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Abstract. The third-order parametric expansions given by Buck in 
1920 for the three-dimensional periodic solutions about the triangular 
equilibrium points of the restricted Problem are improved by fourth- 
order terms. The corresponding family of periodic orbits, which are 
symmetrical w.r.t, the (x, y) plane, is computed numerically for 

= 0.00095. It is found that the family emanating from L 4 terminates 
at the other triangular point L 5 while it bifurcates with the family of 
three-dimensional periodic orbits originating at the collinear equi- 
librium point L 3. This family consists of stable and unstable members. 
A second family of nonsymmetric three-dimensional periodic orbits is 
found to bifurcate from the previous one. It is also determined 
numerically until a collision orbit is encountered with the computations. 

1. Introduction 

In the circular Restricted three-body Problem the infinitesimal periodic 
solutions about the positions of equilibrium are continued to families 
of periodic solutions (Moulton, 1920). 

In the planar case of the problem, these families have been computed 
both for the collinear points (e.g. Henon, 1965) and the triangular 
points (Goodrich, 1966, Deprit et al., 1967) and their termination 
has been determined. 

The families of three dimensional periodic solutions about the 
collinear equilibrium points have been studied for large (~ = 0.4, 
Bray and Goudas, 1967) and small (~ = 0.00095, Zagouras and Kazantzis, 
1979) values of the mass parameter. 

The three-dimensional periodic oscillations about the triangular 
equilibrium points have been studied by series expansions (Buck, 1920; 
Heppenheimer, 1973; Erdi, 1978) which are valid for small values of 
the orbital parameters used in each contribution, i.e., they are valid 
in the vicinity of the equilibrium points. 

In this article, the above periodic motion is approximated via 
a fourth-order parameteric expansion w.r.t, an orbital parameter. The 
fourth-order terms improve the similar expansions given by Buck. 

This motion is continued numerically to a family of periodic orbits 
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which are symmetrical w.r.t, the plane of the two primaries. It turns 
out that this family, originating at L 4 intersects the family L~v of 
three-dimensional periodic orbits originating at the collinear equi- 
librium point L 3. It is terminated at the second triangular point L 5. 

The Liapunov stability of each periodic solution is examined. 
It is found that the first part of the family consists of stable orbits 
while the second of unstable orbits. At the member of the family where 
the stability character changes, a second family of nonsymmetric periodic 
solutions is found to intersect the first one. This family is computed 
until a collision orbit is encountered during the numerical computa- 
tions. The results thus obtained are presented in Tables and Figures. 

2. Parametric Expansions 

In a rotating, barycentric, dimensionless coordinate system with the 
smaller primary on the positive Ox-axis the differential equations of 
motion for the circular three-dimensional Restricted three-body Problem 
are 

- 29 = X - (I-~)(X+u) _ ~(X+~-l) , 
r3 ~3 
1 "2 

9 + 2 i :  Y -  ( l - # ) Y _  
3 " 

r~ r 2 

( 1 )  

where, 

= _ (z-~)z _ ~z 

r31 r~ 

2 y2 2 2 y2 Z 2 " 
r I = (X+~) 2 + + Z 2, r 2 = (X+~-I) + + 

The positions of the two triangular equilibrium points are 

i /7 
X0 = 2 - U' Y0 : • ~- ' Z0 = 0. ( 2 )  

The positive sign corresponds to the triangular equilibrium point 
L 4 and the negative to L 5. What follows refers to the motion about the 
point L 4 with the understanding that by changing the sign of Y0 the 
corresponding expressions for the point L 5 are obtained. 

The origin is transferred to L 4 by means of the transformation 

X = x + X 0, Y = y + Y0" Z = z. (3) 

After the transformation is made the right-hand side of the equ@tions 
are expanded as power series up to fourth order terms in x, y and z. 
Provided that the conditions 
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2 z 2 x 2 2 2 + I < 1 ,  t-x+3 + +y  + z l < l  

are satisfied, the equations of motion, about L4, take the form 

2 [  21 2 
x"  - 2 ( l + a ) y '  = ( i + o )  L~x + "~ ' -py  + - ~  Ox - 

3~ 33 2 
8 xY - 1-6 ~ + 

3 2 3 2 1 5 ~  2 15 ] 
+ ~ Oz - ~ XZ 8 OyZ - i--~ pz4 ~ 

y" + 2(l+a)X' ( i+0)21=':~" 9 2 
= ox+Ty - 7%-x 

t~ 

33 9 / ~  
- T 0xy - 16 + 

34~ 2 15V~ 2 33 Yz 2 15/3  ] 
+ ~ Z + T XZ - ~- 16 Z4 ' 

Z" -(i+0)2[ 3 3/~ yz _ 3 ] = z - [ pxz - 2 ~ z3 

where p = i-2~. The prime denotes differentiation with respect to the 
new independent variable of time T, introduced by the relation 

t : ( i + o )  = z .  (5) 

We seek periodic solutions of Equations (4) in the form of fourth 
order expansions in powers of a small parameter e: 

4 
x(:) = Z x (T) 

I) 
V=I 

4 ~) 
y(~) = Z y~(~) ~ , 

~=i 

(6) 

z ( z )  = 

4 
Z z v ( ' ~ )  E 

v=l  

We introduce the relation 

4 .%) 
o = 7 a e 

v=l 

(7) 

where the parameters a are to be determined so as to preclude secular 

terms. 
The series (6) and (7) are substituted into Equations (4) and the 

coefficients of the same powers of e are equated. The resulting equations 

are: 
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Coefficients of e: 

(D 2 - 7) x I 2D + T p Y l  = o,  

2D - T p X l  + (D2 - 7 ) [1  = o,  (8) 

d 
(D2+l)z I = O.  (The operator D stands for ~ = ()') 

The only solution of the system of the three Equations (8), which 
is periodic for every value of the mass parameter p, is 

Xl(~) = O, yI(T) = O, ZI(T ) = c sin ~, (9) 

where we have put, without loss of generality, Zl(0 ) = 0, zi(0 ) = c. 

2 
Coefficients of e : 

3 
(D 2 - 7) x 2 

I B~] ) B 2 2 
2D + -~-- p Y2 = 7 p c sin ~, 

I 3~-3 ] 9 3 / 7  2 2 
2D - T p x2 + (D2 - 7 ) Y2 = 4 c s i n  T, (10)  

(D2+I) z 2 = -2alc sin T. 

Equations (i0) are the result of the substitution of the solution (9) 
into the original equations of order e 2. These equations admit the 
periodic solution 

x2(r) = A cos 2~ + B sin 2T, 

y2(~) = F + A cos 2 �9 + E sin 2~, (ii) 

z2(~ ) = 0, 

with t = T, a I = 0, and 

A = 8c2 p B - 8/~ c2 
R ' R 

r = - -- c , 
6 

= V~ c2~19-3p2)'" E = - 8c2 P 

2R ' R ' 
R = 64+36p(i-~). 

(12) 
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3 
Coefficients of e : 

(D 2- )x  3 - 2D + T , P ~ y 3  = o, 

I 3~3 ~ 9 
2D - T P j X 3  + (D 2 + ~)  = 0, 

(D 2 + i) z3 = _2a2zi + 3P2 X2Zl + --~-3/~ g2Zl + ~3 z13 

31 

(13)  

After the substitution of the solution (9) and (ii) into the right- 
hand side of Equations (13), these equations admit the periodic solution 

where 

and 

x3(~ ) = 0, y3(T) = 0 

z3(Y ) = H sin T + e sin 3T 

t = (i+~2e2)~ 

(14)  

H = - 9p(I-N)C3R , 8 = 3N(I-p)C3R ' a2 = 3(I-p2)R (15) 

4 
Coefficients of e : 

(D 2 - ~) x 4 2D + -- p Y4 2a2Y2 + --~- p a2Y2 ~a2x2 + 

21 2 3"V~" 33 2 3p 3 2 
+ i-~ PX2 8 X2Y2 - ~ PY2 + 2 ZlZ3 - 8x2zi - 

15/~ 2 15 4 3 2 
8 PY2Zl - ~ PZl + ~ Pa2Zl" 

(16)  

( 3V'3" ) D 2 9 , 3V'3" 9 
2D - T p x4 + ( - 4")Y4 = -2a2x2 + - 2 -  p a2x2 + 2" a2Y2 - 

3/~ 2 33 9/~ 2 3/~ 
16 X2 - T PX2Y2 - 16 Y2 + 2 ZlZ3 + 

15~ + B 
8 

(D 2 + i) z 4 = -2a3z I. 

2 33 2 is~ 4 3~ 
X2Zl - T Y2Zl 16 Zl + T a2zl' 



32 C.G. ZAGOURAS 

With the substitution of xi, Yi' zi' i = i, 2, 3 into the right- 

hand side of (16), the above equations are written as: 

(D 2 - ~-) x 4 2D + - - ~  ~ Y4 f 4  ( �9 

2D - T 0 x 4 + (D 2 - ~') Y4 = g4  ('~ ' 

(D 2 + i) z 4 = - 2a3c sin T , 

f4(T) = A 1 + A 2 sin 2T + A 3 cos 2x + A 4 sin 4T + A 5 cos 4~, 

where 

( 1 7 )  

(is) 

g4(~) = B 1 + B 2 sin 2~ + B 3 cos 2T + B 4 sin 4~ + B 5 cos 4T, 

(The coefficients Ai, Bi, i=l .... , 5 are given in Appendix I). 

A periodic solution of Equations (17) is 

x4(~ ) = K + A sin 2~ + M cos 2~ + N sin 4~ + E cos 4~, 

y4(~) = H + P sin 2~ + Z cos 2~ + T sin 4~ + ~ cos 4~, (19) 

z4(~ ) = 0, 

9 
t = (i + ~2e-)x, a 3 = 0. 

(The coefficients of Equations (19) are given in Appendix II). 
Thus, a fourth-order approximation of periodic solutions in the 

vicinity of the triangular equilibrium points has been obtained: 

x(T) = x2(~)e2 + x4(~)e4 , 

y(x) = y2(x)e2 + y4(T)e 4 , (20) 

z(~) = Zl(T)r + z3(x)e3 , 

~2~2) T t = (i + 
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3. Numerical Results 

The periodic functions (20) satisfy the differential equations of motion 
to a satisfactory degree of accuracy for small values of e. Thus, the 
first small Dart of the family emanating from the triangular equilibrium 
point, L4, is obtained. To continue the family we constructed a predictor 
corrector algorithm based on the numerical integration of the equations 
of motion and equations of variation. (For details, see Zagouras, 1982.) 

Applying the above algorithm, we determined numerically this family 
of periodic solutions. We call this family L e4~ or LeS~" It starts with 

infinitesimal oscillations about the triangular equilibrium point L4, 
terminates with infinitesimal oscillations about the other triangular 
point L 5 and is being intersected at a point by the family L e emanating 

3v 
from the collinear equilibrium point L~ (Zagouras and Kazantzis, 1979). 

We present this family in tabular-and graphical forms. In Table I 
we give the initial conditions, the period, the stability parameters 
and the Jacobi constant of half the family L e If in the values of 

49" 
and S 0 a negative sign is added everywhere, while the values of Y0 

the other paramters in Table I are not changed, then we can easily 
obtain the other half of the L e Those periodic orbits included in 

4~" 
Table I for which p, q are real and I Pl < 2, l ql < 2, are stable in 
the linear sense (Liapunov stability). 

In Figure 1 the characteristic curve of the family L49,e is given 

in four orthogonal projections (a) on the (x0, y0) plane, (b) on the 

(x0, y0 ) plane, (c) on the (Y0" Y0 ) plane and (d) on the (Y0' z0 ) plane, 

where (x0, Y0' z0) and (x0, Y0" z0 ) are the vectors of initial position 

and velocity. In Figure ib are shown: the family m of planar periodic 
orbits around both primaries, the family L e of three-dimensional 

3~ 
periodic orbits originating at the collinear equilibrium point L 3 and 

the three-dimensional family L e In this diagram the two triangular 
49" 

points are represented by the same point. It is seen how the family 

Le49 starts from L4, intersects the family L e3~ and terminates, retreating 

the same curve (in the (x0, y0 ) projection), at the other triangular 
point L 5 . 

The family is stable from the origin, at L4, until the point B 

where x 0 reaches a local maximum. The stable segments of L e 4~ are marked 

on the diagrams by bold face lines. 
Representative orbits members of the family L e ' 49' are given in 

Figure 2. 
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Fig. la. The characteristic curves of the families L e 4~ and 

e Stable parts are indicated by thick lines: bL4~ �9 

(a) Projection in the (x0, y0 ) plane. 
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Fig. lb. The characteristic curves of the families L e and 4~ 
e Stable parts are indicated by thick lines: 

bL4v �9 

(b) Projection in the (x 0, y0 ) plane. 
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Fig. ic The characteristic curves of the families L e and 
4~ 

e Stable parts are indicated by thick lines: bL49 �9 

(c) Projection in the (Y0' Y0 ) plane. 
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Fig. id. The characteristic curves of the families L e and 
4~ 

e 
bL4 . Stable parts ~re indicated by thick lines: 

(d) Projection in the (Y0' z0 ) plane. 

3.1. ANew Fami~ofNonsymmetncPenodicSolutions 

Between the periodic solutions of the family L e which correspond to 
4v 

the 10th and llth entries of Table I, there exists a solution for whcich 
lql = 2. This means that the 6 • 6 monodromy matrix has two more 
eigenvalues equal to unity, that is, there is a second direction, 
except the tangent to the family, along which periodicity is preserved 
and hence a second family of periodic orbits intersects the first one 
at this point. Indeed, there exists such a family consisting of periodic 
orbits which are nonsymmetric w.r.t, any plane or axis. We continued 
numerically this family which we call bL4 .e The left subscript b 

e is a bifurcation family of L e e indicates that bL4v 4v" We fouDd that bL4~ 

evolves from orbits having the shade of a curved nonsymmetric eight to 
orbits having the shape of a loop about the small body ~. We stopped 
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Fig. 2. Typical orbits of the family L~. The number following 
each curve indicates the corresponding serial number in 
Table I. Projections in the (x, y) and (x, z) planes. 
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Fig. 3 Typical orbits of the family bL4 .e The number following 

each carve indicates the corresponding serial number in 
Table II. Projections in the (x, y) and (x, z) planes. 
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The numerical computation of this family at a point which is very close 
to a collision orbit since a regularization ~rogra!n " of the Restricted 
problem in three dimensions is not available for the moment. 

No stable orbits exist along the family. Numerical data for 
e is this family are included in Table II. In Figure 1 the family bL49 

presented in four orthogonal projections. In Figure 3 selected periodic 
solutions of this family are drawn in orthogonal projections. 

4. Comments 

(I) The 'out of plane' infinitesimal periodic oscillations about the 
triangular equilibrium points L 4 and L 5 are continued to a family of 
periodic orbits symmetrical w.r.t, the plane of motion of the two more 
massive bodies. This is a new kind of symmetry concerning the three- 
dimensional periodic solutions of the Restricted Problem. 

(2) There is a similarity in the evolution of the families of planar 
and three-dimensional periodic orhihs, emanating from the triangular 

s of short period planar periodic solu- equilibrium points. The family L 4 

tions emanating from L 4 terminates on the family b emanahing from the 

collinear point L 3. In three dimensions the family L e which emanates 
�9 49 

from L 4 terminates on the family L e emanating from L 3 
49 

e 2 L e of three dimensional symmetric periodic (3) The families LI~ , L29 , 39 

orbits originating at the collinear equilibrium points consist of 
unstable orbits (Zagouras and Kazantzis, 1979). The corresponding family 

L e originating at the triangular equilibrium points consists of a 
4~ 

stable and an unstable part. 
(4) Each one of the families of three dimensional periodic orbits 
bifurcated from the equilibrium points, collinear or triangular, has 
an intersection with another family of periodic orbits. 
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Appendix I 

21 p(A2+B 2') 3~/~ 33 33 3pcH 
(AA+BE) i-6 PF2 - 3--2 p (A2+E2) + 4 

15V~ pc2r _ 45 4 15 /~  3 / 3  3 2 
16 128 pc + ~ -  pc2A + -~--  p~2 r + ~ p~2 c , 

3/3 ~prE ~ Bc 2 A 2 = -4~2A - --~-- Br - _ 3 
15/3 2 +a B/~ 
16 pc E ~2 B +-~--p~2 E, 

A3 = 4(~2E - 8'" As - pFA - 4 4 16 pc2A 

15J3 pc2r + 15 4 3 3 / ~  3 2 
+ z--~- ~ . ~ c  + ~ 2  A + ~ - - p ~ 2  ~ -  ~ p ~ 2  c , 

= 21 31~ 31~ 33 3 15/3 A 4 ~-~ p AB - BA - AE - ~-~ pAE + c2B + ~ pc2E , 

= 21 A5 ~ P( A2.B2 ) 3/3 (AA-BE) 33 3Pc8 +3~ c2A 16 - ~ p(A2-E2) - 4 

15/3 15 PC 4 
+ ~ pc2A - 128 

33 91~r2 B1 = - "i~ p(AA+BE) - 9/~(A2+E2) (A2+B 2) + cH 
32 

33 2( ~ 15/3 c2A 45/3 
- i--~ c s ) 32 128 

4 9 3-,/3 2 
c + ~ ~2 r + 4 ~2 c 

33 9/3 33 
B 2 = 4~2A - -8-- pBF - --~-FE - T~ c2E + 

15/~ c2B + 3/3 9 
]6 --2--Pe2B+~2 E' 

BB 9/~ B~ J~ BB 2 zs/~ 
= p A r - T r A - T C H  + TCS-i~c ( ~ - r ) +  q-C-c2~ B 3 -4~2B-- ~- 

15/~ 4 B/~ 9 3/~ 2 
3---~ c + --~-- p(~2 A + ~ e2 A - -~- c~2c 

BB 9~ AE B~ 
B4 = - i'-6 p(BA+AE) 16 - i'---6- 

33 15/~ c2B, AB + ~c2E - 32 

33 
B5 = - i~ ~(AA-BE) 32 (A2-E2) - 32 (A2-B 2) ---~--c~ + ~c s 

zs/~ c2A is~ 4 
-- C �9 

32 128 
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Appendix II 

K - 
4 .3 / ]  9 

27p(l-p) (T PBI - 4 AI) ' 

4 
A - 48+27p(i-~) (- A2 - 4B3 + 4 PB2) ' 

4 
M - 48+27p(l-p) (_m A3 + 4B 2 + 4 PB3) ' 

4 
N : 

960+27p ( l-p ) 

73 
(-~ A 4 - 8B 5 + -- PB4) 

- 960+27z(l_p) (--~- A 5 + 8B 4 + -~- PB 5) 

H - 27p(~-Z) (- ~ B1 4 PAl) " 

4 19 3/] 
P = 48+27p(i-~) (- ~- B2 - 4A3 + 4 PA2)' ' 

7 = 4 19 3/] ~A 3 ) 
48+27p(l-p) (- ~-B3 + 4A2 + --4- 

4 
T = 960+27p(i-~) (- B4 - 8A5 + T PA4) ' 

4 67 3 / ~  
960+27~(1-r (- "4--B5 + 8A4 + ~ PA5 ) 

C.G. ZAGOURAS 
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