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Abstract. We formulate the equilibrium correlation functions for local observ- 
ables of an assembly of non-relativistic, neutral gravitating fermions in the 
limit where the number of particles becomes infinite, and in a scaling where the 
region f2, to which they are confined, remains fixed. We show that these 
correlation functions correspond, in the limit concerned, to states on the 
discrete tensor product @ d~, where the ~4~'s are copies of the gauge 

xC~'2 

invariant C*-algebra d of the CAR over LZ(R3). The equilibrium states 
themselves are then given by @ ~o(~), where (79Q is the Gibbs state on -~ for an 

x~I2 

infinitely extended ideal Fermi gas at density Q, and where fro is the normalised 
density function that minimises the Thomas-Fermi functional, obtained in [2], 
governing the equilibrium thermodynamics of the system. 

1. Introduction 

The thermodynamical limiting behaviour of a non-relativistic assembly of N 
neutral, gravitating fermions of one species, confined to a suitably regular bounded 
three-dimensional domain O, is not of the usual type, since the internal energy, 
temperature and volume of the system scale like N 7/3, N 4/3 and N-  1, respectively, 
as N ~ oo [ 1-4]. The system also possesses simple properties of scale invariance. In 
the particular scaling where the domain (2 and the temperature are fixed, while the 
particle mass and gravitational constant become proportional to N 2/3 and N-1, 
respectively, the specific free energy tends, as N ~  0% to the minimum value of the 
Thomas-Fermi functional ~b o on the bounded probability densities on f2, given by 
the formula 

• J y ~z 
(H) 

where ~Oo(~) is the equilibrium free energy density of an ideal Fermi gas at density Q 
and at the given temperature, 7. ~ According to a numerical solution of the resultant 
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Euler equation [3] for the case where f2 is spherical, the system undergoes a phase 
transition at a temperature T~ ; and for T:~ 7~, the probability density function that 
minimises ~b o is unique. Furthermore, it has been proved [5] that, whenever @o is 
minimised at a unique probability density Qo, then this latter function 
corresponds to the normalised equilibrium density distribution of the system in 
the limit N ~  co; while the normalised densities at different points of (2 become 
uncorrelated in this limit. 

The purpose of the present paper is to formulate the equilibrium states of the 
system, in the limit N-+ o% in the same scaling, described above, that was used in 
[4, 5]. Here, a state means a positive normalised linear functional on the 
C*-algebra of observables of the system, but in view of the chosen scaling, this 
algebra is not taken to be that of the CAR over L2(f2) : for as the system consists of 
an infinity of particles confined to a bounded region, its states could not possibly 
be locally normal ones on the latter algebra [6]. In fact, we arrive at our 
specifications of both the algebra of observables and the equilibrium states of the 
infinite assembly of particles in through a treatment of the limiting form, as N ~  o% 
of the equilibrium correlation functions of localised observables of the finite 
system, that are transformed to a scaling where the length unit is the mean 
interparticle spacing (cf. Sect. 2). In this way we arrive at the conclusion that the 
algebra of observables of the infinite system is given by the discrete tensor product 

@ d x, where the ~¢~'s are copies of the gauge-invariant C*-algebra, d ,  of the 
X~f2 

CAR over L2(R3); and that, if the Thomas-Fermi functional ~0 for the given 
temperature is minimised at the unique probability density ~o, then the equilib- 
rium state of the system is @ CSoo(X), where (5o is the Gibbs state on corresponding 

to particle number density ~. 
The essential reason why the rescated observables correspond to ~ d x may 

be understood as follows. In the limit N ~ o v ,  every neighbourhood of a point 
x(ef2) contains an infinity of particles. Thus, when the observables are suitably 
rescaled, it transpires that, in this limit, each point x(~ f2) carriers with it an algebra 
of observables dx, given by a copy of d ,  while the algebra of observables for the 

entire system is @ dx. The elements x of ~2, as they appear in this discrete tensor 

product, should be regarded as points in the hydrodynamical sense, since the 
algebra of observables attached to each of them corresponds to that of an infinite 
system. Accordingly, we term this tensor product the hydro-local algebra of 
observables, and denote it by ~ ( , . ~ ) .  Further, the equilibrium state @ ~o(X) 

X~c2 

that we obtain is characterised by the properties that, at each point x(~2) it 
reduces to that of an ideal Fermi gas at the prevailing local density ~o(x); and that 
it carries no correlations between the observables attached to different points of f2. 

The subject-matter of the article will be organised as follows. In Sect. 2, we 
shall formulate the model and state the main theorem, yielding the limiting form as 
N ~  co of the equilibrium correlation functions for the re-scaled local observables 

and the resultant state c5:= @ &o0(x) on ~5~(~ ) .  We shall then discuss this 

theorem and argue that c5 is an equilibrium state, not only because it represents a 
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limiting form of Gibbs states, but also by virtue of its various stability properties: 
we shall also make a conjecture concerning the possibility that the system supports 
states that are metastable in the sense of being locally but not globally stable (cf. 
[7]). In Sect. 3, we shall re-cast the theorem of Sect. 2 as consequences of other 
theorems concerned with the linear response of the gravitational system to certain 
perturbations. In Sect. 4, we shall make a number of constructions, leading to 
further auxilliary theorems and temmas. In Sects. 5 and 6, we shall present the 
proofs of the theorems and lemmas, respectively, of the two previous Sections. The 
two Appendices are devoted to self-contained treatments of non-gravitational 
systems, that yield results required for the proofs of Sects. 4 and 5. Thus, in 
Appendix 1, we shall employ a generalisation of the methods of [8] to establish 
that the properties of a certain class of models are given by a mean field theory ; 
and, in Appendix 2, we shall introduce a construction, analogous to that used in 
[9] for the treatment of equilibrium states of lattice systems, to prove the 
uniqueness of the translationally invariant equilibrium state of an ideal Fermi gas. 

Finally, we remark that the whole theory presented here may easily be 
generalised, as in [4], to two-component systems of charged gravitational 
particles, for which the total charge is zero. 

2. The Model 

Let ~N be an assembly of N non-relativistic gravitational fermions of one species, 
enclosed in a bounded, connected, three-dimensional region O. In the scaling 
where ~2 is fixed and the particle mass and gravitational constant are proportional to 
X 2/3 and N-1,  respectively, the Hamiltonian for NN is the operator in the Hilbert 
space JfN(O) of antisymmetric square-integrable functions on O N, given by the 
formula (cf. [4, 5]) 

N N 
HN~----1N-2/3 ~ z~j-~lN -1 ~ u(xi, xj) , (2.1) 

j = 1 i,/~jl 

where 

v(x, y) = - I x -  y[-1, (2.2) 

and where Dirichlet boundary conditions are assumed. We define co x to be the 
Gibbs state on the bounded operators in ~N(f2), for temperature f i- t ,  i.e. 

con = Tr((. ) e - ~m0/Tr (e - er~,,). (2.3) 

In order to relate the properties of ~fN, in the limit N-* 0% to those of an ideal 
Fermi gas, J ,  we introduce some definitions pertaining to the latter system. We 
take the algebra of observables, sg, for J to be the gauge-invariant C*-algebra of 
the CAR over Le(R3). This algebra has a quasi-local structure [10, 11], i.e. it is the 
closure of the union, ad L, of the C*-algebras, d(A),  of the CAR over the spaces 
L2(A), with A(CR a) bounded and measurable. We identify d (resp. d(A)) with its 
standard faithful representation in the Fock space .~f~ [resp. Jd(A)C~f] over 
L2(R 3) [resp. Le(A)]. Here sO(A), 2/F(A) are isotonic in A; and ~ [resp. 

~(A)]  = ~ ) a f ,  [resp. @ Jf,(A)], where 2(f, [resp. ovg,(A)] is the Hilbert space of 
0 0 
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square-integrable antisymmetric functions on R 3" (resp. A"). We define the con- 
ditional expectation E(./A) to be the mapping from .~¢ onto d(A) given by 

~, E(A/A)g) = (f, Ag) VA ~ ~¢; f, g E ~ (A) .  (2.4) 

For 7~R+ and x~R 3, we define a(7,x ) to be the automorphism of sd 
implemented in ~ by the unitary operator U(7, x) according to the formulae 

0-(7, x)A = U(> x)A U(7, x) '1  (2.5) 

where 

(U(7,x)f) , (x I . . . .  , x,) = 7 3"/2 f,(7(x 1 - x) .. . . .  7 (x , -  x)) (2.6) 

andf ,  is the n-particle component o f f  For large 7, the automorphism 0-(7, x) serves 
to concentrate the localisation of the observables around x: in particular, for 
xelnt f2  and A~eJL, 0-(7,x)Aed(fJ)  for 7 large enough. 

Let Pze be the projection operator from Jg(f~) onto ~tt~s(fJ), and let 
seN(O):= Pusd(fa)PN. For x~f2, we define the mapping A ~ A N ,  x of d into tiN(f2 ) 
by the formula 

AN, ~ = PuE(a(N 1/3, x)A/fJ)P u . (2.7) 

The AN,~'s correspond to observables for ~u, localised around x, as represent- 
ed in a scaling where the unit of length is N-1/3 which is essentially the mean 
interparticle spacing. 

Let 5P(sd) be the set of all translationally invariant states on sd, and let 
t , s , f ( : = t - f i - ~ s )  and n denote the functionats on ~ ( J ) ,  defined in [12], 
corresponding to the densities of kinetic energy, entropy, free energy and particle 
number, respectively, for the ideal Fermi gas, J .  The functionals f and n are thus 
affine and (w*-)lower semicontinuous. As will be proved in Appendix 2, f has a 
unique minimum, cS0, on 5~(sd)c~n - 1(0), and 

f(&Q) = gOo(~O). (2.8) 

Further, it may easily be inferred from the formulae in Appendix 2 that the 
map 0~&q is w*-continuous; while (Po is lower-bounded, continuous, and boun- 
ded on the compacts, and tends to oo as 0-+ oo. 

We are now in a position to state our main theorem concerning the limiting 
form, as N~oo ,  of the equilibrium correlation functions for the re-scaled 
observables {AN,~} of ~ N. 

Theorem 1. I f  the Thomas-Fermi functional q~ o is minimised at a unique bounded 
probability density o~ o on f2, then 

lim ~ d3xl...daxkcoN + A ~ h(xl, .. Xk) 
N _+ c 0 ' ~ 

( 0 )  = ~ daxl. . .d3xk c-6o.o(~o(A(i! ) h(x 1 . . . . .  Xk), 

VA {1) ... . .  A(k)esg : he~Cg(fak), (2.9) 
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where H+ denotes symmetrised product and ~cg(~2k) is the set o f  bounded continuous 
functions on Qk 

We define ~ 5 ~ ( d ) ,  the hydrolocal algebra, to be the discrete tensor product 
@ d , ,  where the d~'s are copies of d .  Thus, J¢f~C(d) is the inductive limit of the 
X~Y2 

C*-tensor products @ d~  over finite point subsets F of ~2, equipped with the 
x ~ F  

canonical injection from ~@FdX into ~(~e' ~x  for F c F ' .  For A (I) . . . . .  A ( k ) ~ ¢  and 

x~ . . . .  x k different points of ~, we define [A °), ...A (k) ;x 1 . . . .  Xk] to be dement  of 

Jf£F(~¢) given by ~ A~, with A~ = A (0 for i=  1,...k and A~ = I for x~ {x l, ..., xk}. 

We then define JN to be the linear mapping, from H ~ ( ~ ¢ )  into the bounded 
operators in Jfn(g2), by the formula 

k 

JN[ A(*) . . . . .  A(k);xl .. . . .  Xk] = 1~+ A<J~, • (2.t0) 
i = 1  

We see immediately from these definitions that Theorem 1 may be restated in the 
following form. 

Theorem 1'. I f  the Thomas-Fermi functional q5 o is minimised at a unique bounded 
probability density Oo on (2, then 

lim ~ d3xl...d3Xk(C~NoJN)([A O) . . . .  ,A(k) ; x 1 . . . .  , xk])h(x 1 . . . . .  x k) 
N--+ ~ 

= ~d3x l . . . d3xS) ( [A  (1) . . . .  ,A(k); Xl , . . . ,Xk])h(x l , . . . ,  Xk) 

V A (1) . . . . .  A (k) e d ; h ~ ~cg(f2k) ; k < co, (2.11) 

where 

& : = ~ &eo(x)" (2.12) 

Comments 

1. According to the numerical analysis of the Thomas-Fermi Euler equation, 
C~@o/5~(x ) = 0, for the case where ~2 is spherical, the functional ~o is minimised at a 
unique bounded probability density ~o, except at the critical temperature T~. 
Accepting this result, we see that the condition governing Theorems 1 and 1' is 
fulfilled, at least when (2 is spherical and T:# T~. 

2. Theorem 1' specifies a precise sense in which & is the limiting form of o) N oJ N 
as N ~  ~ .  We interpret this theorem as signifying that the state & on the hydro- 
local algebra oYf~(d) represents the properties of e)~ in the limit N ~  ~ .  

3. We propose that & be taken to be an equilibrium state of the infinite system, 
not only because it corresponds to the limit of a sequence of Gibbs states, but also 
because it has the following stability properties. 

(a) & is globally stable, in the sense that its specific free energy is the minimum 
value of the Thomas-Fermi functional ~b o. 

(b) N is stable at the strictly local level, in the sense that its components &~oCx) 
at the points x of f2 are equilibrium states for a Fermi gas with the prevailing local 
density Qo(X), the value of which is determined by the minimisation of ~o- 
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4. We conjecture that the system may also possess metastable ~ states for the 
following reason. According to the numerical treatment of [3], the Euler equation 
(3~o/fi~o(x)=0) governing the densities at which ~o is stationary, has solutions 
other than ~o when fl exceeds a critical value tic; and one of these solutions, ~ ,  
corresponds to a smooth continuation, in fl, of ~o from the region fl < fl~. Accepting 
this result, one sees that c5~'= ~@ &.o,<~) might be a candidate for a metastable 

state, satisfying criteria specified in [7], since on the one hand it lacks the global 
stability of (3a), while on the other it possesses the strictly local stability of (3b). In 
order to establish (7 h as a metastable state, it would be necessary, in our view, to 
show firstly that it corresponds to the limit, analogous to that of Eq. (2.11), of a 
sequence of Gibbs states for the N-particle systems NN whose densities are 
subjected to appropriate constraints; and secondly to prove that Q~ is the absolute 
minimum of the restriction of ~o to the resultant constrained set of density 
functions. If these properties were established, then it would follow that c5~ would 
be stable at both the strictly local and the local hydrodynamical levels, though not 
at the global one, and would thus be metastable in a sense that slightly generalises 
that prescribed in [7]. 

3. The  Perturbed S y s t e m  

Our strategy for proving Theorem 1 will be centred on a treatment of the response 
of the system NN to a certain class of perturbatic;ns. Thus, we start by defining the 
perturbed Hamiltonian 

k 

HN(X): HN + X I e3xl ...d3xkh( l, ..., 17÷ A"2,x, (3.1) 
~Qk i= 1 

where he R, he Mqf(~2 k) and A (~) . . . .  A (k) are self-adjoint elements of ~4 L. The specific 
free energy of the perturbed system is then 

FN(2) = -- (Nil)- 1 In Tr exp - flHN(2), (3.2) 

from which one sees that F N is a concave function L By Eqs. (2.3), (3.1) and (3.2), 
k 

F'N(O)= ~ d 3 x a . . . d 3 x k h ( X l ,  .. Xk)C% i 

Hence, F}(0) is equal to the value of the expression on the L.H.S. of Eq. (2.9) before 
the limit N ~  o~ is taken. 

In order to relate the function F N to properties of the ideal Fermi gas, J ,  we 
define A to be the subset of R + x R k given by 

{ (~, a)[Q e R + ; ~ = ( ~ ( 1 )  . . . . .  (X (k)) e R k ; ~ (z) e ~)o(~.~/). 

f(co) < ~ ; n(co) = Q; co(A (~)) = cd i), for i = 1 .. . . .  k} ; 

1 The suggestion that the model may possess metastable states was first made to us by W. Thirring 
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and we define (p:R+ x Rk-~Rw{co} by the formula 

[ inf {f(co)1co ~ 5~(~ ¢) ; n(co) = ~ ; co(A (i)) = cd i), i = 1 . . . .  , k} 

q~(~' ~) = / if (~, c~)E A ; (3.4) 

[ a n d  = oo otherwise. 

Thus, as the functionals n and f are affine [12], it follows that A is a convex set and 
that (p is jointly convex in its arguments. We define ~b to be the closure of (p, i.e. the 
greatest lower semi-continuous function on R+ x R k that is majorised by q~ [13]: 
(~ is thus also jointly convex in its arguments. 

Let T be the space of Lo<class functions on f2, equipped with the w*-topology 
dual to the bounded continuous functions on that space. We define O to be the 
subspace of T k+ t given by {0 =(~, e)l~eL~(~2); e~L~(f2)k; Q > 0 ;  ~d3xQ(x) = 1} ; 
and for B~R, we define O (m to be the subspace of O given by {0E O[~(~x)) <B  for 
x a.e. in f2}. We then define the generalised Thomas-Fermi functional ~ on O by 
the following equations. 

~ b ~ = ~ + ~ '  (3.5) 

where 

~(~, ~) = ~[ d3x~(~(x), o~(x)) + } ~ d3xd3yv(x, y)Q(x)o~ (y) (3.6) 
f2 f]2 

and 

7J(~, ~) = ~ d3xl. . .d3xkh(Xl, . . . ,  Xk)O:(tl(xl)...C~(k)(Xk) (3,7) 
.Qk 

We now see from Eqs. (3.3) and (3.7) that Theorem 1 is an immediate 
consequence of the following Lemma 2 and Theorem 3 and 4. 

Lemma 2 [14]. I f  {f,} is a sequence of  real-valued concave functions on R 
converging pointwise to j; and if f ,  and f are differentiable at t(~R), then 

lim f ' ( t )=f ' ( t ) .  
n--~ oo 

Theorem 3. Given 2oeR +, 3BoER + such that, for all 121 <2o, and for arbitrary 
B >  B o, 

lim FN(2 ) = rain { C a(~o, c~)t(~ , e)e O(m } : = F(;~). (3.8) 
N ~ o o  

Theorem 4. t f  the Thomas-Fermi functional 4 o is minimised at the unique bounded 
probability density ~o on f2, then 

F'(0) = T(~o, %), (3.9) 

where 

%(x) - (@)(2) ... . .  e~k)(x)) ; and @(x) = &~o(~)(A(0). (3.10) 

We conclude this section with the statement of the following lemmas, that will 
be used in the proofs of Theorems 3 and 4. 



8 H. Narnhofer and G. L. Sewelt 

Lemma 5. I f  cb o is minimised at the unique bounded probability density Qo, then ~ is 
minimised at (~o,C%) uniquely, where % is defined by Eq. (3.10); and further 

¢(~,o(X), ,o(X)) = ,po(Oo(X)) (3.11) 

Lemma 6. For B~R, 0 (B) is a complete, compact, metrisable space; and there exists 
if (~,oOs~ , then IlQJJ~o <OB and tlc~(i)lloo < I1A(i)tl for i= 1, ...k. a finite QB such that " ,~tm 

4. Constructions 

In order to establish Theorem 4, we shall now make a number of constructions, 
similar to those of [4]. These constructions will be carried out explicitly for the 
case where g2 is a cube of side I. We note here that the restriction to such a form for 
(2 is quite inessential as the same results would be obtained, with slightly lengthier 
arguments, for any domain that is sufficiently regular to be approximated 
arbitrarily closely by unions of 'small' cubes. In the following analysis, we shall 
make the dependence of FN(2 ) on fl and 1 explicit, where necessary, denoting this 
quantity by FN(~, t ,  I). 

(i) Regularisation of  the Potential 

We approximate the Newtonian potential v by a regular one v,, defined by the 
tbrmula 

v,(x, y) = - (1 - e x p -  # t x -  Yl) 
Ix-y]  ' (4.1) 

with # > 0 ; and we define HNu(2 ) and FN,(2, fl, l) to be the Hamiltonian and specific 
free energy, respectively, resulting from the replacement of v by vu in (2.1) and (2.2). 
On following the procedure of [4 : Sect. 3], we find that 

(1 + 2#- 1/5)- 1FN,()~(1 + 2p- 1/5), fl(1 + 2#- ~/5)- 1, l) -- bl(N, p) 

=< FN(;./~, t) ___< FN.(;~,/~, l), 

where 

lim lim bl(N, #) = 0. 
~-~cO N--+ o0 

(4.2) 

(4.3) 

(ii) Division of f2 into Cells 

We divide f2 into g equal cubic cells C 1 . . . .  C 0, centred at (Cl,...%), respectively, 
and separated by partitions. We then introduce the following three operations that 
change the Hamiltonian from HN,(2 ) to HNgg(2 ). 

(a) We impose Dirichlet boundary conditions at the boundaries of the cells so 
as to represent the presence of the partitions. 

(b) We replace vu by the step-function v,g, where 

~v,(c~,cs) if x~Cr, y~C~,r~s  (4.4) 
rug(x, y)= [0 if x, y lie in the same cell. 
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(c) For each of the cells C~, we define C~ N) to be the largest open cube in Cr such 
that, for x~ ~r(m, a(N 1/3, x)A(°ss¢(C~) for r =  1 ..... g. We then replace h by h g ~  N), 

where £r~N)is the characteristic function for (~)  ~(N)/k = ~ ~ / ,  and h o is the step-function 
\ 

given by the formula 

xk)=~h(%, .... c~) if xi~C, .~; i=l , . . . ,k;r i#r  j for i 4 j  
hg(Xl (4.5) 

l0 otherwise. 

We note here that it follows ~ ,-,(m from our definition o~ t~ , together with Eq. (2.5), that 

lim [C}:~)[/IC~I = 1. (4.6) 
N~oo 

On following the procedure of [4: Sect. 4], we obtain the following estimate for the 
specific free energy FN,~(2), corresponding to the Hamiltonian HNug(2 ). 

F~.~(;~, ~, 1 + b~(g))- b,(N, ~, g) <= ~'~,,(;., ~, l) 

<= FNug(2, fl, l) + b3(N, I~, g), (4.7) 

where 

b2(g)>0" lim bz(g)=0'  and lim lira ba(N,#,g)=O (4.8) 
g ~ o O  ~ g ~ o o  N-*c~ " 

(iii) Distribution of Particles Among the Cells 

The separation of the cells by partitions restricts the particle configurations in such 
a way that the number of particles in each cell is an integer. Accordingly, the set 
of admissible distributions of particles among the cells corresponds to 

g 

PN:={O=(Ot,...,~g)[NQr[Cr~Z+ for r = l , . . . , g ;  ~ Q~[Cr[=I}: the component 
r = l  

0~ of o(ePN) then corresponds to N -~ x mean particle density for C~. For 
o~P N, we define FNugo(2,fi, l) to be the specific free energy of the system with 
Hamiltonian HN,g(2), subject to the constraint that the distribution of particles 
among the cells is given by 0. We define 

ffNug(2, fl, I): = min F N ~(2, fl, 1), 
q~Piv ~g 

and, by a simple extension of the argument of [4, Sect. 5], we find that 

lim - N-~ ~ [FNug(2' fi' l) -- FNug(~, fl, l)] = 0, 

(4.9) 

(4.10) 

(iv) Thomas-Fermi FunctionaIs 

Let ~ be the functional obtained by replacing v by v,, and let 4)ugh. be the one 
obtained by replacing v, h by v,g, hg in the formulae (3.5)-(3.7), that define ~ .  

Lemma 7. The restrictions of ~ .  and ~ to 0 (B) are lower semicontinuous. 

Lemma 8. Let Og be the subset of 0 whose elements 0 take uniform values in each of  
the cells C 1 .. . .  C o. Then, given 2oeR+, and intervals (ill, f12), (11,12) on the positive 
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real line, there exists B o • R such that, for #, g ~ R +, [3e (ill, fla), lE (l~, 12) and 121 < 20, 
the restriction of  ~,o~ to 0 o is minimised at an element O,g~ of  0 (B°). 

Theorem 9. 

l i ra  FNug(2,//, I) = min { ~,gx(e, e)l(Q, ~)E Og} 

: = fuo(2, fi, l) (4.11) 

Theorem 10. ~ t h  the same spec~cations for 2 o and B o as in Lemma 8, and for 
arbitrary B > Bo, 

tim lira Fuo(2, /3, /) = rain {~.(Q, e)l(~, e)~ OW)} 

: = F(L/~,  1)VI~I < ;~o (4.12) 

Theorem 1i. 

lira FN(2,/~, l) = F(2,/~,/)V]21 < 2 0 . (4.13) 
N--~ oo 

5. Proof of the Theorems 

As already noted, Theorem 1 follows directly from Lemma 2 and Theorems 3 and 
4. Further, Theorem 3 is an immediate consequence of Theorems 10 and 11. 
Hence, the only theorems for which proof is needed are Theorems 4, 9, 10 and 11. 

Proof  of  Theorem 4. Assuming that ~b 0 is minimised at Qo, uniquely, it follows 
from Lemma 5 that ~ is minimised at 0o:=(~o,~0) uniquely; and that, as 
Qo~L~o(f2) and as ~o o is bounded on the compacts, then in view of Eq. (3.11), 
II0o0ol[~ < oo. Let 2oeR+, let Bo(ER ) be specified as in Theorem 3 and choose B 
to be some real number that exceeds both B o and 1[ ~o0 o I] co, thereby ensuring that 
0oeO (m and that Eq. (3.8) is applicable for 121<)> Thus, if 0~ is an element of 
O w) at which ~ is minimised, then 

F(2) = ~x(0x) __< ~.(0o) (5.1) 

and 

F(0)  = ~b(oo) _-< ~(0~) (5.2) 

Further since, by Eq. (3.7) and Lemma 6, one can find k <  oo such that 
t~(O)l<kl)&O~O ~), it follows from Eqs. (3.5), (5.1) and (5.2) that 
t~5(0a)- ~(0o)1 <2k12[ and therefore 

lim ~(0~) = ~(0o). (5.3) 

On the other hand, as O w) is a compact, metrisable space, by Lemma 6, one can 
choose a sequence of positive numbers {2,}, tending to zero such that 0~. 
converges to an element 0~, say, of Ow). Hence,as ~b is lower semi-continuous, by 
Lemma 7, it follows from Eq. (5.3) that ~b(0;)< ~(0o); and therefore 0 o = 0o, as ~ is 
minimised at 0 o uniquely. Thus 

lirn 0x, = 0 o . (5.4) 
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As F N is a concave function of 2, we see from Eq. (3.8) that so too is F. We 
denote its left and right derivatives by F' z and F'r, respectively. By Eqs. (3.5), (5.1) 
and (5.2), 

F(~ . ) -  F(0) _ ~ (%)  - 4,(Oo) 
- -  + 7.(0~,.)__> 7 . ( 0 ~ ° )  

;~, 4o 

from which it follows that 

F'(0) > limsup 7.(0~,). (5.5) 

Moreover, it follows easily from Eq. (3.7) that the functional 7* is continuous, and 
therefore by (5.4) and (5.5), 

V'r(0 ) > 7*(00) (5.6) 

Similarly by considering a sequence {04, } of elements of O (m corresponding to 
negative numbers {2,}, one finds that 

F'~(0) < 7*(00) (5.7) 

Since F is concave, it follows immediately from (5.6) and (5.7) that this function is 
differentiably at 2 =0, and that F'(0)= 7*(0o). []  

Proof  of  Theorem 9. Let NN,~ be the system of N gravitating particles, whose 
distribution among the cells C1, ... Cg is given by Q(e PN)- The normal states of NN.Q 

Y 

correspond to density matrices in JgN,Q : = @ ~ur(C~), where HN,(C~) is the N~- 
r = l  

particle subspace of the Fock space J~(C~), and N~ =N~]C~I. In formulating ~N,~, 
we shall generally use the same symbol to denote an operator in Jfu,(C~) and its 
canonical injection into JgN,Q- 

The Hamiltonian HN,oo(2) for NN,~, corresponding to the truncated in- 
teractions v,o and hg specified in Sect. 4, is simply the restriction of Huuo(,~) to ~u,q" 
Thus 

g g 

H ~ 0 ~ ) = N  2/~ Z T~+½N Z vr~o~lCllC~I 
r =  ~ r ~ s =  l 

g 

+ 2 N  ~ h~.. r A (~) A (k)('~ • k ~ -.. ~ , % , , . . . I C J ,  ( 5 . 8 )  

where T~ corresponds to the operator in J~N~(C~) representing the kinetic energy of 
N~ particles of unit mass in C~, i.e. 

N .  

T - - ;-- (5.9) r-- 2 ~ Aj,  
j=a 

where Dirichlet boundary conditions are imposed; A~ } corresponds to the 
operator in ~u~(C,) given by 

A~i)=IC~]- I ~ d3x(a(N1/3,x)A(i))N ~ ; (5.10) 
C(r r¢ ) 

v,~ = v,o(c ~, c o , (5.11) 
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and 
h ....... = hg(%,..., Gk)" (5.12) 

Correspondingly, the spedfic free energy of ~N,Q is 

FNug~(2) = -- (Nil)-1 in Tr exp( - flHNug~(2)), (5.13) 

the trace being taken over ~t~N.~. 
In order that we may apply standard thermodynamical limiting procedures to 

this formula, we now cast it into a form that expresses FN,g~(2 ) as the specific free 
energy of an N-particle system occupying a volume proportional to N. To this end, 

we define Cr:=N1/3Cr, 5~fN,o : = + ~(g~x~(dr) and/~Nu00(2) to be the operator in 
r = l  

~N,o given by 

/~Nugo(2): = U(N 1/3, 0)- ' H~,~g~(2) U(N 1/3, 0), (5.14) 

where U is defined in Eq. (2.6). Thus, by Eqs. (2.6), (5.8)-(5.10), and (5.14), it follows 
that 

g 9 

r = 1 r , s  = ] 
g 

+2N Y" 7(') ..A~)IG~I...IC,.~I, (5.15) h~l .*wkZ~lrl " 
r l , . . , , r k  = 1 

where ~ is the kinetic energy operator for N r particles of unit-mass in C~, with 
Dirichlet boundary conditions, 

~( r / ) :=  [dr[--1 ~ d 3 x ( ~ ( x ) ) A ( O ) ~ % ,  (5.16) 
c~N) 

z(R 3) is the group of automorphisms of d corresponding to space translations, 
and _~C(m'-NII3c ( N ) . -  ~. _~ . Thus, in view of Eq. (4.6), 

lira td  )l/ld t = 1. (5.17) 
N-~co 

It follows immediately" from Eqs. (5.13), (5.14) and the unitarity of U that 

FNuoo(2 ) = -- (Nil)--1 in Tr exp(-- flI2INuge(2)), (5.18) 

where Tr denotes the trace over ~N,e ; and hence, by (4.9). 

PNuo(2, fi, t) = min [ - (Nil)- 1 In Tr exp( - fi/~N,oe(2))]. (5.19) 
~ P ~  

This formula will.be treated in Appendix 1, where it will be shown, by an extension 
of the methods of [8], that the space-averaged observables ~i) occurring in the 
formula for kONu0o(2 ) may be replaced by c-numbers satisfying a certain variational 
principle in the formula for/~uug, in the limit N ~  o% with the result that 

lim PNuo(2,fi,1)=min 0(~, ~)lGI + 1 v~o~GIGIIGI N~co 
r v , s =  1 

g 

.. .  ( k )  + 
I~ l ,* . . , r k  = 1 

(o~, ~,.)eR+ × R~; ~ e~[G)= 1 . (5.20) 
1 
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This effectively completes the proof of the theorem, since the definitions of Oo and 
q~uo~ (in Sect. 4, Pt. 4) imply that the R.H.S. of (5.20) is equal to min{~u0~(0)[ 0~ Oo} ; 
while it follows from Eq. (4.10) that the L.H.S. of (5,20) is equal to 

O. [] 

Proof of Theorem tO. It follows from Lemmas 6, 7 and Theorem 9 that for 12t <Ro 
and B>Bo, one can find elements 0 h, 0u~, 0.~. of O (m, O (m and O(mc~O~ at which 
~ b ~ . ~ ,  ~bu~z, respectively, are minimised. Since, by Theorem 9, F~0(2, fl, l) 
= ~ ( 0 . ~ ) ,  it suffices for us to show that 

lim 6~h(O, ,~)  = ~,,~.(0~o) 
and that 

lira ~ . ~ ( 0 . h  ) = ~h(0h) .  
/~ --+ oO 

(5.21) 

(5.22) 

Let 0'ug x be the element of O o obtained by replacing 0.4 in each cell C r by its 
mean value over that cell. Then it follows from the convexity of ~ and our 
definition of O (m that O',o~eO(mc~Og. Hence as 0ux, 0ug;~ are elements of O (m, 
O(mc~O 0 at which ~,h, q)~gh, respectively, are minimised, 

~u~(0.h) < ~b.a(0.ox) (5.23) 

and 

4~.ox(0ugx) < e.0h(0uoh). (5.24) 

Further, it follows from our definitions of 0 (8), (Puz, ~.ox in Sect. 4 (iii) and (iv) that, 
in view of the convexity of (~ and the uniform boundedness of the elements of O (m 
(by Lemma 7) 

lim sup (b.h(010~) < ~.h(0.h) (5.25) 
g---~ cO 

and 

~.ox(0)~u~(0), uniformly w.r.t. 0 in O (m, as g--.oe, (5.26) 

Hence, by Eqs. (5.23)-(5.26), 

~.h(0.;) < liminf ~x(0.0x) < limsup (b.x(0uoa) 

--  lim sup ~uo~(Oug~) < hm sup Cuoa(0uoa) = lim sup ¢~z(0~o;) ~ ' < ~ ( 0 , ~ ) ,  
g ,* oO g - ~  o~ g--* oo 

from which it follows that (5.21) is valid. 
Finally it follows from Lemma 6 and our definitions of ~h, ~ and O ~B) that, 

for any 0~ O (~, 

t(~(0) - (bu).(0)l < ~ ~ d3xd3y exp( -  # I x -  y))/]x - Yl; 
~2 

and therefore ~.z(0)--,~h(0), uniformly with respect to 0e O (B), as # ~  oo. Equation 
(5.22) follows immediately from this result and the definitions of 0 h, 0.h as elements 
of 0 (8) at which ~h, ~.~, respectively, are minimised, 
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Proof of Theorem tl. Since h is bounded, one can easily infer from Eqs. (3.1), (3.2) 
that FN(2, fi, t) is non-decreasing in fl, non-increasing in I and uniformly continuous 
in 2, for 12t <20. Hence, it follows from (4.2), (4.3), (4.7), (4.8) that, given 6, e >0, then 
for sufficiently large # and 9, 

Fzvuo(2, fl, 1) + c(g, t2, g) > FN(2, fl, l) 

__> (1 + 2#-  1/5) 1FN~o(2 ' fi _ ~, I + e) -- (1 + 2~- ~,s)- ~ c(N,/2, g) (5.27) 

where 

lira lira lira e(N, #, g) = 0. (5.28) 

By Theorems 9, 10 and the boundedness conditions obtained from Lemmas 6-8, it 
follows from (5.27) and (5.28) that 

F(2,fl, l)> limsupFN(2,fi, l)> liminfFs(2,fl, l )>F(2 , f i -&l+e  ). (5.29) 
- -  ~ = N " *  ~ 

Thus, as 6, e are arbitrary positive numbers, it suffices for us to establish that 

lim lim F(2, f l -  6, l + e) = F(2, fi, l), (5.30) 
e ~ 0  6-+0 

in order to infer the desired result from (5.29). 
Now, as Fuug(2, fi,/) is concave in fl- 1 it follows from Theorems 9, 10 that the 

same is true for F(2,fi, l). Further, by Lemma 6 and Theorem 10, F(2,fi, l) is 
bounded for finite fl- z, and hence as it is concave in this variable, it is continuous 
in fl over bounded intervals that exclude the origin. Hence 

lim F(2, fi - b, I + e) = V(2, fl, l + e) (5.31) 
,5~O 

In order to pass to the limit e.~0, we first note that, for q>0,  a treatment, 
parallel to that leading to Theorem 10, yields the result that 

lira tim lira - (q- 1Nil)- 1 In Tr exp( - fiHNug(2)) 

=min{~o(O, cOtO~Loo(f2); ~eL~(~2)k ; ~ > 0 ;  ~ d3n~(x)=q}. 

The L.H.S. of this equation may be seen from Theorems 9, 10, and our definition of 
FN~ ~ to be qF(2,fl, t). Hence it follows from Eq. (4.12) that 

qF(2,fl, l)<~x(O,c~) if oeLo~(O),c~L~(f2)k,o>O,~d3x~(x)=q. (5.32) 

Now let f2~(3 f2) be a cube of side l+  e, and let ~ >  be the Thomas-Fermi functional 
obtained by replacing f2 by Q~ in the definition of ~ .  Then, by Theorem 10, 

F(2,fi, l + ~ ) - ~  ~)~. ct ~ (5.33) 

where (0;+,~, %,~) minimises ~(~. Let 

qx,~ = I d3xo~,~(x) (5.34) 
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and let (~z,~, ~z,~) be the restriction of (0z,,, sz,~) to t2. Then it follows from (5.32) and 
(5.34) that 

q~,~ y(~./~, z) _<_ ~ ( ~ , ~ ,  ~,~),  (5.35) 

and hence, by Eqs. (3.5)-(3.7), (5.29). (5.31). (5.33) and (5.35), together with our 
definitions of ~(~), ~, and ~ , 

0 =< F(2, fl, I) - F(2, fi, l + ~) < (1 - q;,~) F(2, fi, l) 

+ ~ d3xgo(~).,~(x),sx,~(x))+ ~ d3xd3yv(x,Y)O;,~(x)ox,~(Y) 
~\~ Q~\~2 

+ 2  ~ d3xl...d3xkh(xI,. (1) (k) .., Xk)S ~.,~( X l ). . .S ~.,~( Xk) . (5.36) 

In view of the uniform boundedness conditions given by Lemmas 7-9, it follows 
easily from (5.35) and (5.36) that 

lim F(2, fi, l + e) = F(2, fi, I) 

and hence, by (5.31), we see that the formula (5.30) is valid. []  

6. P r o o f  o f  L e m m a s  

Proof  o f  Lemma 5. In view of Eqs. (1.1) and (3.6), it suffices for us to prove that, for 
us to prove that, for Oo~R+ and s o =(&~o(A (1), ..., &Qo(A(k))), 

(6.1) ~(0o, %) = goo(Oo) 
and 

~(0o, s~) > goo(~o) 

Let us first prove 

rP(Qo, So) = goo(~o) • 

for s 1 =hs o. (6.2) 

(6.1). By Eqs. (2.8) and (3.4), 

(6.3) 

Since (~ is the closure of go, we can find a sequence {(G, s,) in the interior of Domgo, 
the region where go is finite, such that (G, s,)-ffQo,%) and go(G,s,)~f~(Qo, So) as 
n--->oo [13, p. 52]. Hence, as go(G, %) =>goo(G), by Eqs. (2.8) and (3.4), it follows that 

r~(Qo, s0) >__ lira sup goo(G), 
n - ~ o o  

and therefore, in view of the continuity of go o, 

(P(~o, So) > goo(0o) - (6.4) 

On the other hand, ~b =< go, by definition of the closure of a convex function ; and 
therefore, by (6.3) and (6.4), Eq. (6.1) is valid. 

We shall prove the inequality (6.2) firstly for the case where k = 1 and then for 
arbitrary kzZ+.  For the former case, we start by assuming that, contrary to (6.2), 
there exists s~ ~ So, in R, such that 

~(eo, s;)__< goo(eo) • (6.5) 

For definiteness we shall assume that so >so :  the case s~ < s  o can be treated 
analogously. 
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It follows immediately from (6.5) that 0{):= (Qo, %)s  Dora ~. Let cg be the curve 
c~ = a(0) : = 65~(A), which is continuous because of the w*-continuity of (5~ in Q. Since 
~b(Q, a(Q))= q~o(Q) [cf. (6.1)] it follows that ~ also lies in Dom~b. Let 01,~o2 be two 
positive numbers such that ~1 < 0o < ~2, and let 0~ : = (0~, a(0i)) for i = t, 2. We define 
K to be the interior of the domain bounded by the curve cg and the lines 
connecting 0{~ to 01 and 0 2" thus, as we are taking e{) to be greater than %, 

K={(~,o@~>a(o);c~<a(~i)+ c~;-a(Q~)(~_~o~) for i=1 ,2} .  
Qo - Q~ 

Since 0g and ~ lie in Dora ~b, it follows from the convexity of ~b that K C Int Dom (b ; 
and therefore ~o and ~b coincide in K [13, Theorem 7.4]. Hence as 

1 @ t (0o,~( o +c%))~K, it follows that 

q~(0o, 3( o + c~{))) = q~(0o, ½(~o + %)" (6.6) 

Further, as ~) is jointly convex in its arguments, 

0(~o, ½(~o + ~;)) =< ½~(~Oo, ~o) + ½0(~o, ~;) 
--<(P(Qo, ao), by (6.3) and (6.4) ; 

and consequently, by (6.6), 

q)(Oo, ½(% + c~)) < q)(0o, %). (6.7) 

However, as the free energy density functional for the ideal Fermi gas at given 
density is minimised at the unique state cSQ (cf. Appendix 2, Theorem A2.t), it 
follows from Eq. (3.10) that (6.7) cannot be valid when ~ + ~o- In other words, we 
have established that the assumption of (6.5) cannot be valid with ~; =t= %, and 
thereby proved the inequality (6.2) for the case when k = 1. 

In the case where k > l ,  we define q0 i :R+ × R ~ R ~ { o e } ,  for i=1  ..... k, by the 
formula 

~oi(0,c~(0 )=  ~inf{f(co)ln(co)=0; ~(A (0)=a (0} if ~o)c~(s~) (6.8) 
[n(o~)=~,og(A())=e('); and =oe  otherwise. 

Hence by Eqs. (3.4) and (6.8) 

q~(0, ce) > ~0~(~, ~(~)) ; ~ = (c~ (~) .....  0d~). (6.9) 

tn order to reduce our proof of (6.2) to the one we have already carried out for 
k = 1, it suffices to show that 

qb(~, c~) > ~bi(~, a(i)), (6.10) 

where ~b~ is the closure of (p~. This we now do as follows. In the non-trivial case 
where the L.H.S. of (6.10) is finite, we may choose a sequence (0,, e,)e Domcp such 
that (~,, %)~(~, a) and q~(0,, %)~(b(0, e) as n ~  o~. Hence 

~b(~, c0 = lifn (p(~,, a,) = Iimsup ~o~(~,, ~)) (by (6.9)) 

> lira sup (b~(0,, cd, °) (as qo~ __> c~) 
n-+oo 

>~b~(0, e(0) (by lower semicontinuity of @). [] 
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Proof of Lemma 6. It follows from the lower semicontinuity of 0 that ~ -  1(_ oo, B] 
is closed, and hence that O (~ is a closed subset of O. Let (Q, a)~ O (m. Then by Eqs. 
(6.1), (6.2) and the definition of O (m, 

~Oo(~(x))<(o(Q(x),o~(x))<B for x a.e. in ~2. (6.11) 

Since the function (Po :R+--+R is bounded on the compacts, continuous, lower- 
bounded and tending to oo at oo, it follows from (6.11) that 3OB~R + such that 
Q(x)<__B tbr xa.e. in f~, i.e. Itell~ < ~ .  It also follows from (6.11) that, for xa.e. in ~2, 
(0(x), c~(x))~Dom0 and hence belongs to the closure of Domcp. Therefore, by Eq. 
(3.4), [Je(i)lJ~ < TIA")IJ for i=  1 ..... k. Thus, we have proved that O ~m is a closed 
subset of the compact metrisable space 

O(1B): = { 0 = ( o ;  ~(i> . . . . .  ~(~))e O I II~li o0 <~B,  II~<°ll ~o < II/<°tl for i=  1 .. . . .  k}, 

and is therefore itself compact and metrisable. [] 

Proof of Lemrna 7. 4);~ is defined by Eqs. (3.5){3.7). It follows from the uniform 
boundedness of the elements of O (m (cf. Lemma 7), together with the fact that 
wL1(~2 z) and h is bounded, that the contributions to ~a given by 27* and by the 
last term on the R.H.S. of (3.6) are both continuous. Hence, in order to establish 
the lower semicontinuity of ~x, and likewise of ~ ,  it suffices for us to prove that 
the mapping O(e O(B)) _+ ~ d 3x O(O(x)) possesses this property. 

f2 

For this purpose, we resolve ~ into cells, C~,..., Cg; and, for 0a O (~), we define 
0g to be the element of O (B) obtained by replacing 0 in each cell C~ by its mean 
value, 0~, over C~. We then define 

G(O) = S d3x(o(O(x)) (6.12) 
f2 

and 
9 

%(0)-= Sd3x(o(oo(x)) = Y, ~?(O~)lC,l. (6.13) 
(2 r = l  

Since the elements of O (m are uniformly bounded (cf. Lemma 7), it follows that the 
mapping 0--+0~ is continuous. Hence, by (6.13), as ~ is lower semicontinuous, so 
too is G o . 

By Lusin's theorem, Og(x) converges pointwise to O(x), except on a set of 
arbitrarily small measure, as g-+ oo. Hence, as ~ is bounded and lower semicon- 
tinuous, it follows from Eqs. (6.12), (6.13), together with Fatou's lemma, that 

lim inf Go(O ) = G(O) (6.14) 
g~cO 

On the other hand, as ~5 is convex, we see from (6.12), (6.13) that Go(O)<G(O ). 
Therefore, Eq. (6.14) implies that G is the supremum of a family {Gg} of lower 
semicontinuous functions on O (m and is therefore itself lower semicontinuous. [] 

Proof of Lemma 8. Our method here is an extension of that used in Ref. [5] for the 
proof of the uniform boundedness of the density. 

We shall employ the following notation: a:=(#,g,2,/~./),  with [21<,~0, 
[~e(fl,, [~2), I~(l~,/2); (0~, ~0) denotes an element of O 0 at which ~b~0 ~ is minimised; 
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(~,,  5~r) denotes the value of (~, 5°) in the cell C r ; and v~s,hr~ ...... ~ are as defined by 
Eqs. (5.11), (5.12). Thus, the increment A t in the value of ~,gx when its argument is 
changed from (~,  5~) due to increments lc~j-~t and - I C , . j - i t  in the densities in 
C~, C~, respectively, is non-negative. Hence, it follows from the definition of ~ugx, 
in Sect.4(iv), together with the convexity of ~ and Eqs. (3.5}-(3.7), (5.11), (5.12), 

that the inequality ~fim ° AJt>O yields the following result: 

s 

> d~(-)(~ ~ ~+ ~ C s , 

where ~(o -+) denote the right and left derivatives, respectively, of ~ w.r.t.Q. Since this 
result is valid for all pairs of cells C~, C,.~, it follows that 

1Tlvin [ ( P ( * ) ( ~ v ,  5~r)-Jr 2 Vrs~s]Csl] 
s 

_ _> max [ (~ - ) (~ ,  5~)+ 2v~s lC~[] ,  
r 

S 

and hence, there exists a quantity 0~, independent of r, such that 

~(+)- - > -  >~(-~-  (6 .16 )  ~o~ (O~,c~o~)=t/~=cp o (~o~,5~), for r = l  ..... g, 

where 

F/o~ : = 0 ~ -  ~ v ~ s .  (6.17) 
s 

Likewise, by considering the increments in ~,o~. when e is changed from 5~ to 
5~ -+ t in the cell C~ only, and leaving Q unchanged at ~ ,  we find that 

~b!+)W r7 ~ > ~ ) > ~ ( - ) -  - , , ~ , . . ~  . . . .  ~=~0~ (~ ,%~) ,  (6 .18 )  

where @(-+)denote the right and left derivatives, respectively, of ~b w.r.t, e(o, and 

-(~)- 1 7  5U) l Yor -)c 2 ~ , r h r ,  ,k (6.19) 
FI,...,~' k j : ~  

Since (% and therefore (~ is lower-bounded [cf. Eq. (6.2)], and since (~, 5°) 
minimises ~ 4, it follows that (~o~, 5~)@Dom~ C Cl(Domq~), and consequently, by #~ , 

(3.4), ~ =< tA(0tt. Hence, in view of the boundedness of h and 2, it follows from 
(6.19) that one can find a finite constant b, independent of o; i and r, such that 

- 6 )  lY~I < b. (6.20) 

Let F, tp o be the real-valued functions on R+ x R ~ and R ~, respectively given by 
the equations 

k 

~p(tt, y )=  inf[~Co, e ) - t / ~ - y . e ] ;  y.c~= ~ y(%d ) (6.21) 
~'~ i = I 

and 

~po(~/) = inf [(Po(~)- t/~]. (6.22) 
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It follows easily from these definitions that ~ is jointly concave in its arguments ; 
and that lpo, which is the Gibbs free energy for the ideal Fermi gas at chemical 
potential r/, is a concave function. Further, 

~po(1I) = v2(t/, 0) (6.23) 

since, by (6.1) and (6.2), q~o(0)=inf(~(Q, c0; and, as the infinum in (6.21) is unaffected 

by the restriction that (~,~o)~ Dom(~, and thus that Icdi)1 < 11A(i)It, it follows from 
(6.21.)-(6.23) that 

k 

ttP(rt, y ) -  ~po(t/)t < ~ ly(°[ IIA(i)ll. (6.24) 
i = 1  

In view of (6.18) and (6.19), it follows from the convexity of q~ that, when (q, y) 
= (f/~r, Yo~), the infinum on the R.H.S. of (6.21) is attained for (4, c~)= (~,r, ~,~); and 
that 

~(~, Y ) -  ~ ( ~ ,  L ~ )  --< - (~  - ~ o ~ ) ~ r  - (Y - L ~ ) ,  ~ -  

Hence, as ~ is jointly concave in its arguments, ( - ~ ,  - ~ )  is tangent to ~ at 
(g/~, ~ ) ,  and therefore 

--@-)(g/~, ~o~) < ~ r  < - ~p(+)(f/~,., ~ ) ,  (6.25) 

where ~p~+-) are the right and left derivatives, respectively, of p w.r.t, t/. 
Now, by (6.20) and (6.24), one can find a fnite constant c, independent of a and 

r, such that 

t~(~, ~ ) -  ~o(~)[ < cV~e R. 

Thus, choosing p to be some positive constant, 

W(t/+ p, y~) - ~p(r/, y~) tpo(t/+ p ) -  ~o(t/) 2c _ > - - - ;  
P P P 

and hence, in view of the convexity of ~ and Po, as well as the differentiability of 

lP0, 

tp~, + )(rt, ]V~) > tP'o(tl + p) - 2 c / p ,  (6.26) 

where ~,; is the derivative of ~Po. Similarly, 

@i-)(tl, y~r) < tp'o(t l - p) + 2c /p .  (6.27) 

Therefore, by (6.25)-(6.27), 

~o~ < - tp'o(t 1 + p)  + 2c /p  (6.28) 

and 

~) ~ > - ~o07 - P  ) - 2e /p .  (6.29) 

It may now be seen that one can adapt the argument of [5, Sect. 4] to infer 
from Eqs. (6.17), (6.28), (6.29) and the behaviour of ~o(t/) ( ~ -r/3/2) for large 7, that 
~ is uniformly bounded w.r.t, a and r. Specifically, one can do this by using the 
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arguments of that article to show first that (6.17) and (6.29) imply that 0# has a 
finite upper bound; and then inferring from this result and Eqs. (6.17), (6.28) that 
~ ,  is uniformly bounded. 

In order to establish a similar result for ~b(O~,, ~or), we note that ~,g, cannot be 
decreased if its argument is altered f rom (~,, ~ )  by changing ~ to &Q~(A). Hence, 
it follows from the definition of ~,ga, as given in Sect. 4(iv) together with Eqs. 
(3.5)--(3.7), that, in view of (6.1), 

~0o(0,~) > ~b(O,¢, 5,~) + y~,. (go~ - &a~(A)). 

Thus, in view of the uniform boundedness of ~o~ [cf. (6.20)] and ~ ,  we can find a 
constant d, independent of a and r, such that ~b(0~, ~ )  < ~Oo(0~,) + d; and therefore, 
as ~o o is bounded on the compacts and 0~ is uniformly bounded, it follows that 
~)(~,, 5~,) is uniformly upper bounded. [] 

Appendix 1: Mean Field Theory 

In order to avoid inessential notational complications, we confine our derivation 
of tlhe formula (5.20) to the case where g = 2 and hrlr2 = 0 except when r I = 1, r 2 = 2. 
The full proof of (5.20) for the general case can be carried out analogously. 

Thus, we replace the formula (5.15) by the following simpler one" 

/JN,o = T1 ®[2 + [1 ® Tz + N/i(11) ®A(22)+ NvQ 102, (1 1.1) 

where v = v  I z, IC t t  = IC2l = 1 and 2 is absorbed into A~1)®A(22). Equation (4.9) can 
now be expressed in the form 

flee = min{N- 1 Tr(5 In 5 + 5/~ee,~)l 0 ~ Pee ; 5 e DN,~ }, (A 1.2) 

where Ps is as defined in Sect. 4(iv), D~,~e denotes the set of density matrices in 
~ee,~,/~ is taken to be equal to 1 and the parameters #, I are omitted. We define ~NP(°) 
to be the corresponding quantity when the density matrices are restricted to those 
without intercellular correlations, i.e. 

ff~) = min { g -  * Tr(~ In 6 + 61(Iee, 0)[0 e PN ; a = #~ ® 62 e DN,o } (A 1.3) 

the trace in this expression attaining its infinum, as it corresponds to a lower 
semicontinuous function on a compact set (cf. [12]). We shall now establish (5.20), 
for the model treated here, in two stages. In the first of these, we shall prove that 

lim (PN--P~)) = 0 ;  (11.4) 
N~co 

and in the second we shall show that 

lim ~(o) ~ee =min{~(01, 02, cq, c~2)l~o> Q2ER+ ; 01+02 = 1 • oq, c~2~R} (A 1.5) N ~  ~ 

with 

~ ( 0 1 ,  62 ; 0~1,0{2) = (P(~O 1, 0{i) -{- (P(~O 2, a2) + ~10~2 -}-/26162 • (A 1.6) 

Equations (A 1.4)-(A 1.6) imply the desired result, corresponding to (5.22). 
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Stage 1. It follows immediately from (A 1.2) and (A 1.3) that 

/~N < if(o). (A 1.7) 

In order to obtain an upper bound f o r / ~ ) -  fiN, we first note that the values of 6, 
~o, for which the minimum in (A 1.2) is achieved, satisfy the relation 

6 = exp( - /~m Q)/Tr(idem). (A 1.8) 
Let 

6' = 61 ®6 z (A 1.9) 

where 

61 =Tr26; 82 =Tr l6  (AI.10) 

and Tr, is the partial trace over ~ / ( : =  d/fNQ,(Ci) ). It follows from (A 1.1){A 1.3) that 

F~  ) =< N-*  Tr(5' In 6' + 6'}IN,o) 

= N - 1  [i=~ 1Tri(6i In 6)  + Tr(6'/tm~)] 

< N -  1 Tr(6 In 6 + ~'/qN. ~) (subadditivity of entropy) 

i.e. 

/ ~ )  ~ fin + N-1  Tr((6' - 6)HN,o). (A 1.1 1) 

In order to utilise the techniques of [8], we introduce the "perturbed Hamiltonian" 

HN,e(x):=HN,e+Nx~t(i')®Iz+NxzIl®~t(2);x=(xl, xz)eR2; (A1.12) 

and we define ff~v(x), ff{~)(x), 6(x), 6'(X), ai(x ) to be the quantities obtained on 
replacement of/-/N, e by H N,e(x) in the formulae for FN, --NK(°), 6, O-,~' 6i, respectively. 
Hence, by (A 1.1), (A1.7) and CA 1.9)-(A 1.12), 

0 < P(~°)(x) - FN(X) <= Tr((a'(x) -- 6(x)) (A(I') ® A(22))) 

-~<A~ ®(A 2 -<A2 ><(~))>~(~). 

Therefore, as Eq. (5.16) implies that Ill}°[} __< I[A(°[I, we see that 

O<ff(~O)(x)--ffN(X) <c E <(AI 0 - / ] ( 0 \  ~2\t/2 (Al.13) 
\ i /~dx)J /~dx)' 

i=1,2 

where c is a constant, chosen to exceed ½(11A " )  II + ]I A (2) ]1). In view of Eq. (5.16), one 
can easily find a subset s~ o of .~2 that is dense in d ,  such that {~0} satisfy the 
conditions corresponding to [8; Eq. 7] for all A (n, A(2)s~a'o . Consequently for 
such A °), A (2), Eq. (A 1.12) is amenable to the same treatment as a similar formula 
in [8], and may thus be shown to imply that 

O~F(AO)(x)--ff N ( X ) ~ I N - 1 / 2 ( - - A F N ( x ) ) I } 2 - } - ~ 2 N - 2 / 3 ( - - Z 1 P N ( X ) )  2/3 , (A 1.14) 

where h ,  ~'2 are finite positive constants, and A is the two-dimensional Laplacian; 
and thence that Eq. (A1.4) is valid. This result is extended by continuity to 
arbitrary A (~), A(Z)edr. 
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S t a g e  2. Let 6 t®52 and ~(N) correspond to the values of the density matrix and 
particle distribution, respectively, at which the Trace in (A 1.3) is minimised. Then, 
if 5'i is any other density matrix in ~4~, the replacement of 5 i by a' i cannot decrease 
the value of that Trace. Hence, using (AI.1) 

~'ri(~ i In 6~ + 5~(~ + pl N)/lli))) < Tr~(~' i In 5'i + ~'~(~ + pl N) ~0)),  (A 1.15) 

where 

;(N)_~r (5 ~(2h; y(zN)=~i~rl(51~(1)). (A1.16) 1 - -  2 t  2 2 ! 

(A 1.14) constitutes a variational principle, from which it follows that 

ai = exp - (T/+ y~N).4~))/Tr~(idem). (a  1.17) 

Thus, by (A1.1), (A1.3) and (A1.16), 

. f (o)_  2 " [-A(N) 7;,(N)'~ ~(N)~(N)~_~(N)~(N) A_,,'~(N)-~(N) (Al.18) 
i = 1 , 2  

where 

~pN(0} N), y,) = - I n  Cr i exp - (~ + yiAl ')) (A 1.19) 

and 
- ( N ) _  ~ ~ ~(i) 
~i --Tr~(~iAi ). (A1.20) 

It follows from these last two equations that ~PN is concave in y~ and that 

tpN(01 m, y~) - ~pN(~51 u), yl N)) =< (y~- ;I N)) 51 N) (A 1.21) 

~=(N)~ {~}N)} and {plN)} are uniformly By (5.16), (A1.20) and (A1.21), the sequences I~'i J, 
bounded, as N runs through Z+, and therefore have accumulation points 0i, cq and 
Yi, respectively. Correspondingly (cf. [10 ; Proposition 3.5.10]), {~N(01N), ylN))} has an 
accumulation point tP(0i, Yi), where (p is the thermodynamic potential defined by 
the formula 

~PN(0i ,Y~)' (h  1.22) tp(-d,, Y i )=  l i m  -(N) , 

or equivalently [12], 

~(~i, Jh) = min {f(o)) + y~ co( A(°)l  co s 5~(sY)  ; n(co) = ~i} , 

i.e., by Eq. (3.4), 

IP(Oi, Yi) = min{ q~(Oi, ch) + Yi(Zi]~i @ R } .  (A 1.23) 

It follows from (A1.21), (A1.22) that 

~4)({h, Yi) - ~P(~, Yi) < ( Y i -  Yi)~i , (A t.24) 

and from (A 1.18) and (A 1.22) that {/?(N °)} has an accumulation point, namely 

~(o)= ~ (~(~i,y~)_~y~)+5~Sz+V~o~0:" (A1.25) 
i--1,2 

It now remains for us to prove that/?(o) is equal to the R.H.S. of (A1.5). 
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Let Ai be the convex set given by {c~ RI~4)(O~, y~)- ~P(O~, Yh) <= (Yi -  Yi)c~VYi c R} 
corresponding to the set of tangents to t¢(0~, .) at y~; and let g(Ai) be the set of 
extremal elements of d~. Then since by (A1.24), ~ A ~ ,  we may write 

if:i= ~ cjY~ij; c j>0 ;  ~ cj= 1; ~:ijeg(Ai) (A1.26) 
3 J 

Further, by [9; Theorem 1], as ffhjsE(Ai), there exist sequences {yij,,}, {~ijn}, 
converging to y~, aij, respectively, such that ~P(01, Y~) is differentiable w.r.t, y~ at y,j, 
and that the resultant differential coefficient is ~j,. On the other hand, one may 
infer from (A 1.23) and the concavity of ~p that when y~= Y,jn, the term on the 
R.H.S. of that equation is minimised at p (O,,y~j,):=~i~,, where 9,  denotes the 
derivative of ~v w.r.t, its second argument. Hence, by (A 1.23) 

q)(Oi, ~:ij,) = ~'(Oi, Yij,) - Yhj,~ij,, (A 1.27) 

and therefore, by (A 1.26), (A1.27) 

tp(~i , y~)- yi~ = ,}irn 2 cjq~(~, ~ij.) 
J 

_> lim sup ~0 (0i, ~ Cjaijn ~ (convexity of ~o) 

> limsup~o{Oi,~cjff:ij . (as (p > (~) 
?l~co " j \ • 

> ~(0i, 5i) [by (A 1.26) and lower semicontinuity of q?] 

Hence, by (A 1.6) and (A 1.25), 

p(0) ~ ~ ( ~ l '  02 ; ~1 '  ~2)" (A 1.28) 

Let qb' :R+ x R--+Rw{oo} be defined so that, for fixed ~, gP'(G ") is the closure of 
q)(~-); and let ~b, ~b' be the function obtained by replacing qb by q),~b' inthe definition 
of ¢ in (A1.6). It follows easily from these definitions that ¢_> ~b' > ¢ and that the 
minimum of ~ may be replaced by the infinum of ~b, and thus also by the infimum of 
¢', in (A1.6). Hence, in view of(A 1.28), we see that the desired result will be established 
if we prove that, for arbitrary fixed ~ ,  Q2 >0, with ~ +~o 2 = 1, 

min ~'(Q1, Q~ ; a~, ~2) >fifo} (A 1.29) 
~tb~t 2 

Let ~'(¢~,~o~ ; .) attain its minimum at ( ~ , ~ ) .  Then, defining 

it follows from our definition of ~' that ~'(¢~, e i ) + ~  is minimised at @ Thus 

~b'(¢i, ~i) + Yi~i = mln (~'(~i, c~i) + Yi~i) = inf(q~(¢i, el) + Yiel) 

--- ~p(~, ~), by (A1.23). 

Hence the L.H.S. of (A 1.29) is equal to 

y" (tp(~i, dv~)_]vidci)+~2 +v~o~2 (A 1.31) 
i~1,2 
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Again we use [9; Theorem 1] and approximate );,i, ~i arbitrarily closely by Yik, 

Cik~ik, with ~ik = tpj(Qi, Yik)' Cik • 0 ,  2 Cik : 1. Thus, 
k k 

'P(el, ~'i)-- Yi ~i > ~ %[~P(el, Ylk) -- ~Yik] -- e, (A 1.32) 
k 

where ~ may be made arbitrarily small by choosing {~gik} sufficiently close to Yi- 
Further [cf. (A1.22)] 

Pu(QI ,Ylk)' with lira ~Im=Q~. (A1.33) , 
N ~ c ~  

Hence, as ~(Q~, • ) is differentiable at Yik and ~0ute~'̂ (m, .) is differentiable at all points, 
it follows (by Lemma 3) that 

lim p,(m _ ~ (A 1.34) ~ i k  - -  i k  N ~ o ~  

with 

~(m.= N ( i  ~',(m~ (A1.35) O~ik . I]) , Y  ~ , Y i k  ' "  

Consequently, by (A 1.19) and (A1.32)-(A 1,35), 

W(~i, f2i) --  ~;i ~i >>- lim N -  1 ~ % Tri(aik In ~ik ~r- 6ik T i )  - -  8, (A 1.36) 
N~oo  k 

where 

#ik = exp-- (T/+ y;ikftli))/Tri (idem), (A 1.37) 

and thus 

Tri(6i~A~ ° ) = ~i~'~'(m , (A 1.38) 

where Tr i is the Trace over the N ~  u) particle subspace of ~(d~). Putting 6~ 

= ~ %dik, it follows from (A 1.36), together with the convexity of Tri(3~ In 61) in 6i, 
k 

that 

~(~, y~) > timsup N -~ Tr~(6~ In #~ + 6 i ~ ) -  e. (A 1.39) 

Thus, by (AI.1), (A 1.38) and (A 1.39), the expression (A1.3t) is not less than 

l imsupN -a Tr(g'ln6+d/]u,~o)--~, with 6"=6-~®6- 2 
N~oo  

Consequently, by (A1.3) and our definition of/5(o) as a limit point of {F~)}, the 
expression (A t.31) cannot be less than p(0)_e; and, as e is arbitrary, this means 
that (A 1.29) is valid. [] 

Appendix 2 

For ~ R + ,  we define A Q:= {(n~ Yf(,aC)lf(c0 ) = (P0(O); n(co)= 9}, corresponding to 
the set of translationally invariant equilibrium states of the ideal Fermi gas. We 
shall prove the following theorem. 
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Theorem A2.1. AQ consists of a single element, and this satisfies the K.M.S. 
conditions with respect to the free evolution of the ideal Fermi gas. 

Our proof of this theorem will be based on constructions, analogous to those 
made for lattice systems in [9]. Thus, we first resolve R 3 into (half-open) cubes, 
whose centres are the sites of the lattice Z 3, and define ~ to be the set of bounded 
subsets {Y} of R 3, formed by unions of finite numbers of these cubes. We then 
define ~ to be the set of mappings b from ~ into the self-adjoint elements of 
such that (i) b(Y)es~(Y)VYs~; (ii) b is covariant w.r.t, space translations, i.e. 
b(Y+ n)= z(n)b(Y)VY~ ~,  n~ Z 3, where z(R 3) is the group of automorphisms of s¢ 
corresponding to space translations; and (iii) 

Iq01:= ~ Ilb(Y)tl < c~. (A2.1) 
0eg 

The set ~ ,  equipped with the norm I "1, is thus a separable Banach space. For Ye ~/, 
we define H(Y) to be the operator in o~(Y) corresponding to the Hamiltonian for 
an ideal Fermi gas in Y,, with Dirichlet boundary conditions; and we denote the N- 
particle component of H(Y) by HN(Y). We define the local perturbative 
Hamiltonian, Ub(Y ) (~d(Y)), corresponding to the "potential" b, by the formula 

Ub(Y)= ~ b(Y'), (A2.2) 
Y'CY 

and define the free energy density functional ,~~ : B ~ R  by the following formula, 
of standard type : 

~(b) = - lira (fl[ y[)-1 In Tr N exp - fi(H(Y) + Ub(Y)), (A2.3) 
Y'~R3;N/IYI~Q 

where Tr N denotes the trace over the N-particle subspace of ~(Y).  Let ~ ( d )  
denote the set of Z3-invariant states on ,~, f the free energy density functional on 
A)(d) - defined analogously with f -  for the ideal Fermi gas ; and, for b ~ B, let fb be 
the "perturbed" free energy density functional on ~ ( d )  given by 

fb(~o)=f(co) + ~ co(b(Y)) 
o~r [YI 

(A2.4) 

It follows from arguments parallel to those of [9] that ~o(b) is the minimal value of 
fb, and that the (convex compact) set of states A ~.b at which fb attains this minimum 
are those elements, e), of 5~(d) corresponding to tangent planes to JQ at b, i.e. 
those for which 

co(b'(Y)) V b ' s ~ .  (A2.5) 
~o(b + b ' ) -  ~ ( b )  =<_ ~ I Yi 

OeY 

Let d o be the subalgebra of d on which lim [H(Y), -] exists. Then the time 
Y~R 3 

evolution of the ideal Fermi gas corresponds to a group 7(R) of automorphisms of 
d ,  whose generator fi has d o as a core and is given by (cf. [15]): 

6(A) = lim i[H(Y), A ] V A e d  0 . (A2.6) 
y.~ R 3 
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Correspondingly, the KMS conditions for a state co of the ideal Fermi gas may be 
expressed in the following form [16]" 

- iog(A* 3A) > g(cg(A*A), co(AA*)), (A2.7) 
where 

g(u,v)= { ; l n u - u l n v  forf°r u=v=0.u'v>0;u+v>0 (12.8) 

Proof of Theorem A2.t. Let "~o be the subset of elements of M at which ~,~ has a 
unique tangent plane. Then (cf. [9]), ~o is dense in ~, and the extremal tangent 
planes at 0 are given by limits of those for sequences of elements b ( ~ o )  that 
converge to 0. Further, for b ~ 0 ,  the unique element c5 b of Ao,b is given by the 
formula 

~b(A) = lim co~N.)b(Ay)VA e.~2, (12.9) 
y ~ R 3 ; N / I N I ~ o  , 

where 

co~N,~ = TrN(( • ) exp-- fi(H(Y) + Ub(Y)))/TrN(exp-fi(H(Y)+ Ub(Y))), (A2.10) 

-4r =IY1-1 ~_Zt; Zl:=T(1)A; (A2.11) 
l~Y 

and Yis the set of elements 1 of Z 3 such that z(1)Aed(Y). Since co(~ ) is a Gibbs 
state on d(Y), it satisfies the KMS condition w.r.t, the automorphisms of that 
algebra, for which the generator is 

5r,b'= i[H(Y) + Ub(Y), .]. (A2.12) 

Thus 
• (N) , > (N) , (N) , --tCOr,b(A ~r,bA)=g(o)r,b(A A),cor,b(AA )). (A2.13) 

It follows from (A2.2) that, for Ae~4(Yo) , 

II[Ub(Y),A]II < ~ ]I[b(Y'),AJH (as d(Y) d(Y') if YcaY'=0) 
Y ' r~Yo*~  

_-_21Yol ~ IIb(r')ll ]IAIt 
O~g" 

=21YollIAIilbl, by (A2.1); 

and hence, by (A2.6) and (A2.12), 

tim tim 5r b(A)=3(A)VAss¢o (12.14) 
b ~ O  Y~iR 3 " 

Thus, as 6 commutes with z(1), it follows from Eqs. (12.9), (A2.14) that if c5 is the 
w*-limit of CSb, as b~0, then 

lim lim Y I - I ~  (N) , 
b ~ O  y , iR3;N/  y ---r~ 09g,b(A I 3robAl)=cS(A* 6A), VAe s¢o . (A2.15) 

l e Y  

Hence, by (A2.13) and (A2.15), 

-iCo(A*3A)> lim limsup IY[ '~ ~g(co(~N~(A*A~),o)~N~(A~A*)),VAe~¢~. 
b ~ O  y,, R3;N/ ly l~ ,O 

(A2.16) 
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Now as lim 121/I YI = 1, and as the function g is jointly convex in its arguments and 
Y~R 3 

possesses the property that, for u~-+u and v ~ v ,  lim inf g(u,, v , )>  g(u, v), it follows 
from (A2.9)-(A2.11) and (A2.16) that 

- ion(A* 5A) >= g(c7o(A* A), o~(AA*))VA e d o, 

and therefore CO satisfies the KMS conditions. 
Let ~ / (Dd)  be the gauge-dependent C*2algebra of the CAR over L2(R3), and 

let c5, be the unique (cf. [17] KMS state on d corresponding to chemical potential 
#. Then, as CO is a KMS state on d ,  it follows [18] that we may express it in the form 

Co = ~ drn(#)6), (A2.17) 

where m is some measure over R. Thus, as o5 u is R3-translationally invariant (cf. 
[17]), then so too is CO. Since the functionals n and f are affine, it follows from the 
definition of ~0o(0) as the minimal value of f for translationalty invariant states of 
particle density 0 that 

0 = ~ dm(#)no(#) (A2.18) 

and 

~Oo(0) = 5 dm(#) Wo(#) (a  2.19) 

where the functions n o, ~Po represent the densities of particle number and free 
energy, respectively, and are given by the standard formulae 

1 
no(#) = -~  ~ d3k[exp fl(½ k 2 - #) + 1] -1 (A 2.20) 

and 

1 /?-1 
tpo(#) = ~ ~d3k[  - in(1 +exp- f i (½k2-  #))+ #(t +expfi(~k2-#))-  1]. 

(A2.21) 

From (A 1.20), one infers easily that the function n o is single-valued and invertible; 
and thus, in view of the equivalence of ensembles [10], 

q~o(Q) = tPo(no I(Q)). (A 2.22) 

Hence, by (A2.19), 

~Oo(Q) = ~ dv(Q')~Oo(~' ) (A2.23) 

where 

dv(no(l~)) = din(#). ( A 2.24) 

Further, one can infer easily from (A2.20)-(A2.22) that q~o is strictly convex in ~ ; 
and consequently, by (A2.23), v must be the Dirac measure, with support at 4- 
Hence, by (A2.17) and (A2.24), CO = cS,a ~(Q). Thus, we have proved that CO,6-~(~o) is the 
unique extremal element, and hence the unique element of Ao, o. Therefore as this 
state is also R3-translationally invariant, it follows that it is the unique element of 
AQ. 
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