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Abstract. It is shown that the vertical critical orbits of the general planar problem of three bodies 
can be used as starting points for finding monoparametric families of three-dimensional periodic 
orbits. Several numerical examples are given. 

I. Introduction 

A systematic way of finding three-dimensional periodic orbits for the general three- 
body problem seems, as far as we know, to be absent. Henon (1973) proposed that the 
vertical critical orbits of the planar circular restricted three-body problem can be 
used as starting points for finding three-dimensional periodic orbits of the restricted 
problem. Based on this proposal, a number of three-dimensional families of periodic 
orbits which bifurcate from vertical critical orbits of the planar circular restricted 
problem have been computed (Zagouras, 1977; Zagouras and Markellos, 1977; 
Zagouras et al., 1978; Markellos, 1977; Markellos and Halioulias, 1977; Michalo- 
dimitrakis, 1978). Here we propose that an analogous result holds for the planar 
general problem. The vertical critical orbits of the planar general problem of three 
bodies can also be used as starting points for finding three-dimensional periodic orbits. 
Starting from the vertical critical orbits which are symmetric with respect to the x-axis 
we can find three-dimensional periodic orbits of the general problem which are 
symmetric with respect to the xz-plane or to the x-axis or both the xz-plane and 
x-axis of a suitably defined rotating frame of reference. This rotating frame reduces 
to the usual rotating frame of the restricted problem when the mass of the third body 
is equal to zero. Several numerical examples of such a continuation are given. 

A second systematic way of finding three-dimensional periodic orbits for the 
general three-body problem is by analytic continuation, with respect to the small 
mass m3, of the periodic orbits of the three-dimensional circular restricted problem. 
The possibility of such a continuation is a direct consequence of the work of Katopcrdis 

(1979). 

2. The Lagrangian Function in a Rotating Frame 

We consider three bodies P1, P2, P3 with masses ml, m2, ma respectively, moving in 
the space under their mutual gravitational attraction. We consider the system isolated 
and, without loss of generality, we take the center of mass O of the system at the 
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origin of an inertial reference system O X Y Z  whose Z-axis is parallel to the constant 
angular momentum vector L of the  system. 

We consider now a new, rotating, frame G x y z  suchthat :  
(a) Its origin coincides with the center of mass G of P~ and P2. 
(b) Its z-axis is always parallel to the inertial Z-axis. 

(c) Its xz-plane contains always P1 and P2. 
Let xi, y~, z~ (i = 1, 2, 3) be the Cartesian coordinates of the bodies with respect 

to the rotating frame and ~ the angle between the rotating and the inertial x-axes. 
Selecting the normalization conditions 

O 

8(0) = 1, ml + m 2  q - m a  = 1, K 2 =  1, (1) 

where K 2 is the gravitational constant, we express the Lagrangia n L =  T - V  of the 
system as a function of the variables xt, y~, z~, 0 and their derivatives and we find 

L = �89 + x2t~ 2) + �89 2 + .f2 + (x 2 + y2)/~2 + 2(xaya - yax3)t~] + 

m l m 2  
+ �89 + M22~) + 

r12  

q_ mlm3.  t m 2 m 3 ,  (2) 
r13 r23 

where 

M~ = ml(1 + p), M 2  = m3(1 - m3), p = m l / m 2 ,  (3) 
r2~ = (xi  - x j )  2 -]- (y~ - yj)2 _at. (z i __ Z j ) 2  

The corresponding formulas for the components of the angular momentum vector 

with respect to the rotating axes, are: 

- ( M 2 z a x a  + M x z l x a ) ~  = O, 

xx21) + M2(z3xs - ?zaxa) - M 2 z 3 Y 3 ~  = 0, 

yax3) + [M2(x 2 + y2)  + M i x 2 ] ~  __ const = Po. 

Lx  = M2(Y3Z.3 - zaY3) 

L r = M l ( z 1 2 1 -  

Lz = M2(x3Y3 - 

(4) 

(5) 

(6) 

From (4), (5), (6) we find 

M2 
z~ = - M l x ~  [(P3 + 6x3)z3  - y3z31, (7) 

M 2  ~ 
z 1  = - M ~ x ~  [Rz3 - (yaYc~ - x3x~t~) z3], (8) 

b = ,P~9 - M 2 ( x a Y 3  - y 3 x a )  
MIX:~ n t- M2(x~ a t- y ~ ) '  

(9) 

where 

R = y 3 x l ~  2 + (x321 
)/~ " . 

--  Xl)Ca "Jr x l y 3 .  

The relations (7) and (8) can be used as the equation of motion for zl, while relation 
(9) can be used to eliminate completely the angle ~ from the equations of motion. 
Thus, the relative motion of the bodies P~, P2, P3 described by the coordinates xi, 
Yi, zl (i = 1, 2, 3), can be studied independently of the motion of the system G x y z  

itself (Wintner, 1941). We select xl, zl, x3, Y3, z3, t~ as independent generalized 

coordinates. 
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3. S y m m e t r y  Propert ies  of  the M o t i o n  

With the aid of (7), (8), (9) one can verify that the Lagrangian (2) remains invariant 
under each of the following transformations: 

X l " " ~ X l ~  X 3 ~ X3~ 

X 1 ~ XI~ X3 > X3~ 

Y3 ~ - -Ya,  Z3 ~ Z3 

Y3 ~ - -Y3,  

X1 >--X1,  X3 > --X3, Y3 

X1--->--X1, X3 ~ - - x a ,  Y3 

Z 3 > ~ Z 3 

Z 3 > Z3~ 

Z 3 ~ - -  Z 3 

~Y3, 

~ Y 3 ~  

t > - t, u ~-+ - v  ~, (10) 

t > - t, ~ ~ - ~ ,  (11) 

t --~ - t, ~ > -t~, (12) 

t > - t, t~ ~- -v~. (13) 

Transformation (10) represents a reflection of the motion of P1, P2, P3 on the xz-plane, 

transformation (11) a reflection on the x-axis, transformation (12) a reflection on the 

yz-plane and transformation (13) a reflection on the y-axis. The invariance of the 

Lagrangian under each of the above transformations means that for a given motion 
x~(t), Xa(t), y3(t), za(t) relative to the rotating frame, the mirror motions with respect 
to the xz-plan~, the x-axis, the yz-plane and the y-axis respectively, are possible 

motions for P1, P2, Pa. 
From the above symmetries we conclude that: 
(a) If a motion has two perpendicular crossings with the xz-plane, then it Will be 

dosed because of the symmetry with respect to the xz-plane. We remind that P1 and 

P2 move always on the xz-plane. Consequently, the moment P3 crosses perpendicularly 
the xz-plane, the velocities of P1 and P2 must be zero. Such a closed motion is a 
periodic motion symmetric with respect to the xz-plane. Therefore, a three-dimensional 
periodic orbit which is symmetric with respect to the xz-plane has initial conditions 
of the form 

x~(0)  = X~o, 

~ ( o )  = 0, 

x~(0)  = X3o, 

~ ( o )  = 0, 

y3(0) = 0, 

?~(o) = P~o, 

z~(O) = Z~o 

e3(O) = o 

(14) 

and at the moment t = �9 of the next perpendicular crossing satisfies the (periodicity) 
conditions 

~x(~)  = 0,  ~3 (~ )  = 0,  Y3(~') = O, s = O. (15) 

The period of the orbit is equal to T = 2r. 
(b) If a motion has two perpendicular crossings with the x-axis, then it will be 

closed because of the symmetry with respect to ~he x-axis. Such a closed motion is a 
periodic orbit symmetric with respect to the x-axis. Therefore, a three-dimensional 
periodic orbit which is symmetric with respect to the x-axis has initial conditions of 
the form 

X l ( 0  ) "-- X l o ,  

~ ( 0 )  = 0, 

x~(0) = X~o, 

~3(0)  = 0, 

y3(0) = 0, 

~ ( 0 )  = P~o, 

z~(0) = 0 

k3(0) = ~3o 

(16) 

and at the moment t = r of the next perpendicular crossing satisfies the (periodicity) 

conditions 
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. ~ I ( T )  --- 0 ,  ~c~(~-) = 0,  y3( ' r )  = 0, z 3 ( - )  = 0. (17) 

The period of the orbit is equal to T = 2~-. 

(c) In an analogous way we can find periodic orbits symmetric with respect to the 

yz-plane or to the y-axis. 

By combining the symmetries (a) and (b) we find a periodic orbit which is symmetrfc 

both with respect to the xz-plane and the x-axis, and as a consequence with respect 

to the xy-plane. Therefore, a three-dimensional periodic orbit which is symmetric 

both with respect to the xz-plane and the x-axis has initial conditions of the form 

X l ( 0  ) --- Xlo ,  

)?~(0) = 0,  

x ~ ( 0 )  = Xzo, 

~ ( o )  = 0, 
y3(0) - O, 

)~(0)  = P~o, 

z3(0 )  = Z~o 

~ ( 0 )  = o 

(18) 

or of the form 

x , ( O )  = X~o, 

~1(o) = o, 
x~(O) = X3o, 

~ ( o )  = 0,  

Ya(0) = O, 
y~(o) = Y~o, 

z~(0) = o 

~3(0)  = ~3o 

(19) 

and at the moment t - r of the next perpendicular crossing satisfies the (periodicity) 

conditions 

�9 ~ I ( T )  --" 0 ,  ~ ( . )  = 0,  y3(0) = 0, z 3 ( - )  = 0 (20) 

or the (periodicity) conditions 

~,(~) = 0, 23(~) = 0, ya(z) = 0, ka(~') - O. (21) 

The period of the orbit is equal to T = 4~-. 
In an analogous way we can combine the symmetries with respect to the yz-plane 

and the y-axis. 

4. Continuation of Vertical Critical Planar Orbits to the Three-Dimensional Case 

We consider the case of quasi-planar motion. In this case we can set 

1 ,~ 1 [1 ( z , ,  zj)2 7 
r u ' -  Pu - 2p~j J '  

P~.i = (x ,  - xj) z + ( Y , -  yj)2.  

(22) 

With the approximation (22) the Lagrangian (2) of the three-dimensional motion can 

be written as 

L =  Lp + L,,, (23) 

where Lp depends on the plane variables xi, Yt, xi, yi, ~ only and Lv depends on all 
the variables, 

o �9 �9 

c~ = ~ M , ( ~  + x~a =) + ~ M 2 [ ~  + )~ + (x~ + y~)a ~ + 2a(x3s - y ~ 3 ) ] +  
m l m 2  m l m 3  m2m3 + + + , (24) 

1912 1013 1923 
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Lv = �89 2 + M22~) - 
mlm2 (zl - z2) z 

2 
mlm3 (Z1 - -  Z3) 2 mzm3 (z2 - z3) 2 

T 

2 P~3 2 P~z3 

With the aid of (7), (8), and (25) we find that tl=e differential equation for z3 is 

= Az3 + Bz3 

where 

2 ~ml  + m2 + mlM2(1 _ .  13) (j~3 +:A~3) 1 
A T - 1 rn3 0~3 033 MI )33 03 xl 

B=m'rn3Ma(-"~2M, 3 p1-~3) y3"x~l 

(25) 

(26) 

(27) 

(28) 

A periodic orbit (of period T) 

x l ( t  ) - -  X loo ( t ) ,  X3(/)  = X3oo(t) ,  

xl(t) = 2xoo(t), )r = X3oo(t), 
y3(t) = Y300(t) 
Ya(t) = ))300(t) 

(29) 

of the general planar problem can be considered as a particular solution of the 
differential equations of motion resulting from the Lagrangian (23), for z3(t) -= 0. 
Let ~:~(t), ~2(t), ~:3(t), ~(t), 7x(t), ~72(t), r/3(t), 7(t) be perturbations to the planar orbit 
(29). Then, the perturbed solution can be written as 

Xl  = X l o 0  21- ~1,  

x l  --  Xioo  + 71, 

X3---X300 "~ ~2, Y3 - - Y 3 0 0  q- ~3, Z3 = 

"X3 - -  X 3 0 0  ~- "~2, )23 - -  Y300  "~" 7 3 '  23 --" 37" 

Substituting (30) in the differential equations of motion and linearizing with respect to 
the perturbations we find a system of linear differential equations with periodic 
coefficients. The linearized Equation (26) has the form 

= A*(t)s + B*(t)7 (31) 

where A*(t) and B*(t) are given periodic functions of time, of period T, because they 
result from the substitution of the periodic functions (29) into the expressions (27) 
and (28). We observe that (31) involves only the vertical perturbations f, 7- The 
remaining differential equations involve only the perturbations ~:~, 7i (i = 1, 2, 3) in 
the plane and they are, in fact, the system of variational equations considered in the 
usual investigation of the stability in the plane. 

Suppose we give to the planar periodic orbit (30) a vertical initial perturbation such 
that the resulting vertical perturbation f(t), 7(t) is periodic in time with period T. 
Then we get, in the linear approximation, a quasi-planar three-dimensional periodic 
orbit. The time evolution of a vertical perturbation is governed by Equation (31) 
which can be written in the form 
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The solution of (32) is of the form 

(~(t) ,~ = r  (~(0)  ,~ 
v(t)/ \r/(0)J ' (33) 

and the fundamental matrix (/)(t) can be written in the form 

qs(t) = (~l(t) ~:2(t)~ 
~'(t) ~2(t)] , (34) 

where ~:l(t), r/l(t) and ~:2(t), r/2(t) are two independent solutions of (32). In order to 
have a periodic solution of (32), of period T', the following condition must hold 

(~(o),~ = ~ ( T ' )  [ ~(o),~ 
n(0)/  \,7(o)/" (35) 

It can be shown (Henon, 1973; Delibaltas, 1976), that for a planar periodic orbit 
(of the restricted or the general problem) which is symmetric with respect to the 
x-axis the vertical stability index ~v is,equal to 

~1(1-)'~2(T) "q- ~:2(T)~1(1-) 
0~ v --" ~ : I ( T ) , ~ 2 ( T ) _  ~72(,./.),~l(T ) , (36)  

where r is the moment of the second (besides the initial) perpendicular crossing of 
the planar orbit with the x-axis. If la~l  - 1, the periodic orbit is called 'vertical 
critical'. 

Let us first establish the connection between the vertical stability index and the 
vertical continuation of the plane periodic orbit. 

Suppose that the quasi-plane periodic orbit resulting from the vertical perturbation 
of the plane periodic orbit, is symmetric with respect to the xz-plane. We have shown 
(Section 3) that for such an orbit the following conditions must be satisfied 

z~(O) = ~(o) # o, 
~(~)  = ~(~) = o. 

~ ( o )  = ~(o) = 0, 

Substituting (37) into (33) we get 

(+(o+)) : +(+)(+(o~ 

~ ( ~ )  = ~(~) # o, 
(37) 

(38) 

From (38) and (34) we conclude that, //1(1") ---0. Then, (36) gives o~v = +1 which 
means that the plane orbit is a vertical critical orbit. 

Suppose now that the above quasi-planar periodic orbit is symmetric with respect 
to the x-axis. For such an orbit the following conditions must be satisfied (Section 3) 

f(0) = 0, +7(0) # 0, ~(1-) = 0, +7(1-) r 0. (39) 

+1 i.e. From (39), (33), and (34) we conclude that ~:2(1-) __ 0. Then, (36) gives ~v = 
the plane periodic orbit is a vertical critical orbit. 

Finally, suppose that the quasi-plane periodic orbit is symmetric both with respect 
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to the xz-plane and the x-axis. For  such an orbit the following conditions must  be 
satisfied (Section 3). 

~(o) # o, 

o r  

v(O) = O, ~(T) = O, V(r) # O, (40) 

s~(O) = O, v(O) # O, s~(r) # O, V(r) = O. (41) 

F rom (40), (33), (34) or (41.), (33), (34) we conclude that  ~ : l ( r )=  0 or ~ 2 ( r ) =  0, 

respectively. Then, (36) gives av = - 1  in both cases i.e. the planar periodic orbit is 

a vertical critical orbit. 
F rom the above we conclude that  a symmetric (with respect to the x-axis) planar 

periodic orbit which can be vertically continued to a symmetric quasi-planar periodic 

orbit, must  be a vertical critical orbit. 
Given a vertical critical planar  periodic orbit which is symmetric with respect to 

the x-axis, we distinguish the following cases: 
(1) av = + 1. Then (36) gives ~ I ( T )  " - -0  or ~:2(r) = 0. 

(a) Let r/l(r) = 0. If the initial perturbat ion is 'of  the form 

~(0) = e, v(O) = 0 (42) 

i.e. the perturbed orbit starts perpendicularly from the xz-plane, the per turbat ion 

at the next crossing (t = r) is 

( f(.) ~'(.) ~(~)) 
~(,)1 (0) 

o r  

~(T) = E~l( ' r )  ~i~ O, ~7(T) -- O. 

For the planar periodic component  of the motion we have 

~,(~) = o, & ( , )  = o, )~ (~)  # o, y~(~) = o. 

(43) 

(44) 

F rom (43) and (44) we conclude that  for t = r the perturbed orbit crosses the xz-plane 

perpendicularly. Therefore the perturbed orbit will be a periodic orbit, of period 

T' - 2r  -- T, symmetric with respect to the xz-plane. 
(b) Let ~Z2('7") = O. If  the initial per turbat ion is of the form 

sr = 0, ~(0) = e, (45) 

i.e. the perturbed orbit starts perpendicularly from the x-axis, the per turbat ion at 

the next crossing (t = r) is 

~(~)) = (~,(')(.) 

o r  

~(r) = O, ~(r) = e~2(r) # O. (46) 

F rom (46) and (44) we conclude that  for t = r the perturbed orbit crosses the x-axis 
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perpendicularly. Therefore the perturbed orbit will be a periodic orbit, of period 
T' = 2~- = T, symmetric with respect to the x-axis. 

(2) o~v = - I .  Then (36) gives ~:1(?) = 0 or r/2(?) - 0 .  

(a) Let ~:1(~.) = 0. If the initial perturbation is of the form (43) i.e. the perturbed 

orbit starts perpendicularly from the xz-plane, the perturbation at the next crossing 
(t = ~) is 

n(') l  
=(o 

n'(') 

o r  

~:(~-) = 0, r/(?) = e~?l(?) r 0. (47) 
I 

From (47) and (44) we conclude that for t = ~- the perturbed orbit crosses the x-axis 

perpendicularly. Therefore, the perturbed orbit will be a periodic orbit, of period 

T' -- 4~- - 2T, symmetric both with respect to the xz-plane and x-axis. 

(b) Let rjZ(~) = 0. If the initial perturbation is of the form (45) i.e., the perturbed 

orbit starts perpendicularly from the x-axis, the perturbation at the next crossing 

( t  = is  

= # o, v ( . )  = o. (48) 

From (48) and (44) we conclude that for t - ~- the perturbed orbit crosses xz-plane 

perpendicularly. Therefore, the perturbed orbit will be a periodic orbit of period 

T' = 4~ = 2T, symmetric both with respect to the xz-plane and x-axis. This case is 

equivalent to the case s = 0 with the initial (t = 0) and final (t - ~-) crossings 

exchanged. 

From the above we conclude that if we give suitable initial vertical perturbations 

to a vertical critical orbit of the planar general three-body problem, we can find, in 

the linear approximation, initial conditions for three-dimensional periodic orbits. 

The form of the initial conditions for these quasi-planar periodic orbits as well as their 

symmetry and period, depend on the symmetry and the stability character of the 

critical orbit. 

The above linear argument does not constitute a mathematical proof of the pos- 

sibility of the vertical continuation of the vertical critical orbits. It does not prove 

the existence of families of periodic orbits which bifurcate from the vertical critical 

orbits. However, it gives us a way to find~ by numerical integration of the full non- 

linear equations of motion, the above mentioned bifurcating families. Indeed, we give 

two such families, as a numerical evidence for the existence of the bifurcating families. 

5. Numerical Results 

In the following we shall describe two families of three-dimensional periodic orbits 

which are symmetric with respect to the x z  plane and bifurcate from vertical critical 

orbits which are symmetric with respect to the x axis. 
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Starting from the vertical critical orbits of the restricted (m3 = 0) problem (Henon, 

1973) we can find, by continuation with respect to m3, families of vertical critical 

orbits of the general (mz 4: 0) problem along which m3 varies. As an example, we 

computed a family c lv  of vertical critical orbits (with ml - m2) starting from the 

critical orbit e ly  (using Henon's notation) of the circular restricted problem with 

t~ = 0.5. The initial conditions v.s m3 diagrams for this family are shown in Figure 1, 

and the initial conditions of some of its orbits are given in the Table I. We note that 

this family extends up to m3 = 1. Figure 2 shows the form of its orbits. We observe 

that the periqdic orbits are approximately ellipses centered at the origin and having 

the y axis as major axis. The orbits of the family c l v are symmetric with respect to 

the x axis. 
We selected the vertical critical orbits No. 2 and No. 3 of the family c lv and 

computed the three-dimensional families C1 and C2 which bifurcate from the orbit 

No. 2 and the orbit No. 3, respectively. 
Family CI .  Its orbits are symmetric with respect to the xz  plane. Figures 3, 4, and 5 

show the projections of some orbits of this family on the xy,  xz ,  and yz  planes, 

respectively. We observe that the periodic orbits are approximately, plane ellipses 

centered at the origin and having the y axis as major axis, i.e. the plane of these 

ellipses is perpendicular to the xz  plane. As we proceed along the family, the inclina- 

tion of the orbits relative to the xy  plane, as well as their size, increases until it reaches 
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Fig. 1. The initial condit ions v.s pn3 diagram for the critical family cl v. 
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TABLE I 
Initial conditions for the vertical critical family cl v 

Xzo X3o Yao T/2 m3 

1 

2 
3 
4 
5 
6 
7 
8 
9 

10 
il  
12 

0.500000 -0 .023766 0.294193 1.114 0.000 
0.501132 -0 .023988 0.295006 1.118 0.001 
0.593566 -0 .048432 0.366764 1.444 0.100 
0.663664 -0 .077347 0.429751 1.712 0.200 
0.721985 -0 .110135 0.488911 1.947 0.300 
0.773790 -0.146785 0.546706 2.166 0.400 
0.822153 -0 .187433 0.604404 2.377 0.500 
0.869170 -0 .232222 0.662608 2.586 0.600 
0.916362 -0 .281145 0.721387 2.798 0.700 
0.964765 -0 .333882 0.780308 2.014 0.800 
1.014878 -0 .389700 0.838526 3.236 0.900 
1.067003 -0 .448897 0.897899 3.461 1.000 
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Fig. 2. Periodic orbits of the critical family cl c. Only the orbit of m3 is shown. (The numeral nea 
each orbit denotes the position of the orbit in the corresponding table of initial conditions.) 
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Fig. 3. Projections of some three-dimensional periodic orbits of the family C1 on the x y  plane. 
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TABLE II 
Initial  cond i t ions  for the three -d imens iona l  family  C1 

Xxo X3o Yso Zao T/2 

1 0.501132 --0.023994 0.295064 0.002000 1.118 
2 0.501068 --0.036418 0.410596 0.100000 1.145 
3 0.500908 --0.069965 0.621538 0.200000 1.219 

4 0.500715 -0.133997 0.847972 0.300000 1.319 
5 0.500502 -0.282009 1.176341 0.400000 1.400 
6 0.500378 -0.420000 1.442490 0.424391 1.390 
7 0.500252 --0.567938 1.725582 0.400000 1.345 

0.500097 --0.730920 2.040981 0.300000 1.283 
9 0.500015 --0.807280 2.190076 0.3~0000 1.253 

10 0.499970 --0.846535 2.267004 0.100000 1.238 
11 0.499956 --0.858828 2.291129 0.002000 1.233 
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Fig. 7. Projections of the characterist ic  curve o f  the family  C2 on the XloZao, X3oZ3o, P3oZ3o planes.  

a maximum. Then the inclination decreases (while the size still increases) until it 
reaches again tke zero value corresponding to a plane orbit. This plane orbit is a 
vertical critical orbit which encircles both primaries and belongs to the family of 
vertical critical orbits which originate from the vertical critical orbit m2v of the circular 
restricted problem with t~ = 0.5. In this way, starting from a small ellipse around the 
origin (on the xy plane) we arrived, via three-dimensional periodic orbits, to a big 

ellipse around both primaries (on the xy plane). 
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TABLE IIl 
Initial conditions for the three-dimensional family C2 

Xlo X3o Y3o ~3o T/2 

I 0.593565 --0.048436 0.366792 0.002000 1.444 
2 0.590617 --0.058393 0.429963 0.100000 1.459 
3 0.582512 --0.085092 0.574143 0.200000 1.502 
4 0.571139 --0.129306 0.750066 0.300000 1.567 
5 0.558265 --0.204806 0.963228 0.400000 1.630 
6 0.539941 -0.382990 1.369412 0.500000 1.611 
7 0.533273 -0.455000 1.532086 0.509008 1.566 
8 0.509410 -0.680000 2.082627 0.395855 1.338 
9 0.503410 -0.734097 2.230461 0.300000 1.263 

10 0.500176 -0.765985 2.321680 0.200000 1.213 
11 0.498638 -0.782855 2.371304 0.100000 1.185 
12 0.498185 -0.788177 2.387164 0.002000 1.176 

The characteristic curve of the family C1 is a closed curve in the four-dimensional 

space (Xlo, X3o, Y3o, Z3o) of initial conditions. Figure 6 shows the projections of the 
characteristic curve on the X3oZ3o and y3oz3o planes (along the family we have 
Xlo ~- 0.5). We observe that these projections are symmetric with respect to the Z3o 

axis. 

The initial conditions of some orbits of the family CI are given in Table II. 
Family C2. The behaviour of this family is qualitatively similar to that of C1. 

Figure 7 shows the projections of its characteristic curve on the X~oZ3o, X3oZ3o and 
)~3oZ3o planes and Table ~II gives the initial conditions of some of its orbits. 

The behaviour of the families C1 and C2 is qualitatively similar to that of the 

family c l v of the three-dimensional circular restricted problem which bifurcates from 

the plane vertical critical orbit c lv  (Michalodimitrakis, 1978). 
A more systematic numerical study of the three-dimensional general problem of 

three-bodies is now taking place at the University of Thessaloniki. 

Appendix: Transformation Equations from the Inertial to the Rotating 
Coordinate System 

Let xi, y~, zi and X~, Y~, Z~ (i = 1, 2, 3) be the Cartesian coordinates of the particles 

relative to the rotating and the inertial coordinate system respectively. Let also v a be 

t h e  angle between the  rotati~ng-andthe inertial x axes. 

The transformation equations from the inertial to the rotating coordinate system 

are: 

x, = (X,  - X~) cosv~ + (Y, - Y~) sins 

y, = -(X~ - Xa) sint~ + (Y~ - YG) cos~ 

z t = Z ~ -  Z~ 
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y ,  = 

- -'Yo)cost~ + (Y~ - I76)s inv  ~ + y ,~  

- X~)  sint~ + ( ~7 _ I)-o) cosv~ _ x ,~  

where 

m i X 1  q'- m2X2 ml  ]I1 + m2 Y2 
- , - 

m~ + m2 m~ + m2 

mlZl + m2Z2 
Z G  - -  

ml + m 2  

1 

t 92 "--" ( X 1  - -  X 2 )  2 -~ ( Y 1  - Y 2 )  2, COS~ = (X, - X z ) / p ,  sint~ = (Y~ - Y z ) / p .  

( the do t  over  a letter d e n o t e s  d i f ferent iat ion with respect  to t ime) .  
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