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Abstract. Classical non-stationary two-body problem, described by the equation of the form 

r 
= - ~( t )~-  

is investigated using differential equation transformation methods developed by the author. 
All laws of mass variation for which Gylden-Me~Serskii problem is reduced to autonomous form are 

stated. The problem symmetry properties are investigated and reviews of integrable cases from the group 
point of view are made. 

1.  I n t r o d u c t i o n  

The classical non-stationary two-body Gylden-Meg6erskii problem (Gylden, 1889; 
Me~derskii, 1893) used for describing double-star evolution at the secular mass loss 
owing to photon and corpuscular activity is one of the most famous in celestial 
mechanics. Gylden-Meg~erskii's problem is also used as a mathematical model 
for different cases of variable mass body dynamics relative motion of two bodies, 
when their Newton's interaction greatly exceeds reactive forces or when there is a 
perturbing force a type of"friction", compensating reactive forces, etc. (see Meg6erskii, 
1897, 1902, 1949; Duboshin, 1925; Omarov, 1975). 

The question is the motion equation of the form 

r 
- -  (1)  = - it(t) r3, 

where r = (x ; y) is the radius vector of motion of a particle with respect to the other 

one in the orbit plane, r = [r ] = ,,/x 2 + y2, tt(t)is a time function. 
It should be noted that the Dirac cosmogonic hypothesis about secular variation 

of gravitational constant (Dirac, 1937, 1938)-in the two-body problem leads to the 
same equation. 

The following laws of mass variation are known, remarkable for integrating (1) 
in quadrature 

it(t) = (at + fl)- 1, (2) 

tt(t) = (at + fi)- t/2, (3) 

#(t) = (at 2 + fit + 7)- 1/2, (4) 

called the first, second, joint Me~6erskii laws, respectively. Being stated mathe- 
matically they are physical based on the theory of interior structure and 
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evolution of stars in the form of Edington-Jeans law (Jeans, 1925). 

= - ~ W ,  ( 5 )  

where tc is a small positive number and exponent v is supposed to be equal to 3. 
According to the theory mass loss is interpreted by electro-magnetic radiation. 
It is considered at present that corpuscular radiation (Ambartsumjan, 1952; 
Fessenkov, 1952) is mainly responsible for mass loss and exponent v satisfies inequality 
0.4 < v < 4.4 (see, e.g. Hadjidemetriou, 1967) v = 2 and v = 3 corresponds to the 
Me~6erskii's first and second laws, respectively. Duboshin (1930) proposed that mass 
variation laws differing from those mentioned above, are also realized physically 
in nature. 

Natural generalization of Equation (5) may be obtained when removing a limita- 
tion of v (specifically, provided v = 0 the mass varies according to the linear law, 
while at v = 1, according to the exponential one). The following mass variation 
laws are also known 

/z(t) = (1 + 20(1 + 220 -2 (6) 

(Nile, 1958 and 1973, carried out approximate analytical integration) and more 
general law, as well 

#(t) ---- (dt + fl)(Tt + b) -2 (7) 

(Gelfgat, 1959 and 1968, carried out exact integration by means of solution uniformity 
through Airy junctions of auxiliary parameter). 

All the known integrability cases permit reduction of problem (1) to the stationary 
form. On the other hand, the above mentioned mass variation laws are such that 
one can find suitable functions v(t) and u(t), at which problem (1) by variables trans- 
formation 

r = v(t)p, dz = u(t) dt, p = (4, t/), (8) 

v(t), u(t)~C 2, u(t)v(t) ~ O, VteI ,  

where I is the open, finite or non-finite time axis interval t, C 2 is the twice continuously 
differentiated functions space over I is reduced to the stationary form (with fictitious 
time z) 

- # o ' P  d 
P" + b l p '  + b o P -  pa , ( ')=dzz' (9) 

bo, #o are the real constants and b ~ may be either a real or purely imaginary constant. 
Note that, according to the well-known St/ikkel-Lie (St~ickel, 1893) theorem, (8) 

is the most general transformation keeping the equation order, the linearity of its 
linear part and the structure of the non-linear one. 

The present paper, both stating the new and systematizing the known results, 
sums up the investigations in finding out mathematical mass variation laws and 
exact integrability of problem (1). It gives the answer to the question: What are 
all the possible mass variation laws for which problem (1) is reduced to (9) by trans- 
formation (8)? 



GYLDEN--MESCERSKII PROBLEM 409 

The mass variation laws found are remarkable for their remaining invariant in 
total in respect to the symmetry group admitted by problem (1). 

At present "it has become more natural to deduce the laws of nature and to, test 
them by means of invariance principles" (Wigner, 1970). The invariance (symmetry) 
principles play the part of the touchstone when testing the correctness of the support- 
ed natural law. 

It turned out that Eddington-Jeans law did not stand the test. However, what 
the mass variation law admitted by problem (1) will be, its integration is reduced 
to the case of mass variation by Eddington-Jeans law for 1 ~< v ~< 3. 

It follows from the results received in the work that material mass can be neither 
periodic nor oscillatory. All the linear motions in problem (1) have been found. 
The review of the integrable cases of problem (1) from the group point of view is 
made. There are constructed the finite transformation groups, permitting us to 
divide the problem of integrating (1) into non-crossing classes in accordance with 
various mass variation laws. The ability to integrate problem (1) for one case of 
mass variation involves integration of the whole class by means of the known trans- 
formations. 

Remark 1. In this paper either results are proved or corresponding references 
are made. The end of the proof is denoted by I .  When citing the literature references 
are made only to those works which are directly concerned with discussion of the 
questions set above. As for various aspects of the two-body variable mass problem, 
the reviews made by Duboshin (1930), Lapin (1944) and especially Mikhailov (1974, 
1975) are quite complete and include a period of centenary development of non- 
stationary problems in celestial mechanics up to World War II. The reviews by 
Dommanget (1963) and Hadjidemetriou (1967) include the more up-to-date period. 

2. Autonomization Method 

The works by Omarov (1975), Berkovi~ and Gelfgat (1975) are dedicated to the 
investigation of broad classes of non-stationary problems in celestial mechanics; 
the latter work includes the general method of transformation of non-stationary 
problems into stationary ones. 

One of the main questions solved in the present work is that of finding all the 
mass variation laws #(t) for which and only for which (1) is reduced to (9) through 
transformation (8). Since the unknown laws are not only sufficient but also necessary 
for reduction of(l), (8), and (9), the question can be investigated neither by semireversal 
method nor by means of heuristic substitutions. 

The solution is given on the basis of differential equation autonomization method 
in which the regular theory of differential equation transformation is developed 
(Berkovi~, 1971, 1978), see also (Berkovi6 and Netchayevskii, 1976, 1979). This 
method will now be set forth in detail in conformity with the Gylden-Me~erskii 
problem. 

LEMMA 1. In order to reduce (1) by means of transformation (8) to (9) it is necessary 
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and sufficient that the kernel u(t ) and the factor v( t) of(8) satisfies the equations 

1// 3(ti~2 1 e 
2u- 4 \ u ]  -~cSu =0,  cS=b~-4b0 ,  (10) 

/5 - bo v-3 = 0, (11) 

t 

/ 5 -bob~2v  -3 v 2dt =0 ,  b l=ri0, (12) 

to 

where v(t), u(t) and #(t) are connected by relations 

t 

( i f )  v( t )=lu l - t /Zexp  •  t ud t  , (13) 

to 

i5 - bou2(t)v = O, (14) 

# (t) = #0  u2 (t) U 3 (t).  (15) 

In this case problem (1) admits Lie group with infinitesimal operator 

IO b f  O Oh 
X = u ~ + u v v ~ X ~ - x +  Y Oy ) (16) 

and has particular solutions 

r=v(t)/. ,  2 3 = - / % b o  1, b04~0. (17) 

Proof. Let us note first of all that the initial non-linear non-autonomous vectorial 
equation represents a sum of two items, one of which is the linear part r', and the 
other - non-linear one - [u(t)r/r 3. 

Necessity. Let us apply transformation (8) to (1) and put on reduction requirement 
(1) to (9). As a result (9) will become identical to the equation 

p" - 2 u "q- il p q- ~ V  p = U2V3 p3 (18) 

whence it immediately follows (14) and (15). 
Equating the factor at p' we come to the linear equation with respect to v : 

b =  - 2 u  -+ u v, (19) 

by integration of which we get (13). Having substituted then (13) into (14) we obtain 
(10). Having chosen u as a dependent variable we get from (19) Bernoulli equation 
which has as solutions 

u = v - :  if b 1=0 ,  (20) 
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V - 2  
u = _ if b I :p 0. (20') 

bl t v-2 dt 

IO 

The substitution of (20) and (21) to (14) leads to (11) and (12), respectively. 
To get Equation (17) note that a solution of Equation (19) is p = 2, where 2 = [~.[ 

satisfies the relation 23 = - #o bo 1, bo :p 0. Then, because of (8) we arrive at parti- 
cular solutions (17) which present linear motions in problem (1). 

The statement that (1) admits one parameter Lie-group follows from the require- 
ment of reduction (1) to autonomous form (9); in this case corresponding infinitesimal 
operator 

x = ~(t, x, y) ~ + ,7(t, x, y) + ~(t, x, y) 

takes the form (16) (Berkovi6, 1971, and also Wilczynski, 1906) 
Sufficiency. When all the statements of Lemma 1 are fulfilled. Then transforma- 

tion (8) reduces (1) to (18). Since all the requirements of (13)-(15) are satisfied, (18) 
is identical to (9). �9 

Remark 2. Name Equation (10) after Kummer-Schwarz, Equation (11) after 
Ermakov and transformation 

t 

gb z ud t  p, d z = u d t  (21) 

to 

after Kummer-Liouville who were concerned with the said equations and trans- 
formation (Kummer, 1834; Ermakov, 1880). For b z = 0  (21) becomes Nechvile 
transformation (1926) 

r = lul-1/2p, dz = u dt, (22) 

which has been used earlier by Liouville (1837). 

LEMMA 2. 

u(t) = (~1 t + ~1 ) -  1(~2t + ~) -  ', 

u(t) = (At 2 + Bt + C)- 1, 

u(t) = (at + [3) - ~, 

The general solution of Equation (10) is 

= (~1/~2 - ~2/~1) / > 0 ,  

g) = B 2 - 4 A C  <0,  

the important particular cases of which are represented by formula 

u(t) -- (at + 9 ) -  1, u(t) = 1. 

The validity of Lemma 2 may be verified by means of direct test. �9 



412 L.M. BERKOVI(~ 

LEMMA 3. (a) The general solution of Equation (11) is 

V(t) = %/(0~ 1 t -'~ /~1)(0~2 t "[- /~2) , 

v(t) = x /A t  z + Bt + C, 

v( t )  = o~t + 13, 

the important particular cases of which are 

v( t )  = (c~t + ~ ) , 2 ,  v( t )  = 1. 

(b) The general solution of integro-differential Equation (12) is 

v(t) = ( ~  t + ~ 1)'2 • bln,/~(~ 2 t + / ~ 2 )  ~/2 ~ b"2'/~ , 6 > 0, 

1/2 / bl v( t )=(a t  2 + Bt + C) exp~_+~__~arc tg  2Atx/~_~_ / + B~, 

v(t)=(c~t+8)exp T-2e(c~t+8) ' 6 = 0 ,  

the limiting cases of which are 

v(t) = (at + ~ ) ,2  • 

v(t) = exp ( _+ �89 t t) 

- 4b o = ( a l f l  z -  ~2flt)  2 > 0,  

- 4 b  o = B 2 -  4AC <0,  

b o = 0, 

6 < 0 ,  

(23) 

(24) 

(25) 

(26) 

(27) 

(b 1 may everywhere take both real and purely imaginary values). 
Proof (a) Since Equations (11) and (10) are interconnected by transformation 

of v = u-1/1, then from Lemma 2 we get the statements of Lemma 3a; special cases 
of Lemma 2 leads here to special cases of Lemma 3. 

(b) Due to (13) we get from Lemma 2 the relations of Lemma 3b. [ ]  

Instead of non-linear Equations (11) and (12) one may consider linear Equation 
(14) with variable factor -bouZ(t), which takes different expressions according to 
Lemma 2. Then we obtain an equation with rational factors 

i5 -~ f v = O, a, b, c , f  - const, (28) 
(at 2 + bt + c) 2 

which arises in various problems of mechanics and mathematics. It was Besge (1844) 
who first pointed out the principle possibility of integration (28) in the finite form 
through elementary functions though he did not integrate. 

Further complete integration of (28) will be given of various correlations between 
the parameters included in it, according to Berkovi6 (1978). 

LEMMA 4. (1) Let 3 = (cqfl 2 - a21~1 )2 > 0 ,  Equations (12) and (28) take the form 

~- + [ ( ~ 1  f12 - -  ~ 2 ~ 1  )2 - -  b12] (~1 t - -~/~1)-  2 ((~2 t AI-/~2)-  2 v = 0 
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and has as a basis (21),/fb 1 # 0, or ( for b I = O) 

{X/(~l t+fl l ) (~zzt+fl2) ,x/(~i t+fl l ) (~2 t+f l2) l  n S i t + i l l  ) 
~2 t -[- /~2 " 

(2) Let  6 = B 2 - 4AC < O, Equations (14) and (28) take the fo rm 

1 2 b~)(At 2 + + i5 + ~(B -- 4AC - Bt  C ) -  2 v = 0 

and has as a basis (22) ifb 1 r 0, or ( for b 1 = O) 

{ x / a t  2 + Bt  + C, x / A t  2 + Bt  + C arctg x/-Z~ J 

1 z ( .  t + f l ) - 4v  = 0 and has (3) Let  6 = O, Equations (14) and (28) take the fo rm i5 - ~b 1 

as a basis (28) ifb 1 4:0 or ( for b, = O) {1, t} ; 
(4) Let  6 = a2 > 0 Equations (14) and (28) degenerate into Eu le r -  Legendre equation 

1 2 2 v i5 + X(a -- b2)(~t + fl)-  = 0 

and has as a basis (24), i fb  1 ~ 0 or ( for  b 1 = 0), 

{ ~ , x / ~  + /~  In [~t + ~ 1 }  

(5) Let  6 = O, u = 1, Equations (14) and (28) degenerate into the equation with constant 
1 2 coefficient i5 - ~b 1 v = 0 and has as a basis (27) i f  b 1 4: O, or ( for  b, = O) has as a basis 

{1, t}. 
Proof. The proof of Lemma 4 is based on Lemmas 2 and 1. Furthermore, the 

results received may be verified directly. �9 

3. The Laws of Mass Variation in Differential and Integro-Differential Form 

As has been already mentioned in section 2, autonomization method permits reduc- 
tion of non-stationary problem (1) to the stationary form (9). All the mass variation 
laws may be stated in this case. 

THEOREM 1. In order to reduce (1) to (9) by transformation (29) ( for b 1 = O) it is 

necessary and sufficient that mass satisfies the differential equation 

/2 - ~ / i  2 + bop s = O. (29) 

Here  (22), (16) and (17) take respectively the fo rm 

r = kt- X p, dr = ~2 dr, (30) 

- 2  ~ - 3  f o  
X = #  ~ - [ - p  l i ~ X ~ x + Y ~ y ) ,  (31) 

r = # -  1 2 ,  •3 = -- #0 bo 1, b o 4: O. (32) 
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Proof. Necessity. Since by (22) v = u - 1 1 2 ,  then (15) takes the form/4t)  = #o ul/2, 
hence we get 

u(t) = #2 dt, v(t) = #-  1 (t), (33) 

if we take #o = 1. 
Having substituted (33) into the equation 

3?? 
2u 4\u,] + b~ = 0 (34) 

and also into (22), (16) and (17) we come to (27)-(32), respectively. 
Sufficiency. Let #(t) satisfy (29). By means of substitutions/~(t) = u-  2, #(t) = v- 1, 

(29) is reduced to Equations (34) and (11) respectively, which is the criterion of reduc- 
tion of(l) to (9) (for b 1 = 0). �9 

THEOREM 2. In order to reduce problem (1) by transformation (21) to (9) (b 1 5~ 0) 
it is necessary and sufficient that mass II(t) satisfies the integro-differential equation 

t 

f i _ 2 # - l / j 2 + 2 b 2 + b o  5 / ~  2 ) - 2  
97 kJ dt =0, (351 

to 

in this case the transformation (21), admitted by (1) infinitesimal operator X, and patti- 
cular solutions take respectively the form 

t 

r = # -  1 (3hi  F \2/3 J # 2 d t )  P, 

to 
( f ) _ l  dr = ~22 "~ 3b t ~U 2 dt dr, 

tO 

(36) 

t t 

X=#-2(+3blf#2dt)~+I#-3(T3blf#2dt)#+2bl](x~+y~), 
tO to 

// t(, \2/3 
r = l ~ - t ~ 3 b t J # 2 d t )  2, ~ 3 = - / l o b o  -1  , 

to 

Proof. Necessity. Having substituted (13) to (15) we get 

t 

gb 1 ~dt , # o = 1 ,  

to 

hence we get Bernoulli equation with respect to u : 

f i=2#-uT3blu  2, b~ ~O, 

bo@O- 

(37) 

(38) 

(39) 
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the solution of which is the function 

t 

( ; u = / l  2 _ 3 b  x /z 2 d t + x  , (40) 

to 

where K is the integration constant..When substituting (40) to (10), (21), (16) and (17) 
we obtain respectively (35)-(38). 

Sufficiency. Let the mass/~(t) satisfy Equation (35). By substitution (39) and 

t 2 

, ( t ) :  - 

to 

(the latter is received from (15) by (20')) Equation (35) is reduced to (10) and (12), 
respectively. But this is the criterion of reduction of(l)  to (9) by transformation (21). �9 

Remark 3. We shall name Equations (29) and (35) respectively the differential 
and the integro-differential mass variation laws. 

The work by Lapin (1944) contains Equation (29). The united integro-differential 
mass variation law, containing as particular cases (29) and (35) has the following 
form 

~ c = l ,  i f b t = O  (41) IJ--2/2-'/~2+ (2b~Z+b~ = O f  K O, ifb~:~O. 
t 2 

to 

4. Mass Variation Laws in the Finite Form and Linear Motions in Problem (1) 

InSection 3 mass variation laws in differential and integro-differential form were 
stated. However, in many cases it is more convenient to use the finite form of these. 
In addition the finite form permits us to compare the known results recently received. 

Mass variation laws in the finite form may be derived by integration of Equation 
(11). 

4 . 1 .  INDIRECT INTEGRATION METHOD ( 4 1 )  

T H E O R E M  3. All the laws of mass variation with time/~(t) in problems (t), (8) and 
(9) are given by means of the following finite equations 

/4t) = (~lt + ~1)- I/2• +/~2) 1/2~-3b~/2~, 8 > 0, % ~ 0, ~2 ~ 0; 
(42) 

3b t �9 2 A t + B ~  
arctg (5 < 0 ; (43) ~(t)=(At2+Bt+C)-l/2exp +2x/-~ ~ J' 
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3bl 1 # ( t ) = ( a t + f l ) - l e x p  T 2 a ( a t + f l )  ' 6 = 0 ;  (44) 

I~(t) = (at + fl)- 1/2+3bl/2a ~ = a 2 ; (45) 

3 t), 6 = 0  (46) #(t) = #o exp( _+ 2b 1 

(b~ takes both real and purely imaginary values ; a, fl, ?, 6, A, B, C, ~o the arbitrary 
constants.). 

Proof. The proof may be obtained indirectly on the basis of relations between 
the functions (u(t), v(t), #(t)) [formula (15)]. The former ones are found by Lemmas 2, 
and 3 or 2 and 4. �9 

Consequence 1. Real mass #(t) in problems (1), (8) and (9) cannot vary neither 
according to periodic nor oscillatory laws. 

Consequence 2. To reduce problem (1) by means of transformation (8) to the 
classical two-body problem 

P 
p" - p3, (47) 

it is necessary and sufficient that the mass p(t) satisfies the equation 

ji - 2# -  ~/22 = 0, (48) 

i.e. varies according to the Me~6erskii first law (2). 
Consequence 3. To reduce problem (1) to the stationary form 

p,, + bo p _  - #oP p3 , b 0 :p0 (49) 

by transformation (6) (motion in gravitation medium) it is necessary and sufficient 
that the mass p(t) satisfies the differential Equation (29) and was described by the 
following finite equations 

~(t) = (at +/~),/2, (50) 

p(t)= [ (a l t+f lx ) (a2t+f l2)]  -1/2, 6 > 0  (51) 

p(t) = (At 2 + Bt + C)- i/2, 6 < 0. (52) 

Consequence 4. To reduce problem (12) by transformation (8) to the stationary 
form 

- ~z~ P ( 5 3 )  P" + b t P ' -  p3 ' 

it is necessary and sufficient that mass #(t) satisfies integro-differential equation 

t 

ji - 2/t- 1/22 + 2/~5 z dt = 0 (54) 

to 
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and was described by the following finite equations 

,u(t) = o~t + /3 ,  

~(t) = (c~t + / 3 ) -  2, 

~(~1 t ~- fll)(~2/7 ~- f12 ) - 2  
]2(t) = ~((Z 1 t "q- f l a ) -  2(~2 t -q- f12)" 

(55) 

(56) 

(57) 

Note, that for b a > 0 (53) is the equation of the constant mass body motion affected 
by the force of Newton's attraction to some centre and the resistance force, propor- 
tional to the rate ; instead of the latter for b a < 0 we have tangential accelerating 
force proportional to the rate. 

THEOREM 3.1. The united mass variation law in the complex-valued form in problems 

(1), (8) and (9) may be given as (42). 
Proo f  Formula (43) has complex-valued form (42), (44) is the limiting case of (42); 

(45) is the particular case of (42), and (46) is the limiting case of (45).11 

Remark 4. Lovett (1902), who believed that (1) is reduced to (47) at linear mass 
variation law (55) but not at (2) criticized Me~6erskii's work (1893). In fact, 
as Meg6erskii showed (1902) law (2) is correct. As for (55) in this case, according to 
consequence 4 (1) is reduced to (53). From (42)-  (46) for b 1 = 0 Meg6erskii laws 
follow. 

Formulas (45) and (46) present the finite form of the general Eddington-Jeans 
law. Equation (42) in real form was obtained by Berkovid and Gelfgat (1972, 1975), 
Equation (42) (in complex-valued form), (43) and (44), and also integro-differential 
mass variation laws (35) and (41) - by the author. 

4.2. DIRECT INTEGRATION TECHNIQUE OF (41). EXACT LINEARIZATION 

Because of the importance of mass variation laws it is worth mentioning one more 
method for obtaining them. Consider now direct integration method of (41) and 
in particular (29), based on the exact linearization method (Berkovi6, 1979). One may 
obtain Theorem 3, giving the finite form of mass variation laws, by the following 
direct way. 

LEMMA 5. Commutativefactorization 

~ - 2 D  - r2)(/t- 2D - rl)  # = 0 (58) 

corresponds to Equation (29), rlr 2 = bo, r 1 + r 2 = O, it admits particular solutions 

# = ( - 2rt + fl)-'1/2, r 2 + b o = 0 (59) 

(fl-integration constant), by transformation 

dz = / 2  2 dt (60) 
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is reduced to the linear form 

/z" + bo# = 0 (61) 

and has the general solution of type (51) and (52). 

Proof If we multiply Equation (29) by/~- 4, then it is easy to verify that factoriza- 
tion (58) is valid. Due to commutativity of (58), Equation (29) has particular solutions 
being first-order equation integrals 

# -  2/~ - -  rK # = O, N = 1, 2 ( 6 2 )  

from which (59) follows. It is not difficult to verify that Equation (29) is reduced to 
(61) by transformation of (60). 

To obtain (51) and (52) write the solution of Equation (61) in the following form 
(for b o > 0) 

v ~  

/~(r) = ~/~o cos ~ o  z, (63) 

where A is an arbitrary constant (analogous reasoning is given also for the case of 
b o < 0). Having substituted (63) to (60) and integrated, we obtain 

t g~ooZ  A = ~ ( t  + c) 

(C is integration constant). As x~oo z = arctg (A/x/~oo) (t + C), then due to (63) we get 

b o ) _ i / 2  
#(t) = A t  2 + 2 A C t  + A C  2 + 

Having taken B = 2AC, C = B2/4A + bo/A, we obtain (52). Since no restrictions 
are put on square trinomial discriminant, the formula found includes (51) as well. �9 

LEMMA 6. Commutativefactorization 

( + 3 b l S # 2 d t D  + ) # = 0  (64) 
~2 -- r l  

where ri, 2 satisfy the algebraic equation 

r 2 + 3b t r + b o + 2b 2 = 0, (65) 

corresponds to integro-differential Equation (35); it admits particular solutions 

#(t) = (~t -~ fl)-  1/2 :t: 3bl/2~/6 (66) 

(5, fl are the arbitrary constants, 6 = b 2 - 4b 0 ) : by transformation 
dz = #2 dt/( +_ 3b 1 S#z dt) (35) is reduced to the linear-differential equation 

#" -T- 3bl/s + (2b~ + bo)/~ = 0 (67) 

and has general solution of types (42) and (43). 
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2 2 Proof. If we multiply Equation (35) by 9b1(~# dr)2# -4, then it is not difficult to 
verify, that factorization (64) is valid providing (65). Due to commutativity of factori- 
zation (64) Equation (35) has particular solutions, satisfying integro-differential 
equations 

#2 dt r r 
#2 / i - ~ # = 0 ,  ~c=1,2. (68) 

By dividing variables we come to the equations 

d# r~ #2 dt 

p -t- 3b 1 I #  2 dt 

by integration of which we obtain integral equations 

r~ ln~# 2 dt (69) In C #  - + 3b 1 

(C is the integration constant). By use of potentiation and differentiation we arrive 
at the first-order differential equation 

+- 3bl #-1-3bl/rr- 1 ~ = C # 2  (70) 
Tr 

by integration of which we come to the solutions (66) corresponding to 

rl, 2 = (+ 3b 1 + x/6)/2. 
To deduce formulas (42) and (43) let us write the solution of Equation (67) as 

# = = exp + cos z (71) 

for 6 < 0, A is the arbitrary constant (analogous reasoning is given for 6 > 0, as well). 
Let us write down z in the form of 

1 
z - In ( ___ 3b1 ~#2 dt), (72) 

+ 3b 1 

hence, due to (71) we get 

arc cos x ~ -  6 # ln( _+ 3bl S# 2 dr). (73) 
2x/~- ~_+ 3b t S #2 dt -+ 6bl 

Let us differentiate the integral Equation (73). Then we come to the integro-differen- 
tial equation. 

- x/-L6/(2x/A)(d/dt)(#/x/+_ 3b 1 I#  2 dr) = ~ 6 #2 

x/1 + (6/4A)#2/(+_ 3b 1 Iu 2 dr) 2 ___ 3b t I#  2 dr" 
(74) 
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Having introduced the designation 

# 

x / +  3b 1 S#2 dt '  

we write (74) as 

1 9 
= V 2" 

+  /4A 

Integrating (76), we obtain 

v(t)=(At 2+Bt+C)-1/2,  6= B 2 - 4 A C .  

Now let us solve the integral equation 

(At 2 d- Bt + C)- ,/2 = #(+_ 3biS#2 dt)-  1/2 

From (78) we get the relation 

(75) 

(76) 

(77) 

(78) 

/ ~--~6b 1 ~ 2 A t  + B)j 
-t- 3b 1S#2 at = exp~ _+ arctg , (79) 

from which (43) immediately follows. As has been mentioned earlier, (42) may be 
obtained by the analogous way, the function v = (et t  + il l)-  1/z(cr t + f12)- 1/2 being 
the solution of (76) for 6 > 0. �9 

From Lemmas 5 and 6 follow Theorem 3. 

4 .3 .  LINEAR MOTIONS IN PROBLEM (1) .  

In conclusion let us consider the question about linear motions in problem (1). 

T H E O R E M  4. (a) In order that problem (1) admits linear motions (17) it is necessary 
and sufficient that the mass #(t) satisfies Equation (35) and consequently to one of the 
laws (42)-(46) (for b o 4 = 0). 

(b) I f  #(t) satisfies (42)-(46), then as v(t) one should choose respectively (23)-(27). 
Proof. The proof of the theorem follows immediately from Lemmas 2 and 3 and 

Theorem 3. �9 

5. About G y l d e n - M e ~ r s k i i  Problem Transformation Into Itseff 

As is known, the most characteristic properties of the physical problem are those 
which remain invariant when transforming it into itself by variable substitutions 
" ... mathematical laws, governing the nature, are the source of symmetry in nature" 
(Weyl, 1952). 

Find the transformation of Kummer-Liouvil le type (8), transforming Gylden-  
Me~6erskii problem (1) into itself, i.e. to 

d 
V '  = - ~1 (~) , (3  = ~ .  (80)  
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L E M M A  7. To reduce (1) to (80) by transformation (8) it is necessary and sufficient 
that the kernel u(t) and the factor v(t) of  transformation (8) satisfies equations 

1// 3 ( f i )2  = 0 ' (81) 
2u 

/5 = O, (82) 

where v and u are connected by relation (20) 

#1 ('7:) = l t(t)u- 2(t)v3 (t), (83) 

and the new independent variable z(t) satisfies the third-order Kummer-Schwarz  

equation 

{r,t;_= 3( y 2~ 4 \ ~ )  =0" (84) 

Proof. The proof follows immediately from Lemma 1. �9 

T H E O R E M  5. In order to reduce (1) to (80) by use of  transformation (8) it is neces- 
sary and sufficient that (8) takes the form of 

al t + fll 
r = ( a t  + f l ) p ,  d z  = ( a t  + f l ) -  2 d t ,  z - - -  (85) 

a 2 t ~-  f12 '  

where a 1 f12 - a2 fl l --/: O; in this case (1) admits one-parameter Lie group G 1 " 

(Raft + 1)t + aft 2 x 
G l : t l =  1 - a a ( a t + f l )  ' X t -  l - a a ( a t  + fl)' 

Y (86) 
Yl = 1 - aa(at + fl)' 

) f x  0 + O'k X=(at+tl)2 +a(at+,St (87) 

Proof. The structure of transformation (85) follows immediately from Lemmas 3 
and 2. Then on the basis of Lemma 1 the infinitesimal operator (16) is described by 
(87). Now find the finite equations of group G 1 . Still as Sophus Lie (1893) has shown 
they may be found by means of the following expansions into infinite series 

t 1 = e x p ( a X t ) =  ~, a~ X ~ "=~ ~c ! t, 

0o a x 

x t = exp(aXx)  = ~, ~ X ~ x ,  
r = o  K! 

Yi = exp (aXy) = ~y, 
1r 
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X t  = (at + fl) 2, X 2 t  = 2 ~ (c~t + 3) 3 . . . . .  

t' = t + a ( a t  + fl) 2 ~ aSaS(c~t + fl) s = t + 
s=O 

Hence we come to the first of the formulas (86). As 

X x  = o~(o~t + fl)x, X 2 x  = 2~2(at q- fl)2x, 

then 

Xnt = n!o f -  l(at + 3)  n + l ,  

a(at + fl)2 

1 - aa(at + 3)" 

X " x  = n ! . " (a t  + fl)"x, 

X 1 = X -}-  aa(at + 3)x + ... + a"a"(et + fl)"x + . . . .  

(89) 

(90) 

Proof. Necessity.  Applying transformation (85) to (1) we come, according to 
(83), to formulas (88). It is verified directly that by substitution of (88) substituting 
t --+ ~, # ~ #1" Equation (41) is transformed into itself. Proceeding from (88) and (16) 
we get (89). Finally, we obtain the second of the (89) (the first formula (89) has been 
already deduced earlier) from (88) using Sophus Lie series method 

a~x~ = p + a X #  = #[1 - aa(~t + 3)] #1 = exp(aX#)  = ~.  , 
1~=0 

as X #  = - a(at + 3)#,  X ~ # = 0, V ~c > 1. 

Thus, problem (1) is transformed into itself (invaried with respect to G 1 symmetry 
group (86)), if #(t) satisfies Equation (41). �9 

What happens to the integral curves of Equation (41), when it is being transformed 
(88)-(90)? The next lemma gives the answer to the question. 

X = (a t  ~- 3 ) 2 7 7  - -  a(o{t -[- f l )#  x ~ .  
6 [  up 

(88) 

THEOREM 
the integro-differential Equation (41) is invariant under the transformation 

# = (at § 3)-1#1, d z = ( a t + f l ) - Z d t ,  

i.e. (41) admits one-parameter Lie group 

G1 :t I = (a~3 + 1) tq -a f l  2 #t =#[1  -- a~(et + 3)] 
1 - - a ~ ( a t  + 3) ' 

with the infinitesimal operator 

6. I f  (1) is invariant under the transformation (85), (86) and (87), then 

hence we come to the second of the formulas (86). The third formula (86) may be 
found analogously. �9 
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L E M M A  8. The set of integral curves (42)-(46) of Equation (41) is invariant in total 
with respect to the transformation (88)-(90), in this case the curve families (42) and (43) 
turn into (45), the curve family (44) into (46) and the curves of the family (45) replace one 
another. 

Proof Apply (88) to (42). We have successively 

= ( O~2 t_ "~- f12 ) -112 T" 3b'/2`'/3 1 
/~1 \cq t + flt , r -  o~(at + fl--) + c" (91) 

C is the integration constant. Having taken 

C - az - cq Pl 
a 1 

we come to the expression 

__ a 2 t  "~ 8 2  

(~l"g + f l l  a r t + i l l '  

hence #1 = (alz + ill)-1/2 ~ 361/2~1, i.e. we get the curves of type (45). Apply now (88) 
to (45). Putt ing C = - fl/a in (91) we come to the curves. 

~1(~) = 2(az + ~)- ~/2 ~ 3b~/2~, ;~ = ( - 1)- 1/2• 

(The value of 2 = 1 corresponds to the interattracting masses and the value of 2 = - 1 

to the inter-repulsive ones.) Finally, having transformed the curve family (44) by 
means of(88) we obtain the curve family (46). �9 

Remark 5 It has already been mentioned that  the most important  part  of the 
invariancy principles (symmetry) is to be the touchstone for testing 'candidates '  to 
the nature laws. Due to Lemma 8 the general Edding ton-Jeans  law does not  remain 
invariant with respect to t ransformation (89). However, this law is still of great import- 
ance for problem (1) integration. 

T H E O R E M  7. [Radzievsky and Gelfgat, 1957]. (1) I f  in problem (1) the mass 
p(t) varies according to the Eddington-Jeans law (5) with arbitrary index v, then as 
the result of application (88) the transformed mass #l(Z) varies according (5) with the 
index 

2v - 3 
V 1 - -  ; (92) 

v - 2  

(2) The integration of (1) under (5) with arbitrary index v is reduced to the integra- 
tion of( l )  under the same law, but with the index v satisfying the inequality 1 <<. v <<. 3. 

Proof (1) By integration of the differential Equat ion (5) we find that 
p = (at + fl)1/(1-~), hence a t  + fl = #1-~. Then transformation (88) becomes non- 
linear" 

/~ = ,ull/(2- ~), dr = #(12~- 2)/(2- ~) dt.  (93) 
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from which we come to the equation 

]At1 ('L') = - -  K ' I ]A1 ( 2 v - 3 ) / ( v - 2 ) '  /s = K(2 - v). (94) 

We may get formula (92) if we put in (45) 

1 3b 1 1 1 3b 1 1 ..[_ - -  
2 2o~ 1 - v' 2 2~ I - v 1" 

(2) Obviously, it is sufficient to prove the corresponding statement for v e i l  ;3].  
Let v ~ ( - ~ ; 1 ) .  Then v t~(1 ;2  ). If v~(3; + o9), then v1~(2;3). And since v =  1 
and v = 3 are the fixed points of transformation (9) the statement (2) is valid. �9 

The result, proved in Theorem 7, admits considerable intensification. 

T H E O R E M  8. What  the mass variation law admitted by problem (1) will be, the 

integration o f  (1) is reduced to the integration under Eddington-Jeans law with the 
index 1 <~ v <. 3. 

Proof  The  statement of the theorem follows from Lemma 8 and Theorem 7. �9 

6. Transformation Finite Group of  Mass  Variation Laws 

There are constructed in this section the transformation finite groups, permitting 
to divide the integration problem (1) into non-crossing classes according to various 
mass variation laws. The ability to integrate problem (1) for one case of mass varia- 
tion leads to the integration of all classes by means of known transformations. 

6.1. DIHEDRAL GROUP 

In our further discussion of n-order dihedral groups D, of self-coincidence of the 
regular n-set-square, this D, group has two forming elements 9 and f between which 
the following defining relations are fulf i l led:g"= e, f 2 =  e,(gf)2 = e. The cases of 
D dihedral group for small n are especially interesting for us. For  n = 1 the defining 
relations take the following form g - - - e , f 2 =  e, but they define the cyclic group 
C 2 . Thus, D 1 = C z . This is the group of self-coincidence of a polygon on the one side, 

t l  

~ 
Fig. 1. Fig. 2. 

m ~ I P ,  

g 
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or segment. D~ group graph has the form shown in Figure 1. Let n = 2, the defining 
relations of the D 2 group has the form 9 2 = e , f  2 = e, (9)~ z = e. 

The D z group graph shows self-coincidence of biyonal. Here 9 is rotation, and 
f is turnover, D 2 is the fourfold group D 2 -- C 2 x C 2. It is the commutative (Abel) 
group. Its elements are e, 9, f ,  fg .  (Figure 2). 

Finally, note 6-order group of self-coincidence of the regular triangular. The 
defining relations are 9 3 =  e, f 2 =  e,(gf)2 = e, and as D 3 elements are:  e, f ,  9,92, 
9f, fg .  The D 3 group is the direct product of the cyclic groups:  D 3 = C 2 x C a. 
(Figure 3). (See Grossman and Magnus, 1964). 

6.2. ABOUT D 3 GROUP ACTING ON THE RELATIONS (42) AND (45). 

Let 6 @ 0. Mass variation laws (42) may be characterized by pairs of numbers being 
the exponents of corresponding degree-factors. 

Introduce the following designations 

1 3b  1 1 3b  1 _ 
- 2 + 2 - ~  = P '  2 2x//~ 1 - p .  

Consider the transformations 

where 

e : # t = # ,  z = t ;  

-1 
g : #  = (O~2t • f12) #1' dz = - 72 (~2 t + f12 )- 2 dt 

0~1 t "AI- fll 
~2tAvfl2 --O~2"E"~-f12' ~2t"[-f12 =(~127-~f l l  ) -1 .  

.~ = - ~ 2 ,  . , /~2 - . 2 / ~ ,  = x / ~  - ~ ,  ; 

f : 1 2 = ( ~ t t + f l t ) - l # l ,  d z =  - ( ~ t t + f l l ) - 2 d t ,  

g s 

e g II 

Fig. 3. Fig. 4. 
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(~t*P) -'expF 3b' ~ f  O] g 

4 t 

-4 (~t*~) exp [- ~ l L 2.c(~t+~)J 

where 

Fig. 5. 

5 2/T -~- ]~2 
0~lt + f l  I --  ~2"C + f12' 0~1 t- '~ fll  = (0~l"t -~- fll  ) - 1  

It is directly verified that these transformations generate the D 3 group. According 
to D 3 group graph (Figure 4), we get the following graph for transformation mass 
variation laws (42) and (45). 

6.3.  THE FOURFOLD D 2 GROUP, ACTING ON RELATIONS (44) AND (46) 

If 6 = 0, mass variation laws take the form of (44) and (46). 
Consider the transformations : 

where 

e : # t  = # ,  z = t ;  

g : #  = ((~t "~- /~)- 1/gl,  d'c = - (st + f l )-2dt ,  

0~t + f l  = (~Z + f l ) - l ;  f : P t  = P ,  z =  - - t .  

It is not difficult to see that the said transformations form the D 2 group. Here, 
according to graph D 2 (Figure 2), we obtain the following scheme for transformation 
of mass variation laws (44) and (46), (Figure 5). 

7. Brief Review of Integrable Cases 

Consider the known integrable cases of problem (1) from the group point of view. 

7.1. CONSIDER THE PARTICULAR FORM OF LAWS (44) AND (46) BEING OBTAINED 

FOR b t = 0 (see also 4.1, Consequence 2) 

Mass variation laws are connected by the scheme : 

g 
~ = ( ~ t + f l )  -1  , /g l  = 1. 
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g 

(-2;o) 

(~'r2) to ;  I) 

Fig. 6. Fig. 7. 

The transformation finite group is D 1 = C 2 ,  the elements of which are e and g(gZ = e). 
The mass/l  = 1 is the representative of class 7.1. Integration was made by Meg6erskii 
(1893). 

7.2. CONSIDER THE PARTICULAR FORM OF LAWS (42) AND (45) FOR b 1 = 0 
(see also 4.1, Consequence 3). 

1. 2) Mass variation laws are connected by the scheme (Figure 6). The case ( 2, 2 
corresponds to the united Me~r law (4) (see also (51) and (52)). The cases (0" - l) 2 

1.0) correspond to Megr second law (3) (see also (50)). The transfor- and ( - 3, 
mation finite group is C a , the elements of which are e, g, g2 (93 = e). The indication 
of class 7.2 integration in elliptic functions was given by Me~eerskii (1902). The 
actual integration of the general case was made by McMillan (1925). As it follows 
from the scheme in Figure 6, it is sufficient to integrate for any representative (0 ; - �89 
or ( - �89 ; 0) of the given class. 

7.3. CONSIDER, FINALLY THE RELATIONS ( 5 5 ) - ( 5 7 )  (see also 4.1, Consequence 4). 

Mass variation laws are connected by the scheme in Figure 7.' Gelfgat (1959) showed 
that in cases (1 ; 0), (0 ; - 2) problem (1) admits uniformed solution in Airy functions 
(that is in modified Bessel functions of index 1) from an auxiliary parameter. The 
reference to the indicated cases may be found in Duboshin's works as well (1978). 
The connection of cases (1 ; 0) and (0 ; - 2) with motions in resisting medium was 
considered by Radzievsky and Gelfgat (1957). The integrability of the case (1 ; - 2) 
was considered by Gelfgat (1968), Nith (1958, 1973) investigating the stationary 
problem of the motion of satellite-particle in the attraction field of the Earth- 
globe under the action of rate proportional resistance force of the uniform atmos- 
phere, has come to problem (1) under the law #( t )=  (1 + 220(1 + 2t) -2,  which he 
has solved approximately using Me~6erskii's first law. 

The other cases of integrability of Gylden-Me~6erskii problem are not known. 
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8. Conclusion 

Point at some possible directions of Gylden-Me~6erskii problem investigations. 
After the classification due to the law character/~(t) has been made the further work in 
this direction should consist of the proof of integrability or non-integrability of the re- 
presentatives of the appropriate classes. 

It is known that the great investigation cycle was connected to the qualitative 
analysis of the motion trajectories (see in particular, Armellini, 1916; Stepanov, 
1930, etc.) Duboshin (1928, 1930) investigated for the arbitrary mass variation law 
the behaviour of motion trajectory which was earlier made by Armellini for the 
case of monotonous mass variation. The use of the mass variation laws stated in the 
present work will permit us to give a physically realizable motion picture. 

Finally, point to the necessity of improvement of numerical methods, adapted to 
problem (1) solution. 

A brief summary of the results contained in the present paper is given by the author 
(1980a, b). 
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