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Abstract. In two recent papers Ruelle gave a heuristic theory of phase 
transitions, using some techniques introduced by Israel. He proves a version of 
the Gibbs phase rule, assuming a differentiability condition for the pressure. 
Ruelle already pointed out that his condition cannot always hold. In this paper 
we prove that the interaction spaces which he considers are in general too large 
for his condition to hold. We also show that the version of the Gibbs phase rule 
which is a consequence of this condition does not hold in general. Moreover we 
give some constraints on the analyticity properties of the pressure. 

1. Introduction 

In two recent papers Ruelle El, 2] proposed a heuristic theory of phase transitions. 
He shows that every interaction which admits n phases lies in a manifold of 
codimension n -  1 of interactions which admit n or more phases, if the pressure is 
differentiable in a certain sense. 

In this paper we will study his differentiability condition. We will firstly show 
that on the usual space of interactions of which the pressure is defined, the 
condition never holds. In the second part of our paper we consider a smaller space 
of interactions where it is possible to discriminate between differentiability (and 
also analyticity) properties at low and high temperatures. We will prove that in a 
more phase region the pressure is not Fr6chet differentiable and therefore not 
analytic in the space of pair interactions (Theorem 1) (for 1-dimensional systems 
this result was proven by Ruetle [2]). Moreover we show that, in general, spaces of 
the type considered by RueUe are too large to obtain manifolds of more phases 
and that the version of the Gibbs phase rule as proposed in [2] cannot be true 
(Theorem 2). 

We follow Israel considering a quantum lattice (the same results hold for 
classical lattices). 

I. We consider a lattice ~ .  At each point x~2U, there is defined an identical 
m-dimensional Hilbert space ~ .  For  each finite subset X of ;g~ the Hilbert space 

~x  = @ ~x is defined. 
x~X 
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II. The quasilocal C*-algebra 9~ of observables is the C*-inductive limit of the 
local algebras ~i x of all bounded linear operators on ~x. The translations rx, x ~ ~v 
act as automorphisms on 9I. The translation invariant states are denoted I. 

III. An interaction 4~ is a function on the finite subsets X of /g '  to selfadjoint 
operators (b(X)~ ~ x with: 

a) ~(x + x )  = ~x(~(x)) 
b) H~II = ~ N(X) -1 H~(X)[] <oo  

0eX 

where N(X) is the number of points in X. With this norm the interactions form a 
separable Banach space ¢Y. The observable Ao is defined by 

A~ = E N(X) -1 ~(X)c ~ .  
0aX 

IV. The pressure P is a convex function on ~ with 

IP(~)-P(~) l<l l~-~l l  for all ~ , ~ c ~ .  

V. The mean entropy s is an affine upper semicontinuous (in the weak*- 
topology) function on I. 

VI. P(~) = sup {s(0)- ~(A~)} ; if P(~) = s(o) - 9(A~) then 9 is called an invariant 

equilibrium state for ~. 

VII. s(~) = inf {P(~) + ~(A~)}. There is a 1 - 1 correspondence between linear 

functionals on ~ tangent to P at ~, denoted ~, and invariant equilibrium states for 
• , denoted ~, given by 

~ ( ~ ) = - 0 ( A ~ )  for all ~ a ~ .  

VIII.  Every translation invariant state has a unique decomposition in ex- 
tremal invariant states. If 0 is an equilibrium state for ~b, the decomposition is in 
extremal invariant equilibrium states for ~. We denote the set of invariant 
equilibrium states for ~6 : I ,  and the set of extremal points of I~ : Ext(te). 

We will use the following two notions of differentiability on Banach space 
[4a, b] : 

a) Differentiability in the Sense of  Gdteaux 

A function f from a Banach space # to a Banach space ~ is differentiable in the 
sense of G~teaux at the point x0, if there exists a linear operator f '(xo)" #--+Y 
such that 

lim I I f (x°+)~h) - f (x° ) -2 f ' ( x° )h l l  = 0  for all h e # .  

b) Differentiability in the Sense of  Frdchet 

A function f from a Banach space ~ to a Banach space ~- is differentiable in the 
sense of Fr6chet at the point x0, if there exists a linear operator f'(Xo) : # ~ Y  such 
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that 

lim 
NhN~o 

[I f(Xo + h) - f (Xo) -  f'(Xo) h II 
Ilhtl 

--0. 

Clearly every Fr6chet differentiable function is also Gfiteaux differentiable. The 
converse is not true. A well-known example is the following [4b] : 

Consider the Banach space C([0, 1]) consisting of real continuous functions on 
[t3,1] with the supremum norm IIl]~. The map g--'llgll~ is convex and it is 
Gfiteaux differentiable at each function with a unique absolute maximum of [g[. If 
Yo is the unique maximum point of lgl, then the Ggtteaux derivative is the linear 
map from C([0, 1]) into IR given by : 

h~h(yo) if g(yo)>O 

o r  

h- , -h ( yo )  if g(y0)<O. 

The map g-~Hgl l  ® is nowhere FrOchet differentiable. 
If P is a convex function from a Banach space into IK then G~teaux 

differentiability is equivalent to having a unique tangent plane [4b]. 

2. Differcntiability on the Space 

We will first give two temmas, which will be used in the proof of Proposition (1). 
The first lemma is an immediate consequence of VII. 

Lemma 1. Let ~ke~ ,  for keN,  such that lira ~k=~.  Suppose ¢k~I~  and 0~I~ 
• k ~ o o  

satisfy W*21imok = O. Then 
k 

Proof. Using the variational principle VII we have 

s (o)=P(#) -e (A  o) 

and 

S(Ok) = n( ~k) -- Qk( A*~) • 

Hence 

IS(Ok)-- S(O)t < [n(#k)-- P(~)[ + tOk(A*~) -- ek(Ao)I + [Qk(ao) -- e(Ao)l 

< 2 .  N ¢'k - ¢ '  I[ + I(~ok - o)(A~,)I ,  
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Therefore 

lim S(Ok) = S(O). ~N 
k-~ co 

The second lemma follows from a result in [3]. 

Lemma 2. Let  ~ ~ such that n + 1 pure phases coexist for  q~ which will be denoted 
by ~o . . . . .  a n. So I~ is a n-dimensional simplex and Ext(I~) = {a o . . . . .  an}. Then there 
exists a sequence o f  interactions {~k} C ~ and a sequence o f  states {0k} C I such that 

(i) lim ~k= ~.  
k co 

(ii) 0k is an extremaI invariant equilibrium state ]br q~k" 
(iii) w*-lim0k=0 and 0~I~.  

k-~ co 

(iv) II 0k-- 0 Lt = 2 for  all k. 

Proof. It follows from Theorem 3 c in [3] that there exists a sequence { Te} C N with 
lira T~= ~ and for each ~P'~ there exist uncountably many ergodic equilibrium 

states. Because Ie has only n + 1 extremal points we can choose for each [ a state 
0)e Ext(I~,~), such that 0)~t~. Since the unit ball in 91" is w*-compact there exists a 
w*-convergent subsequence {Ok}, each 0k equilibrium state for some Te, which will 
be called ~k, such that w*-lim0k= 0. (Note that we can deal with a subsequence 

koco  

instead of a subnet since the unit ball of 9.1" is metrizable, because ~ itself is 
separable.) Let c~ k denote the tangent to P at ~k corresponding to the state 0k then : 

V T e  ~ : P(q~k + ~I0 > P(qSk) + % ( T ) .  (1) 

Since w*-lim0~= 0 we also have w*-limek= :e defines a linear functional on N. 
Taking the limit k ~  oe at both sides of (1) we obtain 

VTeN:  p(cp+ T)>=P(¢)+c~(T) 

hence c~ is a tangent t o P  at ¢, and therefore 0@I~. 
The only thing left to prove is (iv). It follows from [3] that IIOk-o~.tl = ll#k--#ll, 

where #k and /~ denote the measures on I with barycenter 0k respectively 0- 
Obviously #k is a 6-measure concentrated at the point Ok- The measure # is 
concentrated at the extremal points of I¢. Since Ok~I~ we conclude 

ll&-~ll =2  

and therefore 

ll0k-0tl =2 .  [] 

Remark. In most cases of physical interest the result follows more directly, without 
using Theorem 3 ~ in [3]. It has been proved by Griffiths and RueUe in [5a], for 
classical systems, that the pressure is strictly convex on the space of interactions 

with [l~[I = ~ t~(X)[ < m. In [5b] Roos proves the same result in the quantum 
0 s x  

case, for the space of interactions with tt~tl = Y~ 11 ~(X)ll e N(x) < oo. In both cases 
0sX 

we could simplify the proof of Lemma 2 by taking for q~k interactions at different 
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temperature. So ~a = fig" ell, with flk ~ 1, and the ~k'S extremal invariant equilibrium 
states for ~k- It follows then from the strict convexity of the pressure that ~a¢Ie. 

In the following proposition we will prove that the pressure is nowhere Fr6chet 
differentiable. 

Proposition 1. The pressure P is not Frdchet differentiable at any q~eN. 

Pro@ It is clear that we may restrict ourselves to q~eN for which the pressure has 
a unique tangent at ~, otherwise the pressure is not even Gfiteaux differentiable. 
So I~ consists of a single state say 6. The GgLteaux derivative at ~ is the linear map 
~ - Q ( A v ) .  We now use Lemma 2 (for the special case n=0)  to ensure the 
existence of sequences {~k} and {Qa} with the properties (i) to (iv). It follows from 
[3] that lie k -  e I[ = [[¢a-6 [[ = 2, where c~ k and c~ are the tangents to the pressure at 
~k resp. ~ corresponding to ~k and ¢. Hence: 

sup I(G-~o)(Av)I= sup I(aa-a)~gl=ltc~k-all=2. (2) 
W}I = i irell = i 

Choose 5 > 0 arbitrary. Using Lemma 1 and Lemma 2 (iii) we have 

Is(ek)- s(¢)l < ½ fi (3) 

and 

I(~o,- ~')(Ao)l < ½ ~ (4) 

if k is sufficiently large. Note that VI implies 

P( 4) + T) > s(G) - ~k( Ae  + ~,) 

and therefore 

e(  q) + ~) - P( 4)) + Q(A~,) >=S(Ok) -- S(~) + (6 -- G)( Ao) + (6 -- G)(A~') • (5) 

Using (3) and (4) we obtain: 

n(q5 + T) - n(~) + ~(A~) ~ (6 - ~k)(A~ ,) - ~. 

It follows from (2) that 

sup IP(~+ T ) - P ( ~ ) + ~ ( A ~ ) [  ~ 1. 

Since 5 was arbitrary, P cannot be Fr6chet differentiable at ~. [] 
Let us now clarify the relevance of the notion of Fr6chet differentiability for the 

Gibbs phase rule, by citing the following theorem of Ruelle [2]. Let No be a 
subspace of N with norm I1" ]10. 

Theorem. Let  ~ and let I~ be an n-dimensional simplex with Ext(Ie) 
={(r 0 . . . .  ,(rn}. Let  rio,...,fin denote the corresponding tangents. Suppose that 
f i l -  rio, fi2-rio,.--, f t , - f i e  are linearly independent and let ~ be the linear space: 
~Y= { ~ N o l f i o ( ~ )  . . . . .  fl,(~)}, f is of  codimension n. Assume that 

(R) : The restriction of  P to the linear mani]bld q~ + f is Fr~chet differentiable at (0. 
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Suppose furthermore that there is a n-dimensional subspace ~/ of ~o  such that 
Y ' O ~ = ~ o  and 2__>0 such that if ~ and x 6 Z  v there exists q~6~o  with: 

o(A~.Aaoz~)=o(A~) for all 0~I  

Ll~iLo_<-;t. II~II~. 
For every non-empty subset K = {io, ..., ik} of {0, 1 . . . . .  n}, let 

Y'k = { ~ e  ~'o 13~o( ' f )=. . .  = 3,~(7-')>=/~s(~), j~K}. 
There is a homeomorphism h of a neighbourhood (9 C ,~o of  • to a neighbourhood of 
q~ such that h is strictly differentiable at q~, with derivative the identity and for every 
~PEh((q~ + ~k)C~(_9) at least k+  1 phases coexist. 

On the basis of our proposition we will show that condition (R) does not hold if 
~o  = N- Because all tangents to P at q~ coincide on W, the restriction of P to the 
linear manifold ~ + 3~" is Ggteaux differentiable at ~b and the Gateaux derivative is 
the map ~- -+-  %(A~,). We will prove: 

3~>oV~> o sup IP(~b+ 7J)-P(cb)+ao(A~,)I >~ 

and therefore P restricted to ~ + 5( is not Fr6chet differentiable at ~. 
We use Lemma 2 again to guarantee the existence of sequences {~}  and {0~} 

with the properties (i) to (iv). As in the proposition we have: 

sup {(0g-0)(A~,)l= sup 1(c~-~)7~1=2 
{{~1{ = ~ {{,el} = 

where ~ and c~ are the tangents corresponding to 0~ resp. 0- 
Now let P~r and Pv denote the projection operators on Y' respectively q/ 

defined by the direct sum ~r@q~/=N. It follows fi'om the closed graph theorem [6] 
that both P~r and Pe  are bounded. Since c~-,e  pointwise on N and d i m ~  = n we 
have c¢~oPe-*c~oPe uniform on ~ .  Hence: 

2 =  sup [(c~-c0~]= sup [ ( ~ - c 0 o P ~ g + ( ~ - ~ ) o P ~ ' P [  
{1'~/~11 = 1 {{"/~{l = 1 

_< sup [(eg-e)oP~kg[+l 
ilv, ii = 

if k is sufficiently large. From this we easily deduce: 

1 
sup {(c~ - a) k~l > (6) 

~P~f,H~/t H = 1 = { IP~{!  " 

Fix 6 >0  arbitrary. Using (6), Lemma 1 and Lemma 2 we can choose k large 
enough to ensure that: 

,5 
sup t(0~- Q)(A.){ _>- . . . . . . .  (7) 

6 
Is(o~)- s(o){ < (a) 

= 4 { { P S t  

6 
{(Ok - Q) (A~) I  < (9) 

= 41FP~ri{ " 
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Note furthermore that ~ coincides with a o on observables of the form A, v with 
T e X .  Combining (5) with (7), (8), and (9) we obtain: 

IP((b + T)--  P(~) + (~o(A~)[ > 1 
sup 

~e~r,l[~/'l[ =~ [1Tll = 2 I [PJ  

which completes the proof. []  
Israel has shown in [3] that the space of interactions considered is, from the 

physical point of view, too large. It might be conjectured that Ruelle's theorem 
holds in smaller spaces. In the next sections we will show however that even in 
smaller spaces, e.g. the space of pair interactions the pressure is not Fr6chet 
differentiable in more phase regions. 

3. Fr6chet Differentiability in Smaller Spaces 

Firstly we prove a lemma which will be used in the proof of Theorem 1. 
Let ~ be a density matrix on a finite lattice A C 7/~, 0 the corresponding state. 

Let X C ~' ,  define the operator R x by 

R x A ~ = D  ~ 2 J 0z, r)AjD ~ 2 J(TLr) if j s X  and Aj~gAj 

R x A j = A  ~ if j ¢ X  and A ~ N j  

/ ' m -  1~ m--1 

where D~'--F-)(zc, r) is a unitary m x m matrix, such that R x gives rise to a rotation of 
magnitude n around some axis r at each point j~X. So R x rotates in particular the 
spins in the sublatticeX over an angle 7r. R x 1~ is the density matrix corresponding 
to ~oR x. 

Lemma 3. The entropy of  the state 0, Se(A), equals Seogx(A)(=Seogx~a(A)). 

Proof. R x 1 is unitarily implementable on ~(A) by the unitary matrix U, 

rnN(A) 

S~oRx(A)=-  Tr~(A)(RxlolnRxlO)  = - ~, (~i, R x l " o l n R x l ~ b i )  
i = 1  

mN(A) 

= -  ~ (U¢i ,~ lnoUOf)=-Trs(A)(OlnO)=SQ(A) .  
i = 1  

Without loss of generality we will further assume that Rxs~o = -S~o if 0~£  r. [] 

Definition 1. We will define a state to be a periodic equilibrium state for ~, if it 
appears in the decomposition at infinity [9] of some element of Ext(Io) and is 
invariant under some subgroup of the translations. We will denote the periodic 
equilibrium states for q): I~ and the extremal periodic equilibrium states for 
qs- Ext(I~). Clearly I0 C lg. 

If some periodic state 0 of period n I . . . . .  n v in the v directions is an equilibrium 
state for ~b then the states 0 o%j are equilibrium states for 4) for ij = 1 to nj, j = 1. . .  v. 

nl nv 

The state ~ = - -  ~ ... ~ Oozi~ ..... i ~ I ~ .  We will from now on only 
/'/1 . . . n v  i1=1  i v = l  

consider periodicity in one direction. 
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Definition 2. An interaction 7 ~ does not break the symmetry at ~ if ~(A~) has the 
same value for all ¢ e Ext(Io). Note that if ~ 1, Q2 e I,~ with period n and 7 j does not 
break the symmetry at (b then 

01(A~)=02(A~) where 01=I  ~ -  

We will now consider mappings R x where X is chosen such that R x is a 
symmetry of the system which leaves the interaction invariant. In many models 
(e.g. ferro- or antiferromagnetically ordered Ising or Heisenberg systems)X = 2g ~, in 
other models (e.g. the Baxter-Wu model) X will be a periodic sublattice of 2~ ~. We 
are interested in the case where this symmetry is broken. For simplicity we assume 
that Ext(Ie)(Ext(Ig)) consists of 2 states (possibly together with their translates). 
However the following theorems can be generalized to all cases where the 
subspace of pair interactions, which do not break the symmetry, has infinite 
dimension. 

Theorem 1. Let Ext(I~)(Ext(I~))= {~1, ~2} (and possibly their translates). Let R x 
be such that ~02 = ~ : oR x and ¢2(s~))~ ¢:(s~)). Then the pressure is not differentiable in 
the sense of Frdchet on the subspaee of pair interactions which do not break the 
symmetry at ~. 

Proof. Divide the lattice in layers L~, of thickness N in one direction 

(L~ = {x =(x:  ...x,)[xG7Z ~, Ni <=x 1 < N ( i +  1)}). 

Assume that ~o 1 and ~2 have period n in that direction. Then X has a period which 
is at most n, for if o:(Rxs~o)~:Ql(S~o) i.e. 0~X then 01(Rx%Jo),O:('c,Jo) i.e. 
Z,kO GX Vk. 

Define operators R N by 

So R N rotates part of the spins in half of the layers (ifX = 2g ~ all the spins in half of 
the layers are rotated). 

We define 0f,  by 
2 N °  

~rnl 2N, 2~nl i~1 ~2(RN"z~A))" ON,,(A) = ~=: o:(RN,'C~A) = 

Note that 0N, is translation invariant (by construction) and s(0N~)=s(ol) by 
Lemma 3 and the fact that s is affine [12, Chap. 7]. 

Let (P be a finite range interaction (so A~ is local), which does not break the 
symmetry at #. Then 

1 2N, _ 1)ziA~ ) _-< 2 range (70 
~__~ QI((RN, ]l 7tit (10) 10N~(A~')-- 01(A~')I ---- ~ Nn 

( l ~ o l ( , i A )  so O~eI.) 01(A)  n ~ 1 
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Only those contribute to the that have in two "ciA ~ s u m  support neighbouring 

layers, for N large enough, the other terms vanish because 1 ~ ~I(Rx%A~,) 
n i = l  

1 " 
= n,  2=i ~l(ziA~') (~/' does not break the symmetry at @)and hence, if ~ ~i+ jA~ has 

"= j = l  

support ill one layer ~ ~i(Rsi+jA~,)= ~ ~l(~i+jA~).) 
j = l  i = i  

So if N O is the linear subspace of 91 on which the restriction of both 01 and 02 
coincide 0N, converges to 0~ on the local elements of 92[ ° and hence on ~l ° 
pointwise if N tends to infinity. 

We now consider the product of two spins in the z direction at a distance which 
is equal to the thickness of the layers. 

Let 

lln]cc 01,2 (SZo"CNnSZO) = m l > 0 (11) 

where N runs through some subsequence of N (this follows from the weak cluster 
property which is consequence of extremal invariance [12, Chap. 6; 15]). 

Then 

lim ON.(S~OZNn~)=m2 <_ml (1--1) ~ml  (12) 

by noticing that inside a layer a fixed fraction of at least 1 of the spins is rotated. 
n 

Let T N be the Rx-invariant pair interaction between spins with distance N and 
z - 1 t ~z s z +s~z Ns~). Note that the norm of 71N does not strength 1 such that ~ , ~ -  y ~s o N 0 

depend on N. Now 

P(~b + ~ 7iN) -- P(~) + eO I(A~) >= S(ON) - O N ( A ~ )  - -  e O N ( A T ~  N)  - -  S(O 1) 

+ 01 (A~) + zO i (A~) .  (13) 

So if N=N~n sufficiently large, by (10), (12) and the fact that S(ON)= S(O~) we have 

P(dP + eT,O- P( q~) + eOl(Ae~ ) > 1 
= ~ ( m l - - m g .  

and therefore P is not FrSchet differentiable. [] 

Theorem 2. Let q~ be as in Theorem i. Then there exists for all e>0  and all N ~ N 
some ~ in the space of pair interactions such that II ~ ]] < e and in the decomposition at 
infinity of some element of Ext (I~ + ¢) there exist at least N more periodic states than 
in the decomposition of any element of Ext(I¢). 

Proof. We consider again 0N as in Theorem 1. It follows from a theorem of Israel 
[3] (see also Ruelle [1, 13]) that there exists a pair interaction ~ with ~+¢~I~+~ 
such that 

sup t~,+ ¢(Av) - 0u(A~v)l < ]/~ 
pair interaction 

W I I  = 1 

(14) 
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and 

II ~ II < ~ee (p(qs) - s(~N ) + ~N(A.)) < I /e  (15) 

for N = N l n  large enough. 

We now choose V~<½(ml-m2) .  
Note that ON has, by construction, a non trivial decomposition into extremal 

periodic states of period 2N and 

lim 1 _~1~ s Z T ;  ~z ~ z 2 k ~  i ON(o ~.:NSo)+(Ou(So)) • 

Since by (14) ~ + ~  and ON are almost equal on a suitable set of Ay,, we have also 

lim 1 k k-,oo ~ F, e.+¢(S~o~.2Ns~o)+(e.+¢(S~o)): 
i=1 

ife is small enough, and therefore ~e+~¢Ext(IgU). Hence ~e+¢ has a decomposition 
in at least 2N periodic states. 

[]  
Examples where our theorems hold are all even classical interactions with 

ferro- or antiferromagnetic ordering, all systems where the rotation symmetry of 
the interaction is broken and with an obvious modification, the Baxter-Wu model. 

4. Constraints on Analyticity Properties 

The following theorem of Hille and Phillips makes it possible to prove constraints 
on analyticity properties [7]. 

Theorem. I f  a function f is analytic in some open domain (which means analytic in 
all directions, locally bounded and Ggtteaux differentiable) then f is Fr~chet 
differentiable in that domain. Moreover the Taylor expansion has a finite con- 
vergence radius for all points in the domain. 

It follows directly from Theorem 1 that at all interactions which satisfy the 
conditions of Theorem 1 the pressure is not analytic in the space of pair 
interactions which do not break the symmetry. Let g be a positive function on the 
subsets X C;gv such that N 0 is the corresponding subspace of N determined by 

II ~1t0 = Y g(x)II ~(x)N < 
0~X 

then in view of Theorem 1, the pressure, in the case of more phases, can be analytic 
at best in a subspace Ng where g is a positive function which increases as the 
diameter of X, D(X), increases for N(X) = 2 (so the pair interactions in N o form - a 
smaller - subspace of the interactions considered in Theorem 1). In fact one has to 
impose a stronger condition on g to obtain analyticity as the following theorem 
shows. 
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Theorem 3. I f  for  N ( X ) - - 2  lira g(X) = 0 and ~ is as in Theorem t then the 
1/ x) 

pressure is not analytic in ~s.  

Proof. If P were analytic then 3Ca, C 2 >0  with 

C11L 7"tI~ (16) 
P ( e  + ~ ) - -  P(q)) + ~l(A,e) < C2(C z _ 2117'II0) 

for all 7" with I[ 7"11 g < ½ C2 (as follows from the uniform convergence of the Taylor 
expansion [7]). 

Without loss of generality we will assume that the elements of ~o do not break 
the symmetry at ~ (if they do the theorem is obvious). 

We will give the proof for 4~ finite range, the general case can be proven with a 
little more effort. We will use the notation of Theorem 1. Let 7"N be the pair 
interaction with strength 1 and range N. Define 9'(N) : = [I 7"NIl0" 

From (13) we have 

P0//+ e 7"N) - P(4~) + ~ 1 (A~e~) >_ (m 1 - m2)e - 2 range (cp) - N H~II. (17) 

We choose e N dependent on N 

411 ~It (range (~)) 
e n = (m 1 -- m2)N 

then for N large enough and C1, C2, ml, m 2 fixed 

C 2 
8Ng'(N) 2 ~ 4~-1 (ml --m2) (18) 

and with (17) and (18)" 

P(~ + eN 7"N)- P(~) + 81(A~Nw) >---- ½ (ml -- m2)eN 

C1 2 ,  2 C1 
> 2 ~ sic# (N) = 2 C2 f II Z~ 7"n Ilo 2. (19) 

Now (19) contradicts (16). [] 

On the other hand it is known that at low densities or high temperatures the 
pressure is analytic in a space ~g where g is only dependent on the number of 
points in X [8, 10, 14]. 

For classical systems Iagolnitzer and Souillard proved some theorems giving 
the equivalence between analyticity properties and strong cluster properties of the 
correlation functions [11]. 

They conjectured that it might be possible by analytic continuation to conserve 
the same analyticity and cluster properties in a pure phase below the critical 
temperature on a given side of the phase transition as in the low density region, 
provided one does not have symmetry breaking interactions. Our Theorem 3 
shows that this is not true but that there are less analyticity properties in the low 
temperature region than in the high temperature region. 
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