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Abstract. This paper contains an analysis of the attitude stability of a spinning axisymmetric satellite 
whose mass center moves in any known planar periodic orbit of the restricted three-body problem while 
the spin axis remains normal to the orbit plane. A procedure based on Floquet theory is developed for 
constructing attitude instability charts, and examples of these are presented for two stable periodic orbits 
of the Earth-Moon system - one direct and one retrograde. The physical significance of these instability 
predictions is then explored by means of numerical integration of the full nonlinear equations of motion. 
Finally, an analysis based on averaging is performed, leading to approximate instability charts and 
indicating a possible :onnection between certain orbital-attitude resonance conditions and unstable 
attitude motions. 

1. Introduct ion 

Analysis  of the at t i tude stability of orbit ing rigid bodies  has been a subject  of 

considerable  interest dur ing the past  two decades.  Mot iva ted  by the need  to design 

Ear th-orb i t ing  satellites of ever greater  variety, early investigators in this area  dealt  

primari ly with bodies  moving in circular or  elliptic orbits. O n e  such s tudy was 

pe r fo rmed  by D e B r a  and Delp  (1961), who obta ined  explicit a t t i tude stability 
criteria for  an unsymmet f i c  rigid body  moving in a circular orbi t  about  a particle. 

Later ,  T h o m s o n  (1962) and Kane  e ta l .  (1962) unde r took  an analysis of  the effects of  

spin rate on the at t i tude stability of an axisymmetr ic  satellite moving  in a circular 

orbi t  with the satellite 's spin axis normal  to the orbi t  plane. 

The  symmetr ic  satellite received fur ther  a t tent ion f rom A u e l m a n n  (1963) and 

Pringle (1964). A u e l m a n n  examined the stability of all of the equil ibrium or ien-  

tat ions of a 'nonspinning '  satellite, that  is, one  whose inertial angular  velocity vector  

has no c o m p o n e n t  parallel to the spin axis, whereas  Pringle studied the behavior  of  

satellites not  restr icted by this requirement .  

Kane  and Shippy (1963) employed  Floquet  theory  to test the stability of a spinning 

unsymmetr ic  satellite moving  in a circular orbi t  and having one  central  principal axis 

of  inertia normal  to the orbi t  plane. Kane  (1965) then applied the same procedure  to 

a stability analysis of Ear th -po in t ing  satellites, a subject  which was subsequent ly  
explored in considerable  detail with Hami l ton ian  methods  by Breakwell  and Pringle 

(1965). 

Likins (1965) de te rmined  the comple te  set of  cases where  the axis of  a spinning 

symmetr ic  satellite in a circular orbi t  maintains a fixed or ienta t ion with respect  to an 
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orbiting reference frame and then examined the stability Of each case. More recently, 
Hitzl (1972) investigated low-order resonant roll-yaw attitude instabilities for the 
case dealt with previously by Thomson (1962) and Kane et al. (1962). 

Effects of orbital eccentricity on attitude stability were considered by a number of 
authors for a spinning, symmetric body traveling in an elliptic orbit with its spin axis 
normal to the orbit plane. Markeev (1965) examined the problem briefly, while Kane 
and Barba (1966) generated instability charts numerically using Floquet theory. 
Later, Markeev (1967a, b) studied the motion of the satellite's spin axis near 
conditions of low-order orbital-attitude resonance. Wallace and Meirovitch (1967), 
in contrast, t reated the same problem with formal power series expansions valid for 
orbits of small eccentricity. Finally, in an investigation parallel to, but independent of 
Markeev (1967a), Hitzl (1970) analyzed this problem using the Hamiltonian 
methods developed by Breakwell and Pringle (1965). 

All of the preceding references deal with the attitude motions of bodies whose 
mass centers move in simple circular or elliptic orbits about a single primary. 
However,  many periodic orbits have been found for the restricted problem of three 
bodies during the past century. (For example, Szebehely (1967) lists more than one 
hundred references on this subject.) One is thus led to wonder  how the attitude 
stability of, say, an axisymmetric spinning body is affected when its mass center traces 
out a periodic orbit of this type while its spin axis remains normal to the orbit plane. 
Kane and Marsh (1971) have already analyzed the special case where the body's 
center of mass is fixed at any one of the five equilibrium points, of the restricted 
three-body problem. 

In the present work, a procedure based on Floquet theory is developed for 
studying the stability of this same simple spinning motion for a satellite whose mass 
center moves in any known periodic orbit of the restricted problem. For illustrative 
purposes, several attitude instability charts are produced using recently discovered 
periodic orbits which are stable in the orbit plane (Hitzl and H6non, 1977; Hitzl, 
1977). 

2. Analysis 

The system to be analyzed (see Figure 1) consists of two particles, P1 and Pa and an 
axisymmetric rigid body B that move in a Newtonian reference frame N in which the 
mass center C of P1 and P2 is fixed. P1 remains a constant distance I from P2 while the 
line X connecting the particles rotates in N at a constant angular rate i2. Lines Y and 
Z are perpendicular to X and pass through C, Y lying in the orbit plane of P1 and P2, 
and Z normal to this plane. The masses ml and m2 of Px and P2 are assumed to be so 
large in comparison with the mass m3 of B that P1 and Pz are not influenced by the 
gravitational forces exerted on them by B, and we confine attention to motions of B 
during which its mass center B* remains in the X - Y  plane. 

If R denotes the reference frame in which X and Y are fixed, then one can 
introduce a dextral set of mutually perpendicular unit vectors rl, r2, r3 fixed in R such 
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Fig. 1. Three-body system. 

that rl points f rom P~ to P2, r2 points in the direction of motion of P2 in N, and r3 is 
parallel to Z with r3 = rl x rE. It is also convenient to introduce a second, similar, set 
of unit vectors bx, bE, b3 parallel to principal axes of inertia of B for B*,  with b3 
parallel to the symmetry  axis, as well as unit vectors a~ and a2 pointing f rom B* to P~ 
and P2, respectively. Then one can express the position vector p of B* relative to C, 
the angular velocity NtoR of R in N, the angular velocity RaJB of B in R, and the 
v e l o c i t y  NvB* of B* in N, as 

p = xr l  + y r 2 ,  (1) 

N R 
r = f~r3, (2) 

R B 
tt~ = U l b l  + u 2 6 2  + u 3 b 3 ,  (3) 

N B* 
V : u 4 r  1 --1- u 5 r  2 . (4) 
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B* Rd NV =~-~ (p) +NtoR •  (5) 

R . . . . .  where d /d t  denotes differentiation with respect to the time t in R, then substitution 
from Equations (1), (2) into Equation (5) and comparison with Equation (4) yields 
the kinematical equations 

2 = U 4 -]- ~ ' ~ y ,  (6) 

3) = u5 - Y2x. (7) 

Next, the acceleration NaB* of B* in N, obtained from Equations (2), (4), and the 
relation 

Nan. R d (NvB*) jC NI.oR x Nv  B* = ~  (8) 

can be written 

NaB* = (/~4 - -  O u 5 ) r l  + (/~5 + ~'2u4)r2 (9) 

thus enabling one to construct the inertia force F* acting on B, given by 

F* = --m3Na B* . (10) 

In order to form the inertia torque T* acting on B, it is first necessary to form an 
expression for the angular acceleration NaB of B in N. This can be accomplished as 
follows: First note that 

B d NaB = - ~  (N~0B), (11) 

where NtOB is the angular velocity of B in N, given by 

NooB = Nf R ..[_ Ry.oB ( 1 2 )  

and Bd/d t  denotes differentiation with respect to t in B. Substitution from Equation 
(12) into Equation (11) then yields 

B d B 
NaB = __ (Nt0R) + _~_d_ (RojB). (13) 

dt at  

But, 

Bd(N R~ RdiN R, Ri.oBxNtoR 

and, from Equation (2), 

R d 
d~ (NWR) = 0.  

(14) 

(15) 
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Hence, Equations (131-(15) yield the relation 

/3 d NoIB -- R(. B = ~ (Rto/3) XXto R (16/ 

SO that, if one defines the direction cosines cii as 

cii & ri �9 bi, (i,/" = 1, 2, 3) (17) 

then substitution from Equations {2), (3) into Equation (16) gives 

N /3 = [/~1 q'- $ '2(U3C32-- U2C33)]bl  -}- [/~2 + f ' ~ (U lC33- -  u3c31)]b2-+- 

+[u3 +/2 (u2c31 - / 21 r  �9 (18 )  

In addition, substitution from Equations (2), (3) into Equation (12) produces 

N 13 
(..O = (Ul  2r- f~C31)b l  + (U2 q- f~C32)b2 + (U3 + f~C33)b3 (19) 

so that one can construct T* by substituting Equations (18), (19) into the definition 
(Kane, 1972, p. 116) 

T* a__ (I" NtO/3) X NtOB --I" Na/3, (20) 

where I, the inertia dyadic of B for B*, is given by 

I = J(blbl  + b262) +/b3b3 . (21) 

The resulting expression is 

T *  = {(/,/2 + f~c32) (u3  + -Qc33 ) ( J  - I) - [tJl + ~ (U3C32 --  u 2 c 3 3 ) ] J } b l  + 

+ { ( u 3  + f2c33)  (u  1 + f 2 c 3 1 ) ( I  - J )  - [/~2 + f2  (ULC33 - u3c31)]J}b2-  

- I / g 3  + f ~ ( u 2 c 3 1  - UlC32)]Ib3. (22) 

Generalized inertia forces F* associated with u~ ( i=  1 . . . . .  5) can then be 
constructed from F*, T* (see Equations (10), (22)), and partial velocities aNvB*/OUi 

and partial angular velocities Onto/3/aug (i = 1 . . . .  , 5 )  (see Equations (4), (19)), by 
means of the relation (Kane, 1972, pp. 44, 123) 

~NvB* oN(.~ B 
F* = - - .  F*+ .T* ,  ( i=  1 . . . . .  5) (23) 

Obl i Old i 

' which yields 

F *  = (u2 + g2c32)(u3 + S2c33)(J- I ) -  [t i l+/2(u3c32- UzC33)]J, 

F2* = (u3 + f 2 c 3 3 ) ( u  1 '}- ~ Q c 3 1 1 ( / -  J )  - [/)2 + f-~(UlC33 - u3c31t]J,  

F* = - [ / ~ 3  + ~'~(U2C31 --  UlC32)]I, (24) 

F* = - m 3 ( / g 4  - f2u5)  , 

F* = - m 3 ( u 5  + f~U4) �9 
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Turning next to the determination of generalized active forces, we first introduce 
the position vectors p~ and P2 of P~ and P2 relative to B*, given by 

P l  = - - Ix  + m 2 l / ( m l  + m 2 ) ] r l  --  y r 2  , ]  

P2 = - - Ix  -- m l l / ( m l  + m 2 ) ] r l - -  y r 2 .  
(25) 

The assumption then is made that the largest dimension of B is 'very small' compared 
with/, so that the gravitational force F and gravitational torque T exerted on B by P1 
and/~ may be written (Kane and Likins, 1975, pp. 14, 43) 

F = Gm3(mla l / IP l l  2 + m2a2/Ip212), (26) 

T = 3G[ml(aa x I .  al)/lpa[ 3 + m2(a2 • I" a2)/[p213]. (27) 

Again making use of partial velocities and partial angular velocities, and, replacing ai 
with pi/lpil (i--1, 2) (see Figure 1), one can obtain the generalized active forces 
F1 . . . . .  Fs from the relationship 

ONV B* ONa~ B 
F~ = - - .  F +  �9 T, (i = 1 . . . . .  5). (28) 

c~ui c~ui 

By imerting Equations (4), (19), (26), (27) into Equation (28) we get 

F1 = 3G(mlp~2p13/ lp~r  + rn2p22pe3/Ip215)(1- J )  , I 

I F2 = 3 G ( m l p l 3 p l l / ] P l [  5 + m2023021/ lP215)(J  - I ) ,  

F 3 = 0 ,  

F4 = - G { m l [ x  + m2l / (rnl  + m 2 ) ] / [ p l ]  3 1> 

/ + m2[x - m d / ( m l  + m2)]/lpgl3}, 

Fs = - G ( m ~ / ] p l l  3 + m2/Ip213)y, 

(29) 

where G is the universal gravitational constant, 

Pl] ~ -- [X -~- m 2 l / ( m l  + m2)]Cli - yc2/, 

P2] gx __ [X -- m l l , /  ( m t  + r n 2 ) ] c l / - -  y c 2 i ,  

(] = 1, 2, 3) (30) 

(j = 1, 2, 3) (31) 

and, from Equations (25), 

]Pl[ = [X + m 2 / / ( m l  + m 2 ) ]  2 + y 2 ,  (32) 

Ip21 = [ x -  mtl/(mx + m2)] 2+ y2 (33) 

Dynamical equations of motion for this system are constructed via Kane's 
formulation (Kane, 1972, p. 177), 

F* +F~ = 0, (i = 1 . . . . .  5) (34) 
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which, when employed in conjunction with Equations (24), (29), leads directly to 

(U2 "[- ~'~C32)(U3 "1- ~"~C33) ( J  - 1)  - [/~1 q'- ~ (u3c32 - u2c33)]J-lv 

+ 3G(mlp12px3/lpa] 5 + m2p2ap23/lp215)(l - J) = O, 

(U3 q- ~QC33)(U 1 "1- J'2c31)(1 -- J )  - [62 + ~'~(UlC33 - u3c31)]J+ 

+3 O(mlp13plx/lpil s + m2p23p21/lp21S)(J- I )  = O, 
(35) 

/83 "}- ~'~(U2C31 --/dlC32) = 0, 

m3(a4-  Ous) + G {ml[x + m2l/ (ml + m2)]/]PlI3 + 

+ m z [ X  -- m i l l ( m 1  + m2)]/]P2l 3} = 0 ,  

m3(u5 + S2u4) + a ( m l / ] P l l  3 + m2/Ip213)y = 0 .  

To complete the description of the motion of B, we let el ,  �9 �9 �9 E4 be a set of Euler 
parameters characterizing the orientation of B in R, these being governed by the 
kinematical equations (Kane and Likins, 1971, pp. 119-120)  

1 t 

E1 = 2(Ule4  -- U2E3 q- U3E2) , 

1 
E2 ~- ~(UlE3-[- U2E4-- U3E1) , 

1 (36)  
E3 = 2(--UlE2 "l- /g2E1 -[- /43E4) , 

1 
E4 ~-- --2(/ ' /1El -[- ///282 "1- /'/3E3) �9 

Expressed in terms of el  . . . . .  e 4 ,  the direction cosines c ,  (i,/" = 1, 2, 3) [see Equation 
(17)] become (Kane and Likins, 1971, p. 27) 

k = l  

3 
- Y~ ( i - j ) ( j - k ) ( k - i ) e k e 4 ,  ( i , j = 1 , 2 , 3 ) ,  (37) 

k -1  

where &i is the Kronecker delta. 
The equations of motion can be put into nondimensional form by using the relation 

(Szebehely, 1967, p. 8) G =g2213/(ml+rna)  and defining the quantities tx--a 
m2/(mlq-m2),  s  ;a--y/l, p,a=lpel/l ( i=  1, 2), ~eja=pJl ( i=  1, 2; j =  1, 2, 3), 
& a_ u~/12 (i = 1, 2, 3), & & u~/(f2l) (i = 4, 5), z a= f2t, and u _a 1/J. Substituting these 
expressions into Equations (6), (7), (30)-(33),  (35), (36) then gives 

/ ~  = (/~2C33 -- /'i3C32) Jr- (1 - u){(a2 + c32)(/,i3 q- c 3 3  ) -  

- - - 5  - - - 5  
-3[(1 - [d,)P12P13/Pl q- ['.s P2 ]} 

/82 = ( / ~ 3 C 3 1  - -  / , l l C 3 3 )  - -  (1 - / / ' ) { ( / 8 3  -[-  c 3 3 ) ( / ~ 1  - [ -  c 3 1 ) -  (38) 
- - - 5  - - - 5  

-3[(1 - Ix)P13Pla/pa q-/d'I023P21/P 2 ]} 
- t  
U 3 -.~ UlC32--U2C31 
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where 

- !  
U4  

- t  
/ '/5 

8~ 

8~ 

y' 

=/~5-  (1 - /z) ($  +/x)/,63 +/x(-Y + 1 -/x)//~23 , ]  

- - 3  - 3  - 
= - u 4 - [ ( 1 - t ~ ) / p l  + ~ /p2]y ,  

1 - 
= ~ ( U I 8 4  - -  /~283 + / ~ 3 8 2 )  , 

1 - 
: 2 ( U 1 8 3  + /~284 - -  / ~ 3 8 1 )  , 

1 - 
= ~ ( - - / . / 1 8 2  "~ /.428 1 + a 3 8 4 )  , 

1 - 
= - - 2 ( U 1 8 1  -{- /~282  "[- /A383)  , 

= /~4 -}- 37, 

(39) 

(40) 

(41) 

p~ = [(x + u)2 + 37211/2, 

/~2 = [ ( -2  + 1 - /~)2+ 37211/2, (42) 

Pli=--(Y-~-~)Cli--37C2i' ,} (i = 1,2, 3) 

P2i = ( - -2  + 1 -- IX )Cli -- 37C2i 

and the 'primes' denote differentiation with respect to the 'nondimensional time' ~-. 
Now, B can always perform a simple spinning motion in N during whic]a h3 

remains parallel to r3 and the angular velocity u~oB is given by 

Uo~ B = Fr3,  (43) 

where F is a constant. Thus, if we define a 'nondimensional spin rate s of B in N '  as 
s & F / O ,  and let o- stand for the corresponding 'nondimensional spin rate of B in R ', 
that is, 

o- & s - 1 (44) 

then Equations (37), (38), (40), (42) are satisfied exactly by the solution •1 = ~2 = 0, 
t73 = or, el = 82 = 0, 83 = sin (~rr/2), 84 = COS (err/2), regardless of the ~--history of t74, 
us, x, and 37. It is the stability of this spinning motion that will now be investigated. 

We begin by introducing perturbations ~:1 . . . . .  (7, such that t~l = SOl, u2 = so2, 
/83 = O" q- ~ 3 ,  E1 = ~ 4 ,  8 2  = ~5 ,  8 3  = sin (o-~-/2) + ~ 6 ,  8 4  = c o s  (o-r/2) + ~ 7 .  Substituting 
these expressions into Equations (37), (38), (40), (42) and neglecting terms of second 
or higher degree in ~1 . . . . .  ~7  produces the linearized variational system 

[ 7)] ~ - -  ~:2--2 ~4 COS ~ - +  ~:5 sin -- 

- ( o ' +  1)(1-  u)[sc2 + 2(~4 cos 2 +  ~:s sin 2~ ' ) ] -  

-3(1 - u ) [ h l r h  cos o'~- - h2 ( r  h sin o-~- + r/2 cos o-•-) + h3~2  sin o-T] = 0 ,  
(45) 
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0"T 0"7" 
'~ + [ 'a  - 2o~sC4 sin ~ - - ' s  Cos ~ - ) ]  + 

+(0"+ 1) (1-  v)[ ,1 + 2(sc4 sin 2 - , s  cos 2 r ) ]  + 

+3(1 - v)[hlrll sin 0"r + h2(na cos 0"r - r12 sin 0"r) - h3.n2 cos 0"r] = 0 ,  
(46) 

~ = 0 ,  (47) 

) - ~:z sin + o0.,~:5 (48) r = ~ ~l  cos  T T ' 

0.T 0.T ) 
~5 = �89 ~I sin ~- + ~2 cos ~--- 0.~4 , (49) 

& =�89 cos 2+0.~7 ) , (50) 

O'T 
~/ = --�89 sin T+0 .e6  ) , (51) 

h a [ 1 - t z  , / ~ _ 2  1 = ~ ----~---• , (52) 
', P l  p 2 /  

h2~  [ ~ s ~  (f +/x) +~2s (f +/* - 1)]~, (53) 

h3 a 1 _7__ss______~_~ (f +/z)2+ ~ (f + tz - 1) 2 , (54) 
p l  p2 

r/1 -a- 2(sc4 cos 2 -  sos sin ~ (55) 

72 & 2 ~4 sin ~ + ~:s cos ~-- . (56) 

Equations (47), (50), (51) involve only ~3, ~6, b and, hence, are independent  of 
Equations (45), (46), (48), (49). If ~:i(0) denotes the value of ~:i (i = 3, 6, 7) at r = 0, 
then Equations (47), (50), (51) may be integrated in literal form to give 

~:3 = s%(0), (57) 

O'T [ _ ~  0"T 
~6 = ~6(0) COS T +  + ~:7(0) sin -~-, (58) 

2 ( 0"r_ 1 ] _  ~rr 0"r 
~,7=7~3(0) cos 2 J &(0)sinT+~7(0)cos T ,  (59) 
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which reveals that ~3, ~6, ~7 are all periodic functions of r and thus cannot become 
unbounded as r ~ ~ .  The remaining equations, (45), (46), (48), (49), can be further 
simplified by noting that if 73 and 774 are defined as 

73 _a f l  cos o'r - f2 sin o r ,  (60) 

74 ~A ~1 sin O'T -[- ~2 COS OfT (61) 

then, from Equations (48), (49), (55), (56), we find that 

7~ = 73 (62) 

72  = 74  (63) 

and Equations (45), (46), (55), (56) give 

73 = - H 1 7 4  - H 2 7 1  + H3(hlrh  - h272), (64) 

7~ =/-/173 - H 2 7 2  + n3(h372 - h271), (65) 

where (see Equation (44)) 

/-/1 = su - 2 ,  (66) 

/-/2 = s~ - 1 , (67) 

/-/3 = 3(1 - ~). (68) 

Equations (62)-(65) are linear in the variables ~71 . . . . .  74, but contain coefficients 
hi, h2, h3 which are nonlinear functions of the variables ~, 37 (see Equations (52)- 
(54)) characterizing the position of B* in N. Hence, if the 'orbit equations',  
Equations (39), (41), are numerically integrated using any set of initial values for 
~, 37, z74, ~75 known to produce a periodic orbit, the resulting solution can be combined 
with Equations (62)-(65) to form a linearized variational system with periodic 
coefficients, and Floquet theory can then be used to study the attitude stability of B in 
N for the simple spin under consideration. The algorithm that follows may be 
employed for this purpose. 

3. Algorithm 

(1) Input values of/z,  s, ~,, where 0 < /z  ~< �89 -co  < s < oo, 0 ~< u ~< 2. 

(2) Input initial values s 37(0), s 37'(0) of s 37, f ' ,  37' which are known to 
produce a periodic orbit. Input the nondimensional period r* of the orbit. 

(3) Compute H1, /-/2, /-/3 from Equations (66)-(68). 
(4) Define W1 . . . . .  W20 as follows: 

W~ A{1,  i =  1,6, 11, 16 

O, i = 2  . . . . .  1 5 ; i # 6 , 1 1  

W17 ~ .~r - 37(0) , W18 ~ 37r -~- .~(0) 

w ~ :  ~(o),  W~o = ~(o).  
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(5) F o r m  X1, X2, if1, P2, g13, g23, g15, g25, hi,  h2, h3 as 

X 1 = W19-q.- [.L , 

X 2 =  X 1 -  I , 

ffl = ( X 2  q- W220 )1/2, 

p~ = (x~ + w~0)1/2, 

gx3 ~ (1 - ~ , ) / p ~ ,  g23 ~ ~ / ~ ,  

gi ,  ~= gia/P2~, gEs A g23/p 2 ' 

hi  = (gas + 2 g25) W2o ,  

h2 = ( g l 5 X l  + g2522) W20, 

h3 = g l s X ~  + g25X 2 �9 

(6) Per fo rm a numerica l  integrat ion f rom r = 0 to ~" = r* of the fol lowing twenty  
first-order differential equat ions:  

w ;  = w , + 2 ,  

W~+I = W i + 3 ,  

W~+2 = -1-11 Wi+3 - H 2 W i  + H3(hl  I V / -  h2W/+l) , 

W~+3 = H1 W/+2 - H2 Wi+l q- 

+ H3(h3 W i + l -  hz Wi) , 

W~7 = W18 - (g13Xl + g23X2) , 

W~8 = -- W17 --  (g13 + g23) W2o, 

W~9 = Wl7-t- W2o, 

W~o = W 1 8 -  Wx9. 

(i = 1, 5, 9, 13) 

(7) F o r m  the matrix D whose  e lements  Dii are given by D q =  

Wi+4j-4 (i, j = 1 . . . . .  4), where  W* denotes  the value of Wl (l = 1 . . . . .  16) evalu- 
a ted at z = ~-*. 

(8) C o m p u t e  the eigenvalues h i  . . . . .  h4 of  D. 

(9) C o m p u t e  the modulus  Qi of  hi (i = 1 . . . . .  4). 
(10) The  mot ion  of interest is unstable if Qi > 1 for any i (i = 1 . . . . .  4). 

(Whereas  an instability predict ion based on an analysis of l inearized equat ions  
holds for  the cor responding  nonl inear  equations,  the converse  is not  necessarily true. 

Tha t  is, a stability predict ion ob ta ined  f rom linearized equat ions  does  not  always 

apply to the original nonl inear  problem.  For  this reason,  since Equa t ions  (62)-(65) 

were  ob ta ined  by l inearization, stability cannot  be.concluded if Qi <~ 1 (i = 1 . . . . .  4).) 
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4. Application 

Before the algorithm was used to generate  any new results, it was subjected to 
extensive testing. First, instability predictions produced by the algorithm were 
checked agair~st those published previously by Kane et al. (1962), Markeev  (1967a), 
Wallace and Meirovitch (1967), and Hitzl (1970, 1972), for the case where the 
satellite moves  in a circular orbit  about  a single primary.  This was accomplished by 
setting/x = 0, 2(0) = 1, )7(0) = 2'(0) = )7'(0) = 0, ~-* = 2rr, and executing the algorithm 
repeatedly using each of the 81 pairs of values of p and s taken f rom the following 
sets: 

v = 0.00, 0.25, 0.50 . . . .  2 .00,  

s = -2 .0 ,  - 1 .5 ,  - 1 . 0  . . . .  2 .0 .  
Agreement  with the references cited was obtained in each instance. 

Next, the algorithm was applied to a stability analysis of a satellite whose mass 
center is located at the equilibrium point L4 of the restricted three-body problem by 
taking /~ =/z*=a 0.012 150 67 (corresponding to the E a r t h - M o o n  system (Hitzl, 
1977)), 2(0) = 0.5 - / z ,  )7(0) = 43-/2, 2'(0) = )7'(0) = 0, and z* = 2~'. Using the same set 
of values for ~ and s as in the first test, the algorithm produced results consistent with 
those of Kane and Marsh (1971). Moreover ,  in both tests, the values of 2, )7, 2' ,  )7' 
computed  at r = z* were found to agree to six significant figures with the input 
quantities 2(0), )7(0), 2'(0), )7'(0), respectively, thus verifying that  the orbits did, 
indeed, 'close'.  

After  these successful tests were completed,  instability charts were generated for 
two new cases - one where the mass center of the satellite travels in a stable direct 
periodic orbit  of family C12 (Hitzl and H6non,  1977) for the E a r t h - M o o n  system, 
and one where the mass center moves in a stable retrograde orbit  of the same family. 
These instability charts are shown in Figures 2 and 3 next to plots of the correspond- 
ing orbits. The algorithm was applied using each of the values of v and s that lie at an 
intersection of the grid lines shown, with points found to be unstable each being 
denoted by a cross. The orbits were produced using, for the direct orbit, the input 
quantities 

2 ( 0 ) =  1.020 757 821 745 871 3 ,  

)7(0) = ~ ' ( 0 )  = 0 . 0 ,  

)7'(0) = -1 .011  745 634 924 788 4 ,  

z* =5 .577  015 533 806 797 8 ,  

and, for the re t rograde orbit, 

2(0) = 1.0014,  

)7(0) = ~ ' ( o )  = o . o ,  

)7'(0) = - 2 . 2 8 7  843 199 244 397 6 ,  

1"* = 7.860 726 736 662 694 6 .  
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-X 

0 

Fig. 2. 

1.0 2.0 
V 

Attitude instability chart for a stable direct orbit of family C12. 

One of the more striking features of the charts is that the profusion of unstable 

points is much greater in Figure 3 than in Figure 2 although, for the values of s 

considered, all points in Figure 2 for v = 0.25 and v = 0.50 are unstable while, in 

Figure 3 for these values of p, there are five points that are not unstable. Because of 
the abundance of unstable points, the present charts resemble those obtained 

previously by Kane and Barba (1966) for a satellite moving in an elliptic orbit of high 

eccentricity about a single primary. However, one can see that much higher 

nondimensional spin rates must be employed to avoid unstable attitude motions in 
these orbits than are required in the two-body case. This situation arises from the fact 

that one revolution per minute corresponds approximately to s = 100 in the case of a 

satellite orbiting the Earth while, for a satellite moving in Ear th -Moon  orbits of the 

types considered in this paper, one revolution per minute is roughly equivalent to 
s = 40 000. Thus, for Ear th -Moon  orbits with [s[ ~< 30, one would expect unstable 

attitude motions to be prevalent. 
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Fig. 3. 

1.0 2.0 
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Attitude instability chart for a stable retrograde orbit of family C12. 

The instability charts of Figures 2 and 3 exhibit a rather complex structure, that is, 

it is not a simple matter to construct curves on either chart that separate regions 

composed only of unstable points from regions containing no unstable points. To 
explore this state of affairs further, we produced an enlargement of the chart in 

Figure 2 in the vicinity of the apparently isolated unstable point at v = 1.25, s = 20. In 
this enlargement, shown in Figure 4, the region closely surrounding g = 1.25, s = 20 

is seen to possess many unstable points which were not revealed in Figure 2. 

Furthermore, with the exception of what appears to be a solid region in its lower left 

corner, Figure 4 displays a structure having about the same degree of complexity as 

that found in Figure 2. Figure 5a shows a second enlargement of Figure 2 in the 
vicinity of v = 1.25, s = 20. At  this magnification, there is a clearly defined unstable 

band passing diagonally across the chart. 

One might wonder how a portion of Figure 4 which contains no unstable points 
would look under increased magnification. An enlargement of the region near 

v = 1.24, s = 20.5 is shown in Figure 5b. One can see that, far from being free of 
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Fig. 4. 

20-- 

19- 

1.20 

21-- 

i i U i  M_m!! 

! . 3 0  
V 

Enlargement of a portion of the instability chart shown in Figure 2 in the vicinity of v = 1.25, 
s =20. 

unstable points, the region possesses a diagonal band of instability as well as a 
concentration of unstable points in the upper right corner. 

Returning now to the apparently solid unstable region in the lower left corner of 

Figure 4, one finds from an enlargement of the vicinity of ~ = 1.21, s = 19.3 that the 
region actually is made up of two unstable bands separated by a band containing no 

unstable points. Finally, an enlargement of Figure 5 c near ~) -- 1.21, s = 19.35, shown 
in Figure 6, reveals that the basic structure of the instability chart shown in Figure 2 

becomes discernible at the level of magnification used in Figures 5a-c. That is, the 

complexity of the structure does not increase with further magnification. Thus we see 

that the chart in Figure 2 is composed in part of diagonal instability bands having 
various widths. 

Satellites having nondimensional spin rates in the range 0 <~ S ~< 0.1 are of practical 

interest since the rate s = ~ -- 0 . 0 8 3 3 . . .  corresponds approximately to one rotation 
per year, this being the rate at which a satellite travelling in an Ear th -Moon  orbit 

would have to rotate in order to keep its solar panels oriented toward the Sun. For the 

case s = ~ ,  the values of ~, giving rise to unstable spins lie in the  ranges 

0 ~ p ~ 0.9975,  1.01 ~ v ~< 1.02, 1.0375 ~< ~, ~< 2.0.  

Now, one can justifiably ask, "How does the actual perturbed attitude motion of a 

satellite whose stability is characterized by a cross on an instability chart differ from 

the perturbed motion of a satellite whose motion is not characterized by a cross?" To 
answer this question, the full nonlinear equations of motion, Equations (38)-(42), 

were solved numerically. First, attention was focused on the unstable point in Figure 
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Fig. 6. 
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A n  enlargement of  Figure 5c in the v ic in i ty  of  ~, = 1.21, s = 19.35. 

2 at v = 0.75, s = 7. For initial conditions, we used the values of Y(0), )7(0), Y'(0), y'(0) 
employed previously to construct Figure 2, chose 

ti3(0) = s - 1 = 6 ,  (see Equation (44)) 

~2(0)  = O,  

til(0) = ti3(0)/10 = 0.6,  (This value constitutes a perturbation of the 
simple spin under consideration.) 

z74(0) = s  (see Equations (41)) 

~5(0) -- 9'(0) +~(0) ,J 
8 1 ( 0 )  = E 2 ( 0  ) = 8 3 ( 0 )  = 0 ,  E4(0 ) = 1 ,  

and then solved Equations (38) - (42) to  produce a plot of the 'nutation angle' 0 
between the satellite's spin axis and the orbit normal as a function of the number of 
satellite orbits z/z*.  This angle was determined using the expression (see Figure 1 
and Equations (17), 07 ) )  

0 ~ COS -1  ( b  3 �9 r 3 )  = c o s  - 1  (C33) �9 (69) 

The resulting curve is displayed in Figure 7a, from which it can be seen that 0 attains 
peak values of more than 100 ~ in less than one orbit. Now one might conclude that 
this growth is the direct result of an excessively large initial perturbation. To see that 
this is not the case, one need only examine Figures 7b and 7c, which were produced 
with the same input values as was Figure 7a, except that for Figure 7b, til(0) = 0.12 
(one fifth of its original value), and for Figure 7c, a l (0 )=  0.06 (one tenth of its 
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Fig.  7b .  v = 0 . 7 5 ,  s = 7,  t i l (0)  = 0 .12 .  
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Fig. 7c. p = 0 . 7 5 ,  s = 7 ,  t~1(0)=0.06. 
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original value). In both of these cases, the oscillations in 0 build up to values 
exceeding those in Figure 7a, although they require somewhat longer to do so. 

Figures 7d, 7e, and 7f contain curves which were generated with exactly the same 
initial conditions as those used to produce Figures 7a, 7b, and 7c, respectively, except 
that the value of u was increased from 0.75 to 1.5, this new value corresponding to a 
point in the instability chart of Figure 2 that is not characterized by a cross. In this 
case, a decrease in the size of the initial perturbation is accompanied by a decrease in 
the peak values of 0, thus illustrating the fundamental difference between unstable 
and stable motions. 

5. Approximations 

In an attempt to shed further light on the results just presented for the direct orbit of 
family C12, an approximate analysis based on averaging is undertaken in this section. 

Floquet theory is required to generate the instability charts presented in Figures 
2-6 only because the periodic nature of the coefficients hi, h2, h3 in the variational 
equations (64) and (65) precludes one from using existing analytical techniques that 
have been developed for the stability analysis of linearized variational systems with 
constant coefficients. However, if hi is replaced with a corresponding constant value 
/~i formed by 'averaging' hi over one orbit according to the definition 

P 

/~i & (l/T*) J0 hi dr ,  (i = 1, 2, 3),  (70) 

then Equations (62)-(65) lend themselves readily to the analytical techniques just 
mentioned. In particular, approximate results found by averaging then can be 
compared with exact results obtained previously using Floquet theory. 

First, we note that if a periodic orbit is symmetric with respect to the X-axis, then 
and ~ are, respectively, even and odd functions of r. Hence, the right-hand side of 
Equation (53) is an odd function of r so that kTz is identically zero. Since all of the 
orbits considered in this paper satisfy this symmetry condition, we can write 
'averaged' versions of Equations (64) and (65) as 

17~ = -H1~74- H2~71 +Hf l~ l r t l ,  

n'4 = H i n 3 - H 2 n 2  + H 3 f ~ 3 n 2  . (71) 

Combining these equations with Equations (62) and (63) yields 

t! ! nl  + H l n 2  + ( H 2 - H 3 g l ) n ~  = O, 
(72) 

n~-Hln'~ + (H~-Hd ;3 )n=  = 0 ,  

which can be thought of as perturbation equations characterizing the spin axis 
attitude motion over many orbits. [So far, no physical significance has been attri- 
buted to the variables rtl . . . . .  r/4, but they can be given meaning as follows. The spin 
axis of the satellite B (see Figure 1) can be brought into a general orientation in 
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reference frame R by first aligning bl with ri (i = 1, 2, 3) and then subjecting B to two 
successive rotations in R characterized by 01bi and 02b2. The simple spin of interest 
then takes place in the reference state 01 = 02 = 0. The quantities r/1 and r/2 given in 
Equations (55) and (56) can be shown to represent,  respectively, perturbations 801 
and 602 relative to this state, while 7/3 and ~/4, defined in Equations (60) and (61), are 
precisely 60~ and 60~. Also, setting/z = 37 = 0 and s = 1 in Equations (52)-(54), we 
find that Equations (62)-(65) reduce to the perturbation equations obtained pre- 
viously for a symmetric satellite in a circular orbit (Hitzl, 1972).] 

Next, we assume that solutions of Equations (72) are of the form 

~7i = Ale  ~'t , (i = 1, 2), (73) 

where AI,  A2, and oJ are constants, which leads to the characteristic equation 

~o4 +/3~o2 + 3' = 0 (74) 

with 

fl = H [  + 2/-/2 -- H3(]~l  + ]~3), 

3' = H2 z - H2H3(]~l ~- 173) -]- H ~ h l / ~  �9 (75) 

Equation (74) must have at least one root with a positive real part if 

f l < 0  or 3 ,<0  or / 3 2 - 4 3 , < 0  (76) 

that is, unstable attitude motions are guaranteed whenever one of conditions (76) is 
satisfied. 

Now, once numerical values of ]~l  and/~3 have been computed for a particular 
orbit, approximate instability regions can be determined using inequalities (76). The 
values of/z ,  ~(0), 37'(0), and r* used in the preceding section lead to, for the direct 
orbit, 

/~l = 7.830 576 ,  /~3 = 9.419 220 

and, for the retrograde orbit ,  

/~1 = 4.520 160,  /~3 = 6.400 799 .  

Approximate instability charts obtained for these two orbits are shown in Figure 8, 
where the shaded regions correspond to instability. Comparison of these charts with 
their 'exact' counterparts in Figures 2 and 3 reveals that, with only a few exceptions, a 
(v, s) pair predicted to be unstable in Figure 8 is also found to be unstable using the 
Floquet method. However,  as might be expected, the charts in Figure 8 fail 
completely to delineate the complicated zones of instability found previously for 

v~>l.2. 
Next, an attempt was made to correlate the diagonal bands of instability shown in 

Figures 5a-c  with the occurrence of certain resonance regions in the u - s plane. For 
an orbit of small eccentricity about a single primary, 'external resonance'  is said 
to occur when either of the two frequencies of spin axis oscillations is nearly 
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Fig. 8. Approximate  attitude instability regions obtained by averaging hl (i = 1, 2, 3) over one orbit. 
(a) Direct orbit. (b) Retrograde orbit. 

commensura te  with the orbital rate. Analogously, here we say that external 
resonance occurs for the upper  unshaded regions of Figures 8a, b whenever  a pair of 

values of ~, and s lead to two positive real solutions to1 and ~o2 (to2 I> to1) of Equat ion 
(74) such that  

to1 = i n ~ 2  or t a 2 = j n / 2 ,  ( / '=  1, 2, 3 . . . .  ) (77) 

o r  

to1 +to2 = i n ,  ( j =  1 , 2 , 3  . . . .  ) ,  (78) 

where n, the 'mean  mot ion '  of the satellite, is given by 

n a= 2"a'/z* . (79) 

The conditions given by Equations (77) and (78) are respectively known as 'single 
resonance '  and 'combinat ion resonance '  (Markeev, 1967b) and correspond to two of 
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Fig. 9. 
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Resonance  lines obtained by averaging, superimposed on at t i tude instability chart of Figure 4. 

the simplest resonance conditions of the more general form nlWl +/'t2to2 = In where 
n x ,  n 2 ,  ]" are integers. Figure 9 shows approximate resonance lines superimposed on 

the instability chart given in Figure 4 for the direct orbit. Both types of resonances are 

seen to occur and, more importantly, certain of the resonance lines lie quite close to 
the unstable points plotted in Figures 5a-c. The specific figures and their cor- 

responding resonance bands are 

Figure 5a: a~2 = 21.5n,  

Figure 5b: w2 = 22n, ~ol +w2 = 23n ,  

Figure 5c: w2 = 20n, ~ol + w2 = 21n.  

These results suggest that a more d~tailed study of the relationship between 

orbital-attitude resonances and unstable attitude motions would be fruitful. As a first 

step, a Fourier analysis could'be performed for the functions hi, (i = 1, 2, 3), given by 
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Equations (52), (53), and (54). Because of the symmetrical nature of the periodic 
orbits under consideration, this would yield truncated expansions of the form 

hi = hi + ~ Aik cOS knr, (i = 1, 3), (80) 
k = l  

he=  ~ A2~ sin knr, (81) 
k = l  

defined in the interval -~-*/2~ < ~-<~-*/2. Substituting Equations (80), (81) into 
Equations (64), (65) would then lead to a wide variety of resonance conditions 
similar to those given by Equations (77), (78). Since one would expect higher 
frequencies to be attenuated in the functions hi, hE, h3 ,  the absolute values of the 
coefficients Aik (i = 1, 2, 3; k = 1 . . . . .  m) should become successively smaller as k 
becomes larger. Consequently, the effects of orbital-attitude resonances should 
diminish markedly with increasing k (Hitzl, 1970). However, such a detailed study of 
special resonances is outside the scope of the present paper. 

0 1 
v 

Fig. 10. 

Y 

I I I 
2 

Approximate  atti tude instability regions for a second retrograde orbit of family C12. 

X 
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Having seen that  useful informat ion can indeed be g leaned f rom this approximate  

analysis, we p roduced  instability charts for  several o ther  stable per iodic  orbits for the 

E a r t h - M o o n  system (/z = /z*)  belonging to the families Cij (i = 1, 2; f = 2, 4, 5) (see 

Hitzl and H6non ,  1977). 
Results  are presented  in Figure 10 for  one  of these - a second re t rograde  orbi t  of 

family C12. The  co / responding  initial condit ions are 

~(0) = 1 .2155 ,  

9(0) = ~'(0) = o . o ,  

9'(0) = - 1 . 4 6 0  949 160 477 6 5 5 8 ,  

while the nondimens iona l  per iod r*  is r* = 6 . 2 9 2  841 0 5 6 7 2 8  9988 and /~1= 

59.935 36, /~3 = 59.729 34. This orbit  is of practical interest since there is an 

extended range o~f initial posit ions near  s = 1.2155 yielding per iodic  orbits that  

are stable for  small per turba t ions  in the orbi t  plane (Hitzl, 1977). Moreover ,  the 
orbital mot ion  is only 'slightly uns table '  in the direct ion normal  to the plane. 

Consequent ly ,  this orbi t  is a potent ial  candidate  for future space missions where  

relatively close passages by both  the Ear th  and M o o n  are desired. Compar ing  Figure 

10 with Figure 8, however ,  we find in the fo rmer  a larger region of  a t t i t u d e  instability 

due  to the close passages by the Ear th .  

For  future  reference,  the Jacobi  constant  C, and the in-plane and ou t -of -p lane  
stability indices, k and ko,t are given in Table  I for the direct orbi t  and two re t rograde  

orbits discussed in this paper.  

TABLE I 

Orbital data 

Direct orbit First retrograde orbit Second retrograde orbit 

C 2.669 522 102 533 -0.488 771 845 180 1.059 149 117 831 

k 0.778 247 -0.354 715 0.763 224 

kv 4.056 609 21.026 708 1.020 489 
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