cambridge, MA. 
Marsden, J. and Weinstein, A. : 1974, Rep. Math. Phys. ,5, 121--130. 
Mathlab Group, The :1983, MACSYMA, Version Ten, Laboratory for Computer Science, M.I.T., 

Cambridge, MA. 
Message, P.J., Hod, G., and Garf'mkel, B. : 1962, The Observatory 82, 168--170. 
Meyer, K.R., :1973, in Dynamical Systems, ed. M. M. Peixoto, Academic Press, New York, 

259-- 272. 
Miller, B. R., and Depdt, A. : 1986, to appear in the proceedings of the 1986 Conference on Computers and 

Mathematics, Stanford University, Palo Alto, CA, July-August 1986. 
Moses, J. : 1974, "MACSYMA - The Fifth Year," Proceedings of the EUROSAM Conference, ACM 

SIGSAM Bulletin, Auguat 1974. 
Soob3eniB Gosudarstvennogo Astronomiheskogo Instituta imeni P. K. Wternberga, Orlov, A. A. : 1953, 

33, 3--38. 
Orlov, A. A. : 1954, 

139--153. 
Trudy Gosudarstvennogo Astronomiheskogo lnstituta imeni P. K. Wternberga, 34, 

Petty, C. M., and Breakwell, J. V. : 1960, 
Rand, R. H. : 1984, Computer Algebra 

Pitnam Advanced Publishing Program, Boston, MA. 
Roberson, R.E. :1957, Journal of the Franklin Institute 
Rom, A. : 1970, Celest. Mech. 1, 301--319. 
Rom, A. : 1971, Celest. Mech. 3, 331--345. 
Sloane, N . J . A .  :1986, Not. Amer. Math. Soc. 33, 40--43. 

Journal of the Franklin Institute 270, 259--282. 
in Applied Mathematics. An Introduction to MACSYMA, 

264, 161 - 202 and 269--285. 

Smith, J. C. : 1986, Paper AIAA-86-2069-CP, AIAA/AAS Astrodynamics Conference, Williamsburg, VA, 
August 18--20, 1986. 

Stef'tk, M., and Bobrow, D.G. :1984, The AI Magazine (no vol. nr), 40--62. 
Sterne, T. E. : 1957, Astron. J. 63, 28--40. 
Sterne, T.E. : 1960, An Introduction to Celestial Mechanics, Interscience Publishers, Inc., New York. 
Strubble, R. A. : 1960, Arch. Rational Mech. Anal. 7, 87--104. 
Tisserand, F. :1868, J. Math. pures et appliqu~es 
Winston P., H., and Horn, B. K. P. : 1984, LISP, 

Reading, MA. 
Zeis, E. : 1978, A Computerized Algebraic 

Theory. M.S. Thesis, Massachusetts 
Zeis, E., and Cefola, P. : 1978, J. Guidance and 

13, 255--303. 
2nd ed. Addison-Wesley Publishing Company, 

Utility for the Construction of Non Singular Satellite 
Institute of Technology, Cambridge, MA. 

Control 3, 48--54. 


