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Abstract. The Halo orbits originating in the vicinities of both L1 and L2 grow larger, but shorter in period, 
as they shift towards the Moon. There is in each case a narrow band of stable orbits roughly half-way to the 
Moon. Nearer to the Moon, the orbits are fairly well-approximated by an 'almost rectilinear' analysis. The 
L2 family shrinks in size as it approaches the Moon, becoming stable again shortly before penetrating the 
lunar surface. The Ll-family becomes longer and thinner as it approaches the Moon, with a second narrow 
band of stable orbits with perilune, however, below the lunar surface. 

1. Introduction 

Farquhar and Kamel [1] computed a family of 'halo'  orbits near the translunar L2 

libration point but permanently 'visible' from Earth. 

The existence of such orbits had been suspected for reasons set forth in the 

following two paragraphs: 

The linearized motion near L2, although unstable, includes a periodic motion in 

the xy plane, i.e., in the plane of the relative Ear th -Moon  motion, of frequency 
1.86n, where n is the angular rate of the Moon and the Earth. The instability 

manifests itself by real additional characteristic roots +2.16n. The out-of-plane 

linearized z-mot ion is simple harmonic with frequency 1.79n. If, as pointed out by 
Farquhar [2], initial conditions were to produce a periodic xy-motion and a 

z-motion,  with phase initially 90 ~ ahead or behind that of the xy-motion, the 

resulting orbit could remain continuously visible from Earth for many months, 

before the relative phase approaches 0 or 180 ~ thereby producing periodic occulta- 

tion by the Moon. 
If an orbit, however, is of a size comparable with the distance of L2 from the Moon, 

so that nonlinear terms become significant, nonlinear dependence of frequency on 

amplitude as well as nonlinear coupling might produce a purely periodic three- 

dimensional motion. 
Farquhar and Kamel computed these orbits by a truncated Linstedt-Poincard 

series. This series included, moreover, quasi-periodic additions due to solar gravity 
and lunar orbital eccentricity, which effects will naturally be ignored in this paper. 

Projections of typical periodic orbits obtained by the truncated series are shown in 
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Fig. 1. Halo orbits near L2. 

Figure 1. The solid lines show the northern halo family for which z is in phase with x 
and 90 ~ behind y; the dotted lines show the mirror- image southern family obtained 
by reversing the sign of z. The convergence of the series deteriorates for orbits larger 
than those shown. 

2. Analysis 

If position is measured in the usual rotating f rame with origin at the E a r t h - M o o n  
barycenter,  and if units of t ime and distance are chosen so that n = 1 and Ea r th -  
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Moon distance = 1, the equations of motion are 

OU 
s -2 ! )  = - -  

Ox 

OU 
5/+2~ = - -  (2.1) Oy 

~U 

Oz 

where 

=~(x +y2 )+  U(x, y , z )  ~ 2 
i - / ~  /~ 

+ (2.2) 
de(x, y, z) d~(x, y, z ) '  

/z/(1 - / z )  being the Moon-Ear th  mass-ratio, and de  and d~ denoting distances from 
Ear th  and Moon respectively. 

A 1-parameter extension of the Farquhar-Kamel  family of halo orbits is obtained 
by adjusting values of x0, Zo, 1)0 at a perpendicular crossing of the xz plane (i.e., 
yo = ~ = 20 = 0), so that the next crossing of this plane, yl = 0 at t = tl, sgn 1)1 = 
- sgn  1)o is also perpendicular; i.e., the velocity components At and 2t are also zero. 
Because of the invariance of Equations (2.1) under the reflection t + - t ,  y o - y ,  it 
follows that such an orbit will necessarily repeat  with period T -- 2h.  It will suffice to 
investigate the northern halo family. 

The 6 x  6 transition-matrix 45(t, 0) associated with (2.1) is the matrix of partial 
derivatives OX(t)/OX(O), where X denotes a column-vector with entries x, y, z, 
~, 1), 2. ~(t ,  0) satisfies, of course, the matrix differential equation and initial 
condition: 

d 
~ ( t ,  O) = F( t )~( t ,  0), ~(0 ,  O) = identity matrix, (2.3) 

where 

0 p I ) 
F(t)  = -OL-I-2-O- ' (2.4) 

in which I denotes the 3 x 3 identity matrix, 

(il 0) a =  0 0 ,  

0 0 

and Uxx(t)  denotes the symmetric matrix of second partial derivatives of U w.r.t. 
x, y, z, evaluated along the orbit. 

The  transition-matrix ~( t l ,  0) at the end of a half-cycle of a nearly periodic orbit 
can be used to adjust the initial conditions so as to obtain periodicity. For example, if 
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x0 is held fixed, 

8Z1] \ r  r  k~)~o] \Z) l /  

where 

0 = 6y 1 = (r  
/ 8Zok . 

r + ;16t, 

and where r is a typical element of r  0). Hence 

= - ( r  r  \ ~2~'17 { \ r  r  y 

(6Zo'~ (621~ cancels any previous and a 2 x 2  inversion yields \83~01 so that \6z'11 

sufficiently small. This provides an iterative calculation of Zo, Po. 
The transition-matrix at the end of a full cycle of the periodic orbit is 

r  0) = r  0). 

Its eigen-values determine the stability of the orbit; two of the eigen-values are 
always unity and the other four eigen-values form a self-reciprocal set 
(hi, 1/hi ,  h2, l /h2),  as follows from the invariance of (2.1) under t ~ - t ,  y ~ -y .  The 
periodic orbit is thus unstable unless both/~1 and )t2 lie on the unit-circle. 

In the interest of numerical accuracy, the full-cycle transition-matrix r  t~; 0) can 
be obtained from the half-cycle transition-matrix r 0) without the necessity of 
numerical integration beyond time t = t~. This is possible because, if r 0) denotes 

i.e., 

(---//-! 0 - ) r  O ) ( i  ] g - ) ,  r  is 'symplectic', 

r  0 , I \  , 0 { I ~  
- - f  V0-)r = ( ---z-,Y J' 

as follows rather easily from the Hamiltonian form of the equations of motion if, 
instead of velocity components 2, )~, 2, we make use of generalized momenta: 
px = ~ - y ,  py = ~ +x,  pz = 2. The symplectic property of r  together with the 
invariance of (2.1) under t ->- t ,  y - ~ - y ,  leads to: 

=AC 0 ,1  
r  - - t l )  = A r  tl)A \ ---I-I-2-J'i - 7 - I -  6 

(2.6) 
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where A denotes 

1 

- 1  

Finally 

1 

- 1  0 t 
1 

-1/ 

�9 (2tl, 0) = ~(2 t t ,  t~)c19(t~, 0) = qb(0, - t t ) ~ ( t t ,  0) .  (2.7) 

The four critical eigen-values (/~1, 1/A1, A2, 1/A2) can be obtained with greater 
numerical accuracy as the eigen-values of a 4 • 4 matrix M derivable from ~(2t l ,  0). 
This derivation makes use of the well-known constancy, along any solution of (2.1), 
of Jacobi's constant: 

C = 2 U(x ,  y, z ) - ( i 2  +))2 + 22). (2.8) 

Suppose, then, that Xo, Zo, 20, ~o (but not yo) are varied in such a way that C is 
unchanged, so that 

1 
@o = - 7 - ( C ~ & o  + Czo&O), 

~ o  
(2.9) 

where use has been made of the vanishing of the partial derivatives C~o and C~ o when 
20 = 20 -- 0. Furthermore,  the correction 8 T  to the time of the second crossing of the 
xz  plane after time zero is given by 

dy2 = ) ) (T)aT + (ay/axo, ay/azo,  ay/&%, ay/))o, ay/a2o). 

I&o\ 
I~o~ 
.U,o/=O 
\~o I 
\ 8~ o /  

(2.10) 

in which ) ) (T)= ))o. It follows easily from (2.9) and (2.10) that 

dz2| ~l~Zo| 
d~2l = 18~oI' 

(2.11) 
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where 

1 
M o*---~o,:.o o%(Cxo, C~o, o, o) 

1 (z~) [qb~" 1 ' 0, 0)] (2.12) ~0 ~0 -~o~o~25(C~o, Czo ,  , 

in which ~* denotes the result of deleting the second and fifth rows and columns of 
�9 (2tl, 0), ~.'5 the fifth column of ~b(2tl, 0) without rows 2 and 5, and ~'2. the 
second row without columns 2 and 5. 

3. Numerical Results 

The eigen-values (}[1, l/A1, A2, l/A2) of M have been computed, along with the 
periodic orbits themselves, at frequent intervals of x0 = Xma~ (now measured from the 
Moon, away from the Earth); the x z  projections of the orbits are shown in Figure 2. 
The eigen-values turn out either to be real or to lie on the unit-circle. Stability is 
thus conveniently decided by the values of two stability indices: vi--" 
�89 +(1/Ai)] (i = 1, 2): the orbit is stable if both Iv1] and 1/)2] < 1, unstable if either 
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Fig. 2. X - Z  projection of the L2 Halo family. 
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luil> 1. The indices vi, 1"2 are plotted in Figure 3 vs Xma~, along with the orbital 
period. The drastic instability of the family close to L2 diminishes as the orbits grow 
nearer  to the Moon and shorter in period. There  is actually a narrow band of stable 
orbits for X=~x between 36 500 km (where one pair of A's coincides at +1 and the 
Jacobi constant reaches a minimum) and 31 300 km (where the other pair of A's 
coincides at - 1 ) .  Projections of this band of stable orbits are shown in Figures 4a-c.  

The existence, but not the stability, of such orbits can be understood by regarding 
them as orbits of the Moon with a substantial Ear th  perturbation.  Thus the tilt of the 
x z  projection away from the Ear th  as z increases (Figure 4a) provides a torque, due 
to the Ear th ' s  gravity-gradient ,  about the positive y-axis, causing the orbital angular 
m o m e n t u m  vector h / ( ,  relative to the Moon,  to precess and keep the orbit  fixed in 
the rotating frame. 

As Xm~ decreases further,  the orbits grow mildly unstable and then stable again at 
X~x = 28 500 km, (d~)~in ~ 4000 km, and for x ~  less than 3000 km, the maximum z 
is less than 64 000 km, (d~)=in falls below 1740 km and the orbits intersect the lunar 
surface. 

4. The Almost  Rectil inear Orbits 

The almost rectilinear orbits towards which the halo family tends as Xmax decreases 
are amenable  to an analytical approximation used in reference [3] in a different 
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Fig. 4c. Stable orbit Y-Z position bounds, L2 branch. 

context: The Sun-Ear th  system. If position is measured f rom the Moon and if we 
start  by supposing that x, y << z << 1, the equations of motion are (approximately): 

.f _2p_~ 3x  +3z 2 ~x3 
Z 

/zy 
js + 22 = ----x (4.1) 

Z 

/z 
~? ~ - z  -~--~ 

in which the only important  second-order  te rm in the expansion of V(1 ~de) about  the 
Moon is the term ~z 2 in the x-component .  

The  third equation, (4.1)3, leads to an obvious integral: 

~2 1 2 Iz 
~ - + ~ z  - z  = g, a constant. (4.2) 

We may introduce the dimensionless pa ramete r  7 ( -oo  < ~ < 1) related to g and 

Zmax by: 

2 g  2t, 
~7- 2 = 1  3 , (4.3) 

Z m a x  Z m a x  
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and related in turn to the Jacobi constant C by: 

2 / 2/z \2/3 
C = 3 -4 /~  +/x - 7/~1_-~) (4.4) 

Equation (4.2) leads to a quadrature for the time from z = 0, 

z/zmax 

f q~d~" (4.5) 
t = x/(1 - ( ) ( 1  - n  + ( + ( 2 ) ,  

0 

which is an elliptic integral of the third kind. 
The relatively small deviations x, y from the z-axis satisfy the first two equations 

(4.1)1 and (4.1)2, which are non-homogeneous linear with time-varying coefficients 
and forcing term. The assumption x, y << z eliminates, of course, the brief period of 
time when the orbit is closest to the Moon and when the Earth's effect on the orbit is 
small. If the variables x, y, ~, )~, are replaced by certain osculating Moon-centered 
orbit elements, the resulting differential equations will be valid throughout the orbit. 
Specifically we chose, 

Px = (~_~_) 1/3 y 2 - z ~  , P3 = (~__~) 1/3 XZ,--~.X , 

ZZmax(l~_ff_+~.3) Zraaxk--2--'t2/l--r/, ~3\g ) 

(~2 + zs - z2y, (~ z + z~)x - z~A 
P2 - -  Z 2 ~  , P4 = z 2 z'" (4.6) 

~" denotes Z/Zm~,; PI, P3 are proportional to the orbital angular momentum r x v (in 
the rotating frame); while Pz, P4 are the small angular deviations from the z-axis of 
the apolune direction; i.e., P=, P4 are certain linear combinations [3] of ~-/2 - i and 
3~r/2 - to where i, to are the usual orbital elements, referred to the xy plane. The P's  
satisfy the finear non-homogeneous equation: 

d P2 4 sR/~ 

o 4 • 
\P4/  \ 0 sR/~ 

' (4.7) 

[ 4s( 3,= -ffZe/R W/R  -2esx/ (~  P= ~l~ a 
X 

' - W / R  2~sv/-~ 7s( 3/2 -4(2~/R ] P3 R "1" 

where R denotes ~/1-~7+~'+(% W denotes 1 -~+2~7~ ' -4~  "3, ~: denotes 
[(1 - rl)/2] 1/3 and where the independent variable s is defined by: 

/ - ' / 1  - ( ,  ~ > 0 ,  (4.8) 
s=/+ 14i-- , 2<0. 
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This independent variable has several advantages; in the first place it is not necessary 
to invert (4.5) and express ~" as a function of t, and the infinite value of 2 at z = 0 is not 
a problem; secondly, the vanishing of 2 at z = Zm~,(( = 1) makes s preferable to z 
or ~'. 

The  linearity of Equation (4.7) leads to a simple form for the P ' s  at s = +1 (return) 
in terms of the P ' s  at s = - 1  (departure): 

P,(+I)\ /P,(-a)\ 
P2(+l)  / / P 2 ( - 1 ) / +  p3(+l)/= T(rl)~p3(_l)] #l/3A('o) , (4.9) 
P4(+1)/  \ P 4 ( - 1 ) /  

where T07) is the solution (at s = 1) of the homogeneous matrix equation associated 
with (4.7), the initial matrix being the identity (at s = - 1 ) ,  and /zl/3A(r/) is the 
solution of (4.7) with the zero initial P 's  (Pi(-1)  = 0). 

The desired periodic orbits are given by: 

/P1(-1) / 
IP2(-1) |  

[O4-  T('0)]/p3(_X)J =/./., 1/3A(1"/) , (4.10) 
/ / 
\ e 4 ( - 1 ) /  

w h e r e  9~q4 denotes the 4 • 4 identity matrix, and they are unstable if the eigen-values 
of T(7/) lie outside the unit-circle. These periodic orbits have been computed for 
various 77; in every case P2(-1)  and P3(-1)  are zero, indicating perpendicular 
crossing of the xz plane. The eigen-values of T07), moreover,  are in quite good 
agreement,  at least if ~7<-3 .5  (Zm~,<68 000km),  with the eigen-values of M 
associated with the exact, numerically integrated, orbits. The agreement of the orbit 
x(z),  y(z) is moderately good and improves, as expected, when z ~ ,  decreases, as is 
evident in Figure 5, where Zmax is plotted vs Xm~,. The stability of the periodic 
solutions of (4.7) changes with increasing 7/at ~7 = -3 .543  (Z~x = 67 300 km) when 
one pair of eigen-values of T(~)  leaves the unit-circle at - 1 .  At  ~7 = - 2 . 4 7 1  
(Zma~ = 73 600 kin), moreover ,  the other pair of eigen-values leaves the unit-circle at 
+1. The periodic solution, given by (4.10) leads to infinitely large positive x as 
7/~ -2 .471  from below (see Figure 5). 

5. A Second Halo Family Emanating from Near L1 

For ~ > -2 .471 ,  the solution of (4.10) reappears from infinity with opposite sign. It 
was therefore conjectured that the corresponding x (z), y (z) approximate a portion 
of a second family of halo periodic orbits, in this case emanating from the vicinity of 
L1. This conjecture has been verified and the values Ixm~l, zm~ are shown for both 
families in Figure 5, together with the approximations (dotted lines) furnished by the 
almost rectilinear theory. 
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The x z  projections of the new family are shown in Figure 6, and the values of the 
stability indices Vl, v2 are plotted vs Z=~x, along with the period in Figure 7 up to 
Zm~x = 113 000 km. Again there is a narrow band of stable orbits, for 73 000 k m <  
Zm~x < 74 500 km, shown in projections in Figures 8. The angular momentum vector 
h / (  and the torque due to the Earth 's  gravity gradient are opposite to those for the L2 
family, again causing the orbit to precess and remain fixed in the rotating frame. As 
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Fig. 8a. Stable orbit X - Z  position bounds, L1 branch. 
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Zmax increases further we encounter  a second narrow band of stable orbits, for 
112 000 km < zm~, < 113 000 km. This band has perilune below the lunar surface. 
At  Zm,x = 113 000 km the two pi's coincide, and for larger Zmax we obtain instability 
due to a pair of complex conjugate eigen-values A outside the unit-circle; their 
reciprocals lying inside the unit-circle. Figure 9 shows the behavior  of those A's 
having positive imaginary part  as Zm~, increases beyond 113 000 km. The  perilune 
distance, meanwhile,  continues to decrease until Zm~x reaches 130 000 km. 

100 

~ BEAL.~ 
/ - 

ZMA x = 1 1 . 2 5  

Fig.  9. E i g e n v a l u e s  fo r  h i g h e r  Zma x. 

6. Conclusions and Recommendat ions  

The Halo orbits originating in the vicinities of both L1 and L2 grow larger, but shorter 
in period, as they shift towards the moon. There  is in each case a narrow band of 
stable orbits roughly half-way to the Moon. Nearer  to the Moon, the orbits are fairly 
wel l -approximated by an 'a lmost  rectilinear'  analysis described in [3]. The L2 family 
shrinks in size as it approaches the Moon, becoming stable again shortly before 
penetrat ing the lunar surface. The Ll- family  becomes longer and thinner as it 
approaches the Moon,  with a second narrow band of stable orbits with perilune, 
however,  below the lunar surface. 

It  would be interesting to pursue the Ll- family  for even greater  Zm~x. It  would also 
be interesting to examine the neighborhoods of that m ember  of the L2 family, and of 
the two members  of the L~ family, where one ui = +1 and the Jacobi constant has an 
extreme value, to see if there are any bifurcations onto new branches of periodic orbit  
families. 

The  stable bands, roughly half-way from the Moon to L1 and L2, are of special 
possible significance in view of recent interest in a space colony built of lunar material  
[4]. It  is desirable to investigate the influence on their stability of both lunar orbit  
eccentricity and solar gravity. 
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