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Abstract. The quantum theory of both linear, and interacting fields on curved 
space-times is discussed. It is argued that generic curved space-time situations 
force the adoption of the algebraic approach to quantum field theory: and a 
suitable formalism is presented for handling an arbitrary quasi-free state in 
an arbitrary globally hyperbolic space-time. 

For the interacting case, these quasi-free states are taken as suitable starting 
points, in terms of which expectation values of field operator products may 
be calculated to arbitrary order in perturbation theory. The formal treatment 
of interacting fields in perturbation theory is reduced to a treatment of "free" 
quantum fields interacting with external sources. 

Central to the approach is the so-called two-current operator, which 
characterises the effect of external sources in terms of purely algebraic (i.e. 
representation free) properties of the source-free theory. 

The paper ends with a set of "Feynman rules" which seems particularly 
appropriate to curved space-times in that it takes care of those aspects of 
the problem which are specific to curved space-times (and independent of 
interaction). Heuristically, the scheme calculates "in-in" rather than "in-out" 
matrix elements. Renormalization problems are discussed but not treated. 

Introduction 

0.1. Motivation 

There has recently been some interest in the problem of self, or mutually interacting 
quantum fields in curved space-times (see [1] and references therein). The value 
of this work is two-fold. Firstly, it is important to know just how the many recent 
results on linear quantum fields (see Sect. 0.2.) in curved space-times get modified 
in the more realistic case of interaction. Secondly, Einstein's (and other) theories 
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of gravity themselves can be viewed as special cases of the problem (see Sect. 5). 
The purpose of this paper is to present a formal perturbation theory scheme 

which is especially tailored for curved space-times: There are several problems 
which are specific to curved space-times and which have nothing particularly to 
do with interaction. The study of linear fields has already taught us several lessons 
on how to tackle these problems, and we feel it is worth having a scheme which 
incorporates these lessons right from the start. 

Our work falls naturally into two parts. The first, and preliminary part summa- 
rizes precisely those lessons. Thus, the paper begins by giving a clear statement 
of what it means to quantize a linear field equation in a generic curved space-time. 
In other words, we begin our discussion of perturbation theory with a suitable 
treatment of the zero-order case! As example, we choose the covariant Klein- 
Gordon equation interacting with a fixed external scalar field V. 

(q "v + m 2 + = 0 (0.2) 

(all fields are taken to be C °~ as in [2], hereafter referred to as I) 
The second part presents a version of perturbation theory--based on an 

idea of P. Hajicek [3] - -which  really does seem to be particularly suited to curved 
space-times. And the paper culminates with a statement of the corresponding 
set of "Feynman rules" for calculating expectation values for 2~p 4 theory 

2 
(9uWu3~ + m z + V)~ = - ~. ~3 (0.2) 

0.2. Linear Fields (Sects. t and 2) 

The physics of linear quantum fields in curved space-times has been intensively 
studied over the last few years [4-8] and many fascinating results have been 
obtained (see e.g. [9]). 

At a more conceptual level, contemplation of the "generic curved space-time" 
has forced us to consider rather carefully certain aspects of quantum field theory 
which are often ignored in flat space-time. In particular, the existence of a unique 
vacuum state and its corresponding preferred Hilbert space representation are 
only meaningful concepts for stationary situations [2]. In general, our space-times 
are not s ta t ionary--or  they may even be stationary in two different senses [10]. 
To single out one state and call it a "vacuum" can then often lead to confusion. 

For these reasons, the algebraic approach to quantum field theory [-11-14] 
which is often something of a luxury for much of flat space-time physics, becomes 
rather more of a necessity in curved space-time contexts. Especially important 
to us is the very general algebraic concept of state which frees us from the need 
to represent our field operators on some fixed Hilbert space. Since, typically, 
interesting states in curved space-times do not lie as vector (or density matrix) 
states in the same representation (in the old language, one "vacuum" can consist 
of an infinite number of particles in the representation corresponding to another 
"vacuum") this freedom is essential for us to achieve the clarification of putting 
all states on an equal Jboting. 
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In Sects. 1 and 2, we explain the above ideas in more detail and develop a 
formalism which allows us to handle efficiently an "arbitrary" state in an "arbitary" 
space-time. More precisely, we discuss the set of quasi-free states on the set of 
globally hyperbolic space-times. Roughly speaking, global hyperbolicity is equiva- 
lent to the existence of a "choice of time". It is also the condition which guarantees 
that the Cauchy problem is well posed. These matters are discussed further in 
Sect. 1. The class of quasi-free states includes all the well-known "frequency- 
splitting" states and is discussed further in Sect. 2. 

Alternative discussions of quantum field theory in the generic case--not  
always in agreement with the present purely algebraic point of view--may be 
found in refs. [15-18]. 

0.3. Interacting Fields (Sects. 3 and 4) 

In Sects. 3 and 4 we give a heuristic treamlent of non-linear fields in curved space- 
times. Our approach is strongly influenced by recent work of P. Hajicek [3]. 
The original development of this theory [3] proceeded in two stages: first calcu- 
lating in flat space-time, and then using covariance arguments to guess the result 
for curved space-times. The present paper gives a short and self-contained repro- 
duction and generalization of Hajicek's principal results within a "manifestly 
generally covariant" framework. 

Very roughly speaking, the difference between Hajicek's approach and other 
recent work on interacting fields in curved space-times (Birrell and Taylor [1], 
see also [19]) is that it yields a perturbation theory tbr "in-in" rather than "in-out" 
matrix elements of products of fields. Such an "in-in" approach seems particularly 
appropriate in gravitational contexts where, typically, (collapsing stars, expanding 
universes etc.) we have only one asymptotic regime. 

The intention, then, is to provide (in a set of "Feynman rules") a formalism 
with the following kind of flexibility: 
(a) One is free to choose (from the set of all quasi-free states) an arbitrary state 

of the field in the asymptotic regime (i.e. at " -  oo" where gravitational fields 
are weak). 

(b) For each Such choice, the rules allow one to calculate the resulting expectation 
values of correlations between fields in interesting regions of the space-time 
(i.e. where gravitational fields are strong). 
Following Schwinger [20--21] the treatment of an interacting field theory 

such as (0.1) in perturbation theory can be reduced to a simpler problem involving 
classical external sources. This is explained in Sect. 4. In the case of equation (0.2), 
we need to study 

¢quvV 8,, + m 2 + V)q3 = J (0.3) 

where J is our external source. This equation is studied in Sect. 3, where we derive 
the so-called two-current operator (cf. Hajicek's "two-current functional" [3]). 
This two-current operator codes, in a convenient algebraic form information about 
correlations between fields in the presence of sources, given an arbitrary (algebraic) 
state of the field to the past of these sources. The derivation, definition, and inter- 
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pretation of this two-current operator makes essential use of practically all the 
concepts and formalism developed in Sects. 1 and 2. It is then but an easy step 
(in Sect. 4) to our promised Feynman rules. 

1. The Classical Theory 

Note: (1) As in the previous paper [2], we use Hawking and Ellis [22] (H.E.) 
especially chapters 1 and 6 as a reference throughout--except that we choose 
signature ( + - - - ) .  (2) All space-times are assumed to be space and time 
orientable. 

1.1. Global Hyperbolicity, Choices of  Time and Space-Time Splits 

Given a space-time (~[, g); we define a choice of  time to be a function 

t : Jd - - ,  ~ 

satisfying 
(1) t is C ~ with dl everywhere time-like. 
(2) (implied by (1) up to a sign) 1 increases along every future directed non- 

spacelike curve. 
(3) Along any inextendible non-spacelike curve, I takes all values in ( - 0% oc) 

The crucial result, due (with slightly different definitions) to Geroch [23] is 

Theorem: Given a space-time (vii, 9); equivalent are: 
(a) (J/[, 9) is globally hyperbolic 
(b) There exists a (global) Cauchy surface in (JCl, 9) 
(c) There exists a choice of time on (~ ,  g) 
A proof (using H.E. definitions) follows from H.E. Props 6.6.3 and 6.6.8 and 
appealing to the smoothing procedure of Seifert [24] mentioned in H.E. Prop 
6.6.8. 

Thanks to this theorem, we need not give the (rather technical) definition 
of global hyperbolicity. Rather, we may think equivalently, of space-times admitting 
a choice of time. 

When a choice of time exists, there will in general be many. Choosing one of 
them, the l = const, surfaces ~(t) are then smooth spacelike (global) Cauchy 
surfaces. In fact, (2) of "choice of time" above alone would imply they were (H.E.) 
partial Cauchy surfaces. (2) and (3) would imply they were (H.E.) global Cauchy 
surfaces. 

To complete a splitting of our space-time into space and time, we augment 
our "choice of time" with a choice of time-like vector field Y (such Ys will exist 
thanks to time-orientability), (2) of choice of time guarantees that the integral 
curves of such a Y cut every cg(t) exactly once. So we induce for each t a diffeo- 
morphism 

~(t) :~(t)  -* ~¢(0) 

defined by identifying points cut by the same integral curve of Y. We shall refer 
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to a choice of time together with such a Y as a space-time split. Given such a 
space-time split, we may then realize J / a s  a product manifold: 

~/~ --, ~ x (d(0) 

x ~ (~(x), b(d(x))x) (1.1) 

Now, at each point on dd we have the unit future-pointing normal N (in local 
coordinates = NiOi) and the induced Riemannian metric agij for the cd(t) which 
passes through that point. Choosing local coordinates x ~ on c#(0), we get from 
(1.1) above coordinates (t, x ~) on d/d. 

Defining the lapse and shift functions (c~, if) [25] (which we will think of as 
time-dependent functions on ~(0)) via: 

- -  = c~N + fii~? i (1.2) 
cqt 

then, we can show that the metric takes the form 

g upper 

1 fii 

(X 2 4 g i j  

4 g  Iower = 

\ 

_ / ~  _ 3g~j 

where 

4~ i j  ~ __ 3g i j  + a ~ 

(1.3.) 

Also, we have x / ~  = a x / ~ .  

1.2. Leray's Theorem 

For completeness, we give again the fundamental result on existence and unique- 
ness of solutions to our equation (0A) [26-28] 

Theorem. Let ( ~ ,  g) be an oriented globally hyperbolic space-time, c£ some Cauchy 
surface-unit future-pointing normal N(c£ . Then the Cauchy data 

• e C~(~) + C~(~) 

given by 

defines a unique solution in C~(dd) having compact support on ever), 
other Cauchy surface. Furthermore, the solution has support in J+ (supp 4~) U 
J- (supp 4~)--the union of the causal future and the causal past of the support of 
the Cauchy data. 

We can summarize the results of Leray's Theorem by referring to the class 
S of C ~ solutions with compact support on Cauchy surfaces. S is equipped with 
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a symplectic form a: 

o-(~o,, (02) = S ~01N(~)cP2dtl(~) (1.4) 
~f 

where ~ is some Cauchy surface, unit normal N(~), volume element dt/(~)= 

That this is independent of c~ follows easily from an application of Gauss' 
theorem to the conserved current 

+-+ 

Ju = ¢P,t~u(02 (1.5) 

1.3. Classical Green's Functions 

In practice, the solution to the Cauchy problem will be given in terms of classical 
Green's functions [26-29]. Define first the advanced and retarded Green's 
functions A a, A R satisfying 

L1Aa'R(x, x') = 6(x, x') 
AA(x,x') = 0 (x > x') 

Ag(x,x ') = 0  (x <x ' )  (1.6) 

where the subscript i on a differential operator indicates action on the ith variable, 
where > ( < ) signifies "to the future (past) of" and L~o = 0 is an abbreviation 
for (0.1). 
Note 

(1) AA(x, x') = AR(x ', x) (1.7) 

(2) In the sequel we shall use "3-smeared and 4-smeared distributions" e.g. 

A(x,f) = ~ A(x,y)f(y)dtl(cg), f 6C~(~) 

A(x,F) = S A(x, y)F(Y)w -/-/-/~.q d4x, F~C~(//g) 
,Al 

Now, we define the Jordan-Pauli Green's function 

A(x, x') = Aa(x, x') - AR(x, x') (1.8) 

which is easily seen to satisfy (0.2), to be antisymmetric, and to provide a solution 
to the Cauchy problem through: 

q)(x) = ~ { f (x')N(Cg)zA(x, x') - p(x')A(x, x') }dt/(cg) 
x'~C~ 

= - (N(Cg)lA)(f x) + A(p, x) (1.9) 

Note also for later use, the following important special case: 

A(F 1 , F 2) = ~ A(y, F~)N~g)I A(y, Fz)dq(Cg) (1.10) 
yeq¢ 

1.4. Classical Dynamics 

For each choice of Cauchy surface ~g, define the linear phase space (D(Cg), ae) 
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where 
~cg D(Cd) = C 0 ( ) +  C~(cd) (1.11) 

and a~ is the symplectic form 

a~(~bl, ~b2) = I ( f ,  P2 - P,f2)dtl(~) (1.12) 
~f 

We can then specify dynamics in a manner independent of any choice of 
coordinates (cf. Kuchai  [30] ) by giving for each pair (gl, <g2 of Cauchy surfaces 
the symplectic map 

g-(cg2, cgl):(D(Cg0, a) ~ (D(~2),a) (1.13) 

defined by associating Cauchy data corresponding to the same solution. 
To make contact with the traditional canonical formalism, we make a space- 

time split (Sect. 1.1.). The diffeomorphisms fi(t):~(t)~cg(0) then allow us to 
identify all the surfaces <g(t) with some initial surface <£(0) say. To identify the 
linear phase-spaces at each time, there are several possibilities: One convenient 
one is the map 

X(b(t) ) : (D(cg(O) ), a) ~ (D(Cg(t) ), a) 

, db(t)*t/(0) , 
(1.14) 

In other words, we choose Cauchy data (f(x), ~t(x)) at time t where 

, .  ( ( g(t) , 

" " =  k i w i )  P')"<' 
(Note: Our definition differs slightly from the usual one: our rc is a scalar, the 
usual one is the scalar density x/~(O)rO. 

We can now view dynamics as the two-parameter family of symplectics 
("Bogolubov transformations") 

J - ' ( t z ,  t l )  = X -  l (b(t2))  o ~--(c~(t2) , ~ ( t l ) )  o X(b ( t l )  ) (1.15) 

on the fixed phase-space D(Cg(0), a)-~-'(t2, t 0 may be represented in a straight- 
forward way as a "matrix-integral" operator using (1.9). Finally, the time evolution 
~--'(t 2, tl) is generated in the sense of classical mechanics by the Hamiltonian 

= h(O@) (1.16) 
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where 

_ fi% ~ ) 
h(t) = R 

io~ 
- -  a ( R)a, + ~R(m 2 - A(Cg) + V) - (Vy + fii~,) 

where fl(c$) is the Laplace-Beltrami operator for (cg, 3g), Vi denotes the covariant 
3 (t 1/2 

derivative for (cg, 3g) and R denotes (gffi~)) 

The Hamiltonian equations (first order form equations) can be written 

( d )  9..(t2, q )~b  = - h ( t ) ~  (1.17) 
1 ~2=~I 

2. Quantization 

2.1. Canonical Quantization 

To quantize our equation in an arbitrary curved background, it turns out that 
the traditional Hilbert space formulation is not adequate and a more general 
algebraic approach is more appropriate. To motivate the use of an algebraic 
approach, we begin in this section with a heuristic discussion of canonical quanti- 
zation. We shall have to take a similar canonical approach when we come to deal 
with external sources in Sect. 3. 

We begin by introducing "3-smeared" quantum fields on cg(0): 

R(~) = ~ (~(x)rc(x)- ¢c(x)f(x))dtl(~ ) = a(~, ~z,f, re); 
~(o) 

• = (frc)eD(C~(0)) (2.1) 

and impose the usual commutation relations 

[R((/)I)  , R(~}2) ~ ~-- i0"((/il, (i52) (2.2) 

Equivalently, writing W(~) = e iR(o), we have the Weyl relations 

W(q}I)W(gJ2I=exp( ia(q~l '~2))  W ( ~ t 2  + (/)2) (2.3) 

Proceeding heuristically, the quantized Hamiltonian must satisfy (using (1.16), 
(1.17), (2.1), (2.2)) 

[/4(t), R(~)] = - iR(h(t)~) (2.4) 

We now impose the Heisenberg-picture evolution 

R(cI9) ~ U(t2, tl)R(q~)U(tl , t2) (2.5) 

where the "unitary propagator" U(t 2 , q)  = Te-iS',~ h-(*)et 
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Using equations (1.17), (2.4); this reduces to 

R(q~) ~ R(J( t  2, tl)~ ) (2.6) 

and we similarly get 

W(~b) ~ W(Y-(t2, qFb) (2.7) 

We shall not give a rigorous mathematical meaning to equation (2.5). Recall 
that, in the stationary case, everything can be given mathematical meaning by 
a roundabout route (see I for details). One takes as starting points equations (2.3) 
and (2.6). First, one defines the algebra ~K(D(0), a) generated by the W's in (2.3) 
(see e.g. [31-32]). Then (2.6) defines a one-parameter group of automorphisms 
of this algebra generated by c~((t 2 - -  t t ), 0) where 

~(t 2, t~) : W(~) ~ W(~-(t 2 , t~)~) (2.8) 

One then seeks a vacuum state and its corresponding representation. In this 
representation, we can define the implementing unitary group U(t) and hence 
finally/l(t) such that U(t) = e-i&o 

In the non-stationary case, everything goes through up to equation (2.8). 
(Of course a is no longer a group.) But, there is no analogous procedure beyond 
that. In general, it is unfruitful and often impossible to find a representation for 
which a(t 2, t~) is implemented for all t. (Typically, one has creation of an infinite 
number of particles etc.). Thus one gives up hope of assigning any mathematical 
meaning to Te -~,~[t(t)dt. One similarly gives up hope of defining the /-t(t)'s as 
positive operators all on the same Hilbert space. 

Fortunately, the algebraic formalism [11-14] is just what.we need for making 
sense of the situation. We are still able to define the Weyl algebra and quantum 
automorphisms are still completely defined by (2.8) in terms of the classical 
time-evolution J - ( t 2 ,  t l ) .  Thanks to the general concept of state (see Sect. 2.3) 
available in the algebraic formalism, there is no need to choose a Hilbert space 
representation. The theory is completely fixed by equations (2.3) and (2.7). We 
shall continue our discussion of the algebraic formalism in Sect. 2.3. 

2.2. Covariant Formulations 

We can summarize the content of equations (2.3) and (2.7) by considering 
the Weyl algebra over the symplectic space of classical solutions (S,a) (see (1.4)) 
generated by the single equation 

W(q~1)W(cP2)=exp( ia(q~l'cPz)) W ( ~ ° 1 2  +~°2); q~eS (2.9) 

For, if we were to take this as starting point and then define W(~bt), ~bfi (D(Cg(0)), a) 
as W(X(6(t)-I)~) where • are Cauchy data of rp on off(t) (see (1.14)), we would 
recover (2.3) and (2.7). 

Finally, we define the covariant "4-smeared quantum field" 

W(F)= W(A(F,')); FeC~(~l) (2.10) 
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which, in virtue of (1.10) and (2.9), satisfies 

W(F1)W(F2)= exp( iA(F~'F2))W(F1 + F2) 

Formally, 

W(F) = exp i ~ ~(x)F(x)~- 4gd4x 

where ~(x) is the usual quantum field. 

(2.11) 

(2.12) 

2.3. Algebraic States 

The algebraic concept of state is more general than that of vector (or density 
matrix) state. A state co is defined as a positive linear functional on the Weyl 
algebra (equivalently the algebra generated by W(q~)'s, W(F)'s, or W(q~)'s). (Posifi- 
vity corresponds to o~(A*A) > 0 for A in the algebra.) Roughly speaking, specifying 
a state corresponds to directly specifying the expectation values of all possible 
products of fields (cf. Wightman functions [33]). In the canonical approach, 
(W(~)'s, ~bED(~(0))) we must, of course, also specify the time-evolution on states 
by the dual action of(2.8) 

¢ot2(W(~)) = ~o,l(W(J-(t 2, t,)~) (2.13) 

which we can think of as an algebraic version of the SchrOdinger picture. 
In usual flat space-time physics, it is usual to augment the strict C* algebra 

framework: On the one hand, there are certain "observables" e.g. Hamiltonian, 
generators of groups etc. that are not in the C* algebra. "Dually", it is often useful 
to choose a representation of our algebra, and focus attention on the set of vector 
states (or, more generally, density matrix states) arising in this representation. 
In fact one has the "vacuum representation" mentioned in Sect. 2.1. which is 
designed to represent the Hamiltonian as a positive operator. The advantage 
of this is that states can be labelled by their energy: There is something rather 
special about saying the vacuum state has zero-energy which one tends to miss 
if one just writes down the two-point correlation function 

~o(~o(x)q~0,)) = ~ d3--pP e - " ~ x ° - ~ ,  Po = (p2 + rn2)1/2 
P0 

etc. Certainly, to some-one brought up on flat space-time physics, this picture 
with Fock spaces, "particles", Hamiltonians etc. looks more famifiar. Nevertheless, 
we know that, strictly speaking, it is inessential: The specification of a state by 
giving all its n-point correlation functions contains all physical information. 

Now for quantum theory on globally stationary space-times, we can still 
mimic the vacuum construction referred to above (see I). 

However, in the generic case where we have no symmetries, the usefulness 
of global observables such as the Hamiltonian diminishes and- -as  we pointed 
out in Sect. 2.1--we cannot hope for the luxury of a preferred representation. For 
this reason, the "generic space-time" forces us to adopt the algebraic approach. 
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2.4. Quasi-Free States and Quantum Green's Functions 

There is a particular class of states which will play a special r61e in our treatment 
of perturbation theory, namely the quasi-free states ~ [34-36]. Let s be a positive 
bilinear form on the space of classical solutions S, satisfying 

I a(~#, ~b) 12 < 48(q9, ~p)s(~k, tit) (2.14) 

and let f be any linear functional on S. Then we define the quasi-free state c o  e via 

(condition (2.14) is needed to ensure the positivity of m~,e)" 
We shall often consider the case ~ = 0, whereupon we write % instead of 

O)s, 0 • 
This class of states is important for several reasons. Firstly, it is mathematically 

simple~ Secondly, it includes all the so-called "frequency-splitting vacuums" 
usually considered in work on quantum theory in curved space-times (see e.g. 
[4, 16]). It also includes the vacuum states co(W(~))-- e-fl K*tl 2/2 which we cons- 
tructed in I [2] for stationary space-times. Note  also that (considered as states 
on W(D(~(0),a)) this class is invariant under the time evolution "Bogolubov 
transformations" (2.13). 

We develop some formalism for handling these states efficiently: 
Given an s satisfying (2.14), we define the "positive and negative frequency Green's 
functions" corresponding to a choice of s 

i 
A~+(F, G) = s(A(', F), a(', G)) + ~A(F, G) 

i 
A ; (F, G) = s(a(',F), A(., G) ) - -~ A(F, G) 

We also define the "Veynman" and "AntiVeynman" Green's functions z 

(2.16) 

A~(F, G) = A + (F, G) - iAA(F, G) 

A~(F, G) = A+(F, G) + lAg(F, G) 

Finally, we define the "mean field value" 

( )AF) = t(a (F,.)) 

We have from (2.10), (2.12), (2.15), (2.16), (2.17), (2.18) 

= ( ) t(x)  

(2.17) 

(2.18) 

(2.19) 

1 One might wish to adjoin those states which arise as density-matrix states in the GNS representa- 
tion of each cos, ~ . To keep the exposition clear, we do not  refer to these in the main text. 

2 Note our definition of Feynman propagator which corresponds heuristically to ( i n  [ T(¢(x)~p(y)) [ in ) 
differs from another possible definition [1, 19] as ( o u t  I T(~p(x)ep(y)) I in ) 
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co£0(x)q,(y)) = ~+(x, y) 

cos(r(q~(x)~o(y))) -- a~(x, y) 
(o (3;(q~(x)rp(y))) = A~(x, y) (2.20) 

where T is the time-ordered product (later times to the left), 3; the anti-time- 
ordered product (later times to the right). 

When f is non-zero, (2.20) represents the "truncated expectation values" 

%(~o(x)~o(y)) = co~/(q~(x)~o(y)) - ( ~o )e(x) ( ~0 )e(Y) (2.21) 

3. External Sourees 

3.1. Canonical Quantization 

In this section, we follow closely the heuristic approach of Sect. 2.1. to quantize 
the equation 

~tv m 2 tq v.a~ + + v),k = a (0.3) 

where J e  C ~ ( ~ )  
After a space-time split, we write the classical canonical Hamiltonian 

H s(t ) = ½a( ~, h(t)~b) - a(¢,j) (3.1) 

corresponding to the first-order form 

d 
- - q J  = - h ( t ) ~  + j ( t )  (3.2) 
dt 

where h(t) is given by (1.i6) and 

0 

j ( t )  = / ~ g(t)'~ */2 . . .  
~ t ~ )  art) (3.3) 

We thus take the quantum Hamiltonian to be 

/~j(t) =/~o(t) - R(j) (3.4) 

Then, we have the following formula for the unitary propagator in the presence 
of the source 

i ~ ~Ij(t)d$ exp 2 AR(J" J')U(t2' q)W(J') (3.5) Te- 

where U(tz, q) is the unitary propagator in the absence of a source (2.5). W is 
the "4-smeared" Weyl operator ((2.10), (2.12)) for the source-free theory and J '  
is equal to the external source between the t = q ,  and t = t 2 surfaces and zero 
elsewhere. (see Fig. i). 

The form of our formula shows the independence from the particular space- 
time split chosen. To prove it, however, it is convenient to choose such a split, 
whereupon we make the following identifications in (3.5): 
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t = t 2 

t = t  1 

Fig. 1. 

t2 t' 

AR(J ', J') = - ~ o(5' (tl, t )j(t )dr, SoY-'(tl, t")j(t")dt") (3.6) 
tl t l  

\ t l  

which easily follow on using (1.9), (1.10), (2.10), (3.3). (3.5) now easily follows by 
differentiating both sides with respect to t and using the relations 

d w(~P(t))=[ia(~P(t~ '~(t)) ~-iR(~(t))]W(~P(t)) (3.8) 
dt 

(where iv(t) is an arbitrary function of t) and 

U(t2, tl)R(cb ) = R(J"(tz ,  tl)cb)U(t2, tl) (3.9) 

which follow from (2.3) and (2.5) respectively. 

3.2. The Two-Current Operator 

Now consider the operator 

(9( J2, J1) = (re-q'd~I~tt)at) - 1( r e  - i f ~ l ~  (t)dt) (3.10) 

which corresponds to propagating forwards in the presence of source J1, and 
then backwards in the presence of J2" (We now assume our t = tl and t = t 2 
surfaces are chosen to the past and future respectively of the supports o f J  t and Jz)- 

Using (3.5), (2.11) and (1.8), we easily obtain the formula for this two-current 
operator 

i R (9(Jz, J1) = exp ~ A (J1 - Jz,  J1 + J 2 ) W ( J 1  - J2) (3.11) 

In the next section, we shall use this operator as a basic tool for treating self- 
interacting fields in perturbation theory. We conclude this section with some 
comments about formula (3.11). 
1. Formula (3.5) and its derivation are both quite formal, and, as we discussed 
in Sect. 2.1., cannot, in general, be given a mathematical meaning. 
2. Formula (3.11), on the other hand, is quite remarkable: Although its derivation 
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was formal, it can immediately be given a mathematical meaning within the 
algebraic framework: It is an element of the Weyl algebra! 
3. The physical meaning of our two current operator can be understood as 
follows: Suppose for a moment that (3.5) does make sense--i.e, that we can 
choose some representation in which U(t2, tl) are implemented. Then, for any 
two vector states, ]a) ,  I b ) ,  we define the amplitude (cf. Hajicek [-3] ) 

( bla) J = (b I Te-'I::nJ")n'la ) 
We then have a formal identity 

(a[O(J2,  J1)la)-- ~ ( aln )J~(nla) J1 
n 

where n is a complete set of states. This latter is Hajicek's [-3] "two current func- 
tional": the amplitude for la> to persist after propagating forwards under J1 
and backwards under J2. 

We can now drop our assumption about representations and implementability 
and returning to the algebraic framework, define the co-persistence amplitude 
to be co((9(J2, J1)) where co is a state in the algebraic sense. 

In particular, for the quasi-free states cos/introduced in Sect. 2.4, we have 
(by (2.10), (2.12), (2.15), (2.16), (2.17), (2.18), (2.19), (2.20) 

cos,e((9(J2, J~)) = exp - ½{Ar(J~, J~) - 2A +(J2, J1) + Aa(J2, J2)} 

• exp i ( (o)t(J~ - J2) (3.12) 

4. Finally, note that formula (3.11) could have been der ived--up to a phase - -by  
purely algebraic methods: Consider the symplectic transformation on classical 
Cauchy data at time t, caused by propagating forwards under Ja and backwards 
under J2" It is easy to see that this induces an automorphism of the Weyl algebra 
over such Cauchy data which is implemented by W ( J ~ -  J2)" Note that this 
automorphism is inner: there is no need to choose a representation. Unfortunately, 
this approach is incapable of fixing the phase (which in this context is important 
as it can be a functional of J's) and it seems we are forced to derive (3.11) by the 
heuristic methods given above. 

4. Perturbation Theory for Interacting Fields 

4.1. Use of Sources 

In this section, we sketch how our two-current operator can be used to develop 
a "generally covariant perturbation theory" for interacting fields on fixed curved 
space-times. For sake of definiteness, we shall illustrate our method with .~(p4 
theory, i.e. the equation 

;~q3 3 
(gUVVu0 v + m 2 + V)~ -- 3! + J (4.1) 

Here, we have included also an external source JeC~(JC/). Now, for any such 
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equation (keep in mind (0.3) and (4.1)), the two current operator (9(J 2 , Jx) ((3.10) 
generalizes in an obvious way for (4.1)) is a convenient device for recording all 
the information of the source-flee theory. Indeed, knowledge of the expectation 
value of the two-current operator in a given state suffices to completely specify that 
state for the source-free theory. In fact, the natural object to calculate is 

(Yl- '-Y,, ;xi "" x, )~ = o.~(TxZy(q)(yl)... (#(y,n)~P(Xl)... (#(x,))) (4.2) 

where all q~(y)'s are to the left of all q~(x)'s; T x signifies re-ordering the q~(x)'s in 
order of increasing times: later times to the left; and £ r  does the same job for 
(p(y)'s but with later times to the right. 

We easily have (from (3.10)) 

6 6 6 6 
(Yi "-Ym ;xl "--x, ) = ( - i)n(i) m 

6j l(xa )''" 6 j l ( x ,  ) 6J2(Yl)'" tJz(y,,) 

"c°((9(J2' J1))bl =s2 = 0 (4.3) 

(where the limits t 1 and t 2 in 0 ( J  2, J1) are to the past and future of all (x~ ... x ,  
Yl ..- Ym). As illustration of this equation, the reader may easily check how equations 
(2.19), (2.20) follow from (4.3). 

4.2. Perturbation Theory 

Now, our goat is to have a perturbation theory for determining a state of the 
self-interacting theory. Given a quasi-free state co 3 on the free theory, we seek S,g 
a state co' ~,t on the interacting theory satisfying in some sense (for an arbitrary 
space-time split) 

lim {d,e(got(xl)... (p,(x,))- %,e(rpt(x0 ... rpt(x,))} = 0 (4.4) 
t - - * - -  O0 

where x~ ... x are points in (g(0). 
Of course, we cannot take equation (4.4) seriously (Haag's theorem and all 

that! [33]). It is to be understood in the spirit of perturbation theory where one 
still needs to renormalize later. The developments of this section are all entirely 
formal, culminating in a suitable set o f"Feynman rules". We stop short of discuss- 
ing any renormalization procedure. 

To understand the meaning of this formal equation, note first that if our 
system was stationary for the given coordinates, and co,~ time-translational 
invariant, we could dispense with the limit, and impose equality at each time. 
In general, cos/is to be interpreted as an "in" state, and is set equal to co, e at - oo 
(in the sense of the Schr6dinger picture). 

Following the strategy of Sect. 4.1., we clearly have that the expectation value 
of the two current operator for the interacting system is given in terms of the 

3 See footnote 1: It should be a straightforward matter to extend our perturbation theory to vector 
states in the GNS representation of any given r n  --just  as in usual perturbation theory it suffices to 
calculate vacuum expectation values to extract information about many particle states. 
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c%,~ expectation value for the free two-current operator by 

6 4 co((9~o4(J2,J1))=expi~x/-~d4x{(~---~2y-(-fj~l) }a~((9(Jz,J1)) (4.5) 

Formulae (4.2), (4.3), (4.4), (4.5), (3.12) lead to the following "Feynman rules" 
for (Yl .-- Ym, Xl ---x,)o,~,e (to understand how "Feynman rules" follow from 
(4.5), cf. [37, 38]). 

(For simplicity, we assume E- -0 ;  it is easy to generalize our rules for non 
zero E) 
1. draw all possible diagrams with endpoints xl ... x, ;Yl ... Y,, and with 4 lines 
meeting at each internal vertex. 
2. Label all internal vertices with all possible mixtures of x, x', x". ..... y, y', y".  ..... 
3. "Propagators" are assigned to internal lines as follows: 

Af(x, x') 
x x p 

A+(y,x) 
x y 

A~(y, y') 
y y '  

4. There is a factor of - i2 for each x vertex and a factor of + i2 for each y vertex. 
5. Integrate over internal vertices. 
6. Finally, divide by symmetry factors (where in recognizing a symmetry, lines 
corresponding to different propagators are regarded as different). 

5. Discussion 

Perhaps the most important goal for the study of interacting quantum fields 
on curved space-times is to improve our understanding of results on the renorma- 
lizability (or otherwise) of gravity itself. 

While the question of renormalizability of Einstein's theory (with matter) 
seems to have been settled without doubt  in the negative [39, 40], the specifically 
"curved background aspect" of the problem has never been seriously considered. 
An inspection of ' t  Hooft  and Veltman's article' [39] for example shows that, 
even though they adopt the so-called "background field" method, they are forced--  
at crucial points in the a rgument - - to  fall back on flat-space-time methods (e.g. 
dimensional regularization). These flat space-time methods combine with general 
covariance arguments to yield the desired results. But still, it would be more 
satisfactory to have a complete renormalization procedure (including regulari- 
zation procedure) which worked directly on an arbitrary curved space-time. 
Birrell and Taylor [1] and others have made some first steps in this direction, but, 
as they point out, a crucial step in their treatment also involves appeal to flat 
space-time renormalization theory combined with general covariance arguments. 
It thus seems fair to say that the extension of renormalization theory to apply 
to curved backgrounds (and, indeed other non-translationally invariant systems) 
remains an unsolved problem. From this point of view, our work constitutes 
only a small initial step. As we mentioned in Sect. 4, our Feynman rules are only 
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formal and the main problem, that of short-distance divergencies, will be the 
same as in any other scheme: We do not expect the renormalizability question 
for our "in-in" scheme to differ substantially from that of the "in-out" scheme 
[1] (see also [3] ). 

The purpose of our work was to provide a scheme in which this main problem 
remains the only problem: 

In other words, a scheme in which those problems which are common to all 
(including free) curved space-time QFT's are automatically taken care of. Thus 
we are left free to concentrate on the problems caused by interaction. 

In particular, our "in-in" scheme has the following advantages 4. 
(1) By focussing attention on expectation values (rather than matrix elements) 
it is closer to the interesting physical questions. 
(2) It needs only one asymptotic regime--as in many important gravitational 
contexts. 
(3) It fits in naturally with the algebraic approach--with the advantage of viewing 
all states on an equal footing and eliminating confusion about "vacuums". 
(4) It automatically takes care of the "infinite particle creation" divergencies 
which are the characteristic feature of curved space-time backgrounds. 
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