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Abstract. The solution by Sessin and Ferraz-Mello (Celes. Mech. 32, 30%332) of the Hori auxiliary 
system for the motion of two planets with periods nearly commensurate in the ratio 2:1 is considerably 
simplified by the introduction of canonical variables. An analogous canonical transformation simplifies 
the elliptic restricted problem. 

1. Introduction 

It was Poincar6 (1902) who first approximated the long term evolution near the 2" 1 
commensurability in the planar circular restricted problem with the single largest 
critical term in the disturbing function. The extension of Poincar6's method to the 
other principal commensurabilities was accomplished by Woltjer (1923). Higher 
order critical terms for the planar circular restricted problem were included by 
Message (1966). The long-term evolution of trajectories near commensurabilities in 
the elliptic restricted problem or the general three body problem is, however, a 
much more difficult problem. Basically, the difficulty arises because the disturbing 
function has two independent critical arguments of comparable importance. There 
are thus two non-trivial degrees of freedom; problems with two degrees of freedom 
are generally not solvable. The analytic solution by Sessin and Ferraz-Mello (1984) 
of a Hamiltonian approximating the motion of two planets with periods com- 
mensurate in the ratio 2:1 with two independent critical arguments is thus a 
significant achievement. Unfortunately, they achieve their analytic solution by a 
circuitous path involving non-canonical variables, which in turn necessitates a 
laborious enumeration of the various regions of parameter space. In this paper I 
give an alternate solution of this two critical argument problem which uses 
canonical variables throughout. Not only is the derivation much simpler, but the 
equivalence to the one critical argument problem becomes transparent. 

2. Restatement of the Problem 

I begin with the Hamiltonian F 1 (Equations (6)-(17)) from Sessin and Ferraz-Mello 
(1984): 

F1 = Fo2 + - ~  Poo - 
0 
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Sessin and Ferraz-Mello  use the following set of canonical  variables (momenta  and 

cordinates): 

X 1 = L 1 + 1L2, 21 = l 1 + 0)1, 

- * L  0 = 21  - -  2 2 2 ,  X2 = 2 2' 

yz = G z -  Lz = Lz(x/1 - e 2 - 1), &z = &z + f'z, 

where 22 = 12 + 052 and x = x2 - x20. The variables L z, Gz, lz, coi and f~ are modified 

Delaunay  variables: 

where 

L i - -  ??liN~aiiai, 

k 2 i~if 3 

Pl - (M + m') 2' 

Gi = L i x / 1 -  e 2, 

k2(m + m' + M ) M  

la2 = m' + M ' 

m'(m' + M) 
m l  = M ' m 2 =  

m(m' + M)  

m + m ' + M "  

The masses of the central  body, and the inner and outer planets are M, and m' and 

m, respectively; the osculating Keplerian elements refer to the center of mass of M 

2 3/8x2 The other quantities are and m'. The time has been scaled by the factor #2m2 2o. 

constants for which I refer the reader to Sessin and Ferraz-Mello (1984). 

So that the solution will not be obscured by the notat ion,  I rewrite the 

Hamil tonian  in the following form: 

/ - / =  -  ,/571 c o s ( 0  - w , )  + c o s ( 0  - (1) 

The new momen ta  pz = -Yz are positive, and their conjugate coordinates are 

w i - - o S z .  The m o m e n t u m  conjugate to 0 has been renamed | for clarity. The 

definition of the constants  c~, fl and 7 are readily deduced from Hami l tona ian  F1. 

The Poo term does not enter the equations of motion and has been omitted. 

3. Solution 

The first step is to write the Hamil tonian in terms of the canonical  momen ta  and 

coordinates {i = x ~ / c o s  wi and r/i = ~ sin wi" 

H = �89 2 - f l (~l  c o s 0  --]- ~1 sin 0) + '~(~2 COS0 J- ?]2 sin 0). 

A canonical  t ransformat ion to the new set of canonical  variables, 

'L/I =N///~2...1_,~2' UI =%/,//~2...~_.~2' 
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and 

~ + / ~  

U2 --" N///~2 _jF 7 2 '  
?/~i --[- ~/'/2 

I)2 --- %/,/~2 _~_ ,)) 2 '  

reduces the Hamiltonian to the form 

H = �89174 2 - x//fl 2 + 72(ut cos 0 + v 1 sin 0). 

The miracle is that the canonical pair u2, v2 no longer appears in the Hamiltonian; 

thus these two variables are constants of the motion. 

The rest of the solution is trivial. Define the canonical pair @, 4~ implicitly by the 

equations 

u~ = , : % c o s  ~ ,  

and the Hamiltonian becomes 

v l = x ~  sin ~b, 

H = �89 ~ - V/B ~ + ~ , /~  cos (0  - r (21 

This is the familiar form for the Hamiltonian when only one critical term is present. 

Finally, the canonical transformation induced by the generating function 

w = (4 - 0)~' + 0o ' ,  

giving the variables 

@' = (I), ~ ' = 4 - 0  

and 

0 ' = |  ' = 0 ,  

reduces the Hamiltonian to 

/~ = } ~ ( o '  - e ' ~  - v//~ ~ + ~ : , / ~  cos  r  

The Hamiltonian is cyclic in 0', thus | is an integral. The problem is reduced to 

quadrature. 

Of course Hamiltonian (2) has been solved numerous times (e.g. Hagihara 1971), 

so there is no need to carry it out explicitly here. Sessin and Ferraz-Mello (1984) 

were forced to laboriously determine a new solution because they did not see how to 

reduce their statement of the problem to the familiar one. 

4. Application to the Planar-Elliptic Restricted Problem 

It is instructive to carry out the analogous transformations for motion near the 

first-order mean-motion commensurabilities of the planar-elliptic restricted three- 

body problem. The Hamiltonian for motion near the inner p + 1 to p mean-motion 
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commensurability is 

]2 2 
t H =  

2 L  2 
A(L)x  ~ c o s [ p / -  (p + 1 ) / ' -  g] - 

- B(L)e' c o s [ p / -  (p + 1)1' + 63']. 

Here l is the mean longitude, which is conjugate to the momentum L = V/#la, and 

the momentum G = L ( x / 1 -  e 2 -  1) is conjugate to g = --63, where 63 is the longi- 

tude of perihelion. These elliptic elements are now the usual osculating heliocentric 

Keplerian elements. The coefficients may be found in Leverrier (1855), and in the 

first order approximation can simply be evaluated at the exact resonance, 

Lp = (p#Z/(p + 1))1/3. The ratio of the mass of the secondary to that of the primary is 

/~ and #1 = 1 - / t .  Units are chosen so that the period of the secondary is equal to 2n 

and its semimajor axis is unity. The longitude of perihelion of the secondary is taken 

to be the origin of longitudes. 

The Hamiltonian is first transformed to a form similar to Hamiltonian (1) by the 

generating function 

W = [ p l -  (p + 1)t ]~ + g(I) 

which gives the canonical variables 

O = p l -  (p + 1)t, 

and 

4) =g,  ~ = G .  

the 

retention 

tp = Lip  

canonical translation O = �9 - Up, 0 = ~ (defining 

of only the quadratic terms in O. The new 

This is followed by 

Up = Lp/p), and the 

Hamiltonian is 

H' = �89174 2 _ A x ~  cos(0 - ~b) - Be' cos 0. 

Proceeding now as in the last section I define 

{ = ~ c o s ~ b ,  r / :  ~ sin ~b. 

The Hamittonian becomes 

the new canonical variables 

H'  - �89174 2 _ _  A({ cos 0 + r/sin 0) - Be' cos 0. 

A canonical rotat ion was used to simplify the commensurate two planet problem in 

the last section. Here the elimination of the e' term is accomplished by a canonical 

translation. Introducing the canonical variables 

u = ~ + Be'/A, v = ~/, (3) 

the Hamiltonian is 

H' = �89174 _ A(u cos 0 + v sin 0), 
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and the term proportional to e' has disappeared. The rest of the solution is 
completely analogous to that following Equation (2). 

It is quite interesting to note that the transformation (3) was already discovered 
empirically by Schubart (1968) during his study of the evolution of the Hilda 
asteroids with the numerically averaged equations of motion for the planar elliptic 
problem. Evaluating Leverrier's expressions for the coefficients I find that the 
constant in the definition of u has the magnitude Be'/A =0.055, for a Jupiter 

eccentricity of 0.048. Now ~is porportional to x ~  ~ ex/L ~ ex/L2" Consequently 
to compare the magnitude of the translation of the canonical variables with the 
eccentricity values obtained by Schubart, the magnitude of the translation must be 

divided by x//L2 giving 0.059. Empirically Schubart found values ranging from 0.062 
to 0.072 for the Hildas. This agreement is quite satisfactory, considering that the 
analytic solution has considered only first order terms in the disturbing function. A 
theoretical justification for Schubart's empirical result has thus been provided. 

5. Summary 

Sessin and Ferraz-Mello have shown that an approximate Hamiltonian for the 
motion of two planets with nearly commensurate mean-motions, including terms 
which are first order in the eccentricity, is analytically solvable. I have shown that 
this problem involving two critical arguments is more easily solved using canonical 
variables, and that the solution reduces to the standard one critical argument 
problem, obviating the need for extensive new solutions. Of course, this does not 
detract from the accomplishment of Sessin and Ferraz-Mello. The canonical so- 
lution of the first order problem should facilitate the extension of the solution to 
higher orders. 

I would like to point out that a similar approach to the solution of the motion of 
planets near the 3:1 commensurability is bound to fail since the lowest order 
Hamiltonian gives rise to chaotic behavior (Wisdom, 1983). Furthermore, it is 
known that the 2:1 mean-motion commensurability with Jupiter is accompanied by 
a large chaotic zone (Giffen, 1973). Evidently, the integrability of the first order 

Hamiltonian is spoiled by terms of higher order. The solution of such problems 
where chaotic behavior is widespread requires a new approach to perturbation 
theory. In Wisdom (1985) I derive a perturbation theory which successfully explains 
the qualitative features of the phase space near the 3:1 commensurability which were 
previously reported (Wisdom 1983). The theory not only describes the quasiperiodic 
solutions, but the chaotic ones as well. Indeed, the extent and shape of the chaotic 
zones are now predictable! 
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