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Abstract. The general properties of certain differential systems are used to prove the existence of periodic
orbits for a particle around an oblate spheroid.

In a fixed frame, there are periodic orbits only for i =0 and i near /2. Furthermore, the generating
orbits are circles.

In a rotating frame, there are three families of orbits: first a family of periodic orbits in the vicinity of the
critical inclination; secondly a family of periodic orbits in the equatorial plane with 0<e <1; thirdly a
family of periodic orbits for any value of the inclination if e =0.

1. Introduction

The present paper aims to apply the general properties of nearly-integrable
differential systems in order to demonstrate the existence of classes of periodic
solutions for the motion of a particle which gravitates around an oblate spheroid.

The potential is limited to the J, term. The equations of the satellite’s motion form
a differential system which is close to an integrable system. The properties of periodic
solutions for such a system are described by Roseau (1966), Haag (1948) and others.
By applying these properties we find all the periodic solutions in the vicinity of the
periodic solutions of the integrable systems. Among them are some solutions found
by other authors with different methods, e.g. MacMillan (1920) and more recently
Delmas (1978), Kammeyer (1976).

The main interest of the described method is probably the fact that the formalism is
the same for all classes of orbits and a great part of calculations has to be done only
once.

2. Equations and Method

The method we use was described in previous papers by Stellmacher (1976; 1977;
1979). We summarize the main points.

In a cartesian frame, the equations of the motion are given by the autonomous
system

x=fx)+Jg(x). (1)

Equation (1) defines a sixth order system; x, f(x) and g(x) are vectors with six
components; f(x) and g(x) have successive continuous derivatives with respect to x.
J, is a small quantity which is approximatively 1072 in the Earth’s case. For J,=0,
system (1) is reduced to

i=Ff(x). 2
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System (2) has a family of elliptical solutions depending on six parameters p;,
i=1...6; the elliptical elements for instance. Note that the period T of these
solutions, is a function of one parameter p;, i.e., the semimajor axis of the ellipse.

The question is: Does (1) possess a (or several) periodic solution which tends to a
(or several) solution of (2) for J,->0.

System (1) is an autonomous system, its periodic solution, if any, has a period T"
close to T; we put T' = T/(1+J,8), where § is a continuous function of J, expanded
in a power series 8§ = 8¢+J,8,+- -+ . System (1) can now be written

£=1+18)f(x)+T:8(x, J2)

(1a)
g(x, Jo)=g(x)—8f(x) .
We define as main system associated with (1a), the system
*=(1+186)f(x). (2a)

System (2a) has a family of periodic solutions, with period T’, depending on six
parameters. Let z (¢, p;) be this family of solutions; p; can be arbitrarily chosen.
The variational equation is

y=(1+18)Q()y. 3)

Q(#) is the matrix 6 X6 of elements (3f;/dx;)x—.. System (3) is a linear differential
system with periodic coefficients. It has a set of independent solutions ¢' = dz/dp,
i=1...6.Let @ be the matrix of elements ¢".

For p; # p;, @' are periodic solutions with periodT". If p; = p;, z(nt"), p;) is solution
with period T with regard to ¢’ of the system dx/d¢ =f(x); ¢ =(1+J,6)¢ and
n=2m/T is a function of p;; z(n (' — ), p:) = z(l, p;) is also solution of this system.

1

. 8z 98z 8l on oz I on az

¥ Top ol on ap; op; n’op oy

¢ =@+Klg ",

with K = (—1/n%)(dn/dp;) and p' "' =v. 8§ means the explicit derivation and ¢’ is a
solution of dy/d¢ = Q(t")y. With variable ¢, ¢’ is solution of (3). & is a periodic
function with period T, I=n({'—y)=n(1+J.8)t—ny=n't—nv.
Remark. The parameters p; can be ordered in any way. If the semi major axis carries
the index j, we only admit that y carries the index j —1.

The adjoint system to (3)

y=-(1+1.8)Q)*y 4)
has a set of six solutions ¢'; among them five solutions are periodic with period T,
one solution is ¢’ ' = ¢ — Kl'. ¢ is a periodic function with period T". Let ¥ be the

matrix of elements ¢'; ¢’ is the column vector associated with the column vector ¢’
in the transformation ¥ = (& H)*.
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A necessaty condition for which (1a) has a periodic solution which tends to a
particular solution of (2a) for J,-> 0 is: (Roseau, 1966)

-
oo = [ ez 00di=0, i#j-1. (5)
0
Since —¢'f(z) = ¢; = cste, Equation (5) can be written as
-
ai(pk)=ci60T'+j l//ig(t)dt=0, l#]—l
0
ifi=j—1:
-
oi—1(pr) = cj-160T" + ‘[ [Yg(z)+ n'KJ‘ Wg(z) de]de=0. (5a)
4]

Proof. z{n[(1+J,8)t— ]} is solution with period T’ of system (2a).¢ =8z/8p; is
solution of the differential system

¢=01 +Jza)[o(t)¢v +(g;>x=z]

it is:

e = f [A,- +J W' (8f/ 8p;) dt]<p".

i=

Evaluating the integrals:

; ; ; 6
qo’_lj ' S—fdt+¢’J t!/’—fdt,
p; p;
by part, and writing the condition of periodicity: ¢{T")— @(0) =0, we have
T T
i ; 8 i 6
0= % [tp'(O) I t//’—idt]ﬂE(O) J zj/’—fdt+
izj 8p; 8p;
i#j-1 0 0
-
: - ;6
oo 2mkac [ (3Lenk | v La)a]=o.
dp; dp;

0

Functions ¢ are linearly independent, their coefficients, in the last equation, have to
be equal to zero, then for i #j—1:
T T

J’wiifdt=0 and IJa—fdt=IﬂA
op; ‘
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We have f(z, p;) = p(p;) k(z), so the last two equations give respectively

T T

J' G'f(z)de= j cadt=0, i#j—1

0 0

and
-
= Taon . plo;)
(2)de=—m A 2P0
5[ viz) ndp; " 9p/dp;

it follows that ¢; =0 for i #j—1.
The system y =(1+7,86)Q(t)y +h(t) with h(t)=g(z, 0)=—68of(z)+g(z), must

have a periodic solution with period 77, it is:

y0=3 [B+ [ vhw a]e’.

i=

From the condition of periodicity, and with ¢; =0 for i #j—1, we derive:

T T
I wig(z,O)dt=j vigz)de=0, i#j—1 (5)
[¢] 0

and
T T
-8 I Jf(z)dt+J [Jg(z)+n'1<j (//fg(z)dt] dt=0. (5a)
0 8]

These are Equations (5) and (5a) with
o= A;on plp))
== 2
! n dp; d9p/dp;

Equation (5a) determines 8.

3. Periodic Solutions in a Fixed Frame

3.1. THE GENERAL CASE: i#0, e #0.

System (1a) is explicitly given

fi=xi+3y fi+3=—(l~lfxi/r3)s i=1y213~

gi=—6xi13,

2
g 252 R3S (14 35)]
r r r
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Sx2 3 ,x 5x3
gs=-u IR (1422 ®
r 2 r r
_ 8x3 3 2x3( 5x§)]
= — 4 — — |t —34+-—
86 ,U«[ i +2R0 - 3 72

where u =kM,

k = gravitational constant,
M =mass of the planet,
R, =Equatorial radius of the planet, and
r = distance from the particle to the planet’s center.

The periodic solution of (2a) can also be written explicitly, but it depends on six
parameters p; which are in this order:
v = instant of perigee passage,

a = semi major axis,

e = eccentricity,

w = longitude of the perigee in the orbital plane,
{2 =longitude of the ascending node of the orbit,

i =inclination of the orbit.

We get
z1=Ak,—Bk,,
z,=Aks—Bky,
z3=Aks+ Bkg,

zs=2,(1+18)"", i=1,2,3

with A=a(cosu—~e), B=a(l—e>)"?sinuy, u—esinu=n't—ny=I;, n'=
n(1+J,8). k,i=1...6 are the well known functions of w, {2, i.

3

2
Z kai1= Z k=1
i=0 i=1

kik,+ksks—ksks=0 and n’a’=u.

The fundamental matrix @, solution of system (3) can be calculated easily; we have:
'=08z/0y; ¢*=0z/0a =@ +(3/2na)le"; ¢>=0dz/de etc.....
In order to obtain the fundamental matrix ¥, solution of system (4), and finally
Equations (5), we must calculate the inverse of the matrix &. In general, this
operation is rather complicated, but in the present case there exist some properties
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which allow large simplifications. The 6 X 6 matrix Q(¢) has the form:

Q= (A(zt) (I)> ’

I and A(t) are matrices 3 X 3. I is the identity matrix A(¢) = A*(¢) with

J=(—OI é)

we get ¢*J¢ = L. L is a constant matrix; then ¢ ' =L '¢*J and ¥ = (¢ ")* (Battin,
1964 ; Broucke, 1970). It can be seen (Broucke, 1970) that the matrix L is the matrix
with ‘Lagrange Brackets’ hence L™'=—P where P is the matrix with ‘Poisson

Parenthesis’. Following the classical definition (Chazy, 1953) we have

n 2 (az,- dz; 9z; az',-)
Ly=— — )
n'j=1\0p; 9px  Opx Op;
1si<6; 1sk=<6.

The elliptical elements p; are used in the previous order, we successively obtain L

and L™
2 1-¢?
0 —== a 0 0 0
n“‘a n‘a’e
2
-—— 0 0 0 0 0
n“a
1—e? 1—e?)1/?
- 2‘; 0 0 _( i) 0 0
L n“a‘e na‘e
- 1—e2)2 _ ,
0 0 (;2) 0 0 T&gle/i
na‘e na“(1—e”)
0 0 0 0 0 L
na*(1—e>)"?sin i
ot gi
0o 0 e 1 0

na*(1—e?)"? - na*(1—e*Y?sin i
Now, it is easy to obtain the matrices & 'and V.
Equation (5a) leads to

2
o= 80+% (%) (1—e2)_3/2(% sini—1)=0.

Eqdations (5) can be calculated for i =2 ... 6; we find

o=03=06=0,

/
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TI

0'4=m(—1+5 cos’ iH=0,
T'cosi
0‘5='(—1-T)3/2=0.

It is clear that this systém of six equations has no solution thus, in the general case,
there are no periodic solutions for system (1a).

3.2. EQUATORIAL CASE: i=0; e #0

System (1a) is reduced to a fourth order system and the solution z (¢, p;) of (2a)
depends only on the four parameters: ¥, a, ¢, ®. We can construct the matrices L!
and ¥ as in Section 3.1 we get

2 1-¢?
O —
n2a n2a2e 0
2
- 0 0 0
-1 nza
bs _(1=¢? 0 0 (=)'
n2a2e naze
L 2\1/2
0 o Uze)” 0
na e

Equations (5a) and (5) determine four relations between the parameters p;

3(Ro\’
o1=80-3(=") -y =0,

2\ a
0'2=0'3EO,

TI
0'4—(—172)2#0.

No periodic solution, even in the equatorial plane, does exist here.
3.3 CiIRCULARCASE: e=0;i#0
The periodic solution of Equation (2a) is
z1=a(cos £2 cos | —sin £2 sin [ cos §)
z2=a(sin £2cos [+ cos 2 sin [ cos i)

z(t, i) o
za=asinlsini

n ., .
Zi43 =" 2i, l=1a2a3a
~ n

where | =n't—nvy.
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The matrix @, solution of Equation (3), is made up by four solutions ¢ = 3z/dy,
0>=0z/0a, ¢’ =0dz/30, ¢®=032/3i and two solutions ¢> and ¢* with period T'/2
which are obtained from solution ¢ of the general case (Section 3.1).

We calculate the matrices L and L™ It is

2 .
0 S 0 0 0 gl
n‘a n-a
2
—— 0 0 0 0 0
n-a
1
0 0 0 —— 0 0
» na
L '=
1
0 0 — 0 0 0
na
1
0 0 0 0 0 —
na” sin i
_coztgzz 0 0 0 _ 21' .
n“a na“sini

Thus the matrix ¥ = (¢~ )* = (L™ ¢*J)* is known.
The six Equations (5) lead to:

2

' R
0'1=50+3<70) (=2+2sin>i)=0,
or=03=04=06=0,

3/Ro\’
os= ——(—") T'cosi=0.
2\ a
This system has for solution i = 7/2; 6o = —3(Ro/a)*.
So, for each given value of T, (or a), (1a) has a family of periodic orbits of first kind,
with period

T
T'=—5————.
1 —%(Ro/a)zjz

These orbits tend to circles in the plane i = 77/2, for J, > 0. The initial position on
these generating circles is arbitrary.

3.4. CIRCULAR EQUATORIAL CASE: [ =0;e=0. °

Solution of system (2a) is a family of circles lying in the equatorial plane. The matrix
& is made of two vectors ¢ = 3z/dy, ¢~ =dz/da and two vectors ¢° and ¢* having
the period T'/2 (Stellmacher, 1976; 1977). In this simple case, the matrix (¢ 1)* can
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be obtained directly from the matrix @. We get

1 1
L(—sinl—3lcos I} 2cosl —cos 2!/ —sin 2!/
na a a
1 . . 1, 1
—(cos [—3Isin ) 2 sin / —sin 2/ ——cos 2!/
5y na a a
@
1
%(2 cos [+3Isin{) —gsinl ————sin 2/ L (3—cos 2])
na n 2na 2na

1 2 1 1
——(2sinl/—3lcos!) —cos! —(3+cos2l) —sin2!
n‘a n 2na 2na

The four Equations (5) and (5a) lead to:
R 2
0'1=50—3(';0> =0, 0'2=0'3:0'4EO.

So, there exist periodic solutions, of first kind with period

e T
"~ 1+31(Ro/a)’

in the equatorial plane.
For J, - 0, these orbits tend to circles with radius a, and the initial position on these
circles is arbitrary.

4. Periodic Solution in a Rotating Frame

4.1. THE GENERAL CASE [ #0; e #0.

We choose as rotating plane, the meridian plane ZOX (Figure 1), which contains the
particle § and its projection on the equatorial plane. Because of the integral

Fig. 1
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6r* cos® ¢ = C, the equations with variables X, Z and 6 can be separated. We get

. uX C? X(. 527
X ==t SR (1-55)
. 4 Z(. 5Z°

. C

0=F.

The first two Equations (7) constitute an independant fourth order system. If we put
x1=X, xa=2, x3=X, x4=Z, this system has the form (1a) with :

fi=x3
fa=xa4
_ x; C?
ORRPA W
r X1
X
fo==55
/r
g1=—06x3
8= —bx4
5 _J x1 C? R} 5x3
8lx, Jo) = 83=5(u_31‘_3)—%/~t—50x1( —_22)
r X1 r r
pxs 3 Rb o S5x3
§4=8—73—2p—3 -
r r r

The associated system (2a) has a family of periodic solutions with period 7", which
depends on the four parameters v, g, ¢, w; i ia a function of a and e, defined by
cosi=C/(ua(l— eNV* . Let z(s, p:) be this family of solutions; we have

( z1=(a*(1—cos u)z—zg)l/2
zo=Aks+ Bkg
Z(tspi)= Z3:£Z'1
nl

n, . ,
24=—2, and u-—-esinu=Il=n't—ny.
n

The 4 x4 matrix Q(¢) in Equation (3) conserves the property given in Section 3.1.
The matrix @, solution of (3), is made up by the vectors ¢'=03z/dy, ¢>=dz/da,
0> =03z/de, ¢* = 32/dw the matrix ¥ = (L™ ¢*J)*, solution of (4), is obtained after
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calculation of the matrix L = ¢ *J®. We obtain

2 1-¢
0 -2 2 2 0
n-a na‘e
2
-—— 0 0 0
. na
n T (1=
—T 22 0 0 R
n‘a‘e na‘e
1— )12
0 o Uze)” 0
na‘e

with ¥, the four Equations (5) are calculated.
Equation (5a), o; =0, leads to the same equation as in Section 3.1,

2 ’
o,=03=0, 0'4=(£9) —Tz—z(l—Scoszi)=0.
al n(l—-e9)

This system has for solution cos’i=%>i=i and §,= —%(Ro/ a)2(1 — e2)_3/ % Thus,
in the meridian plane XOZ, there exists a family of periodic solutions with period
T =T/(1+J28).

For J,- 0, the family tends to the family of 'elliptical solutions in the plane with
inclination i = i..

4.2. THE EQUATORIAL CASE: i =0; e #0

The system (1a) is reduced to a-second order system. The periodic solution with
period T' of system (2a) is

zi=a(l—e cos u)

z(t, pi) = n
Zy= ? Z1
zdepends on the two parameters ¥ and a; e is a function of a, since C=
(na(1—e*)’?. The matrix & is made up by the vectors ¢ ' = 9z/8y, ¢ = 3z/da. In this
simple case we can directly obtain the matrix ¥ = (@ H)* Itis
2, 2,

—T2 @2 7 P1

n-a n-a
‘!p:

2 5 2

z ¥t T2 ¢

n-a n-a

The two Equations (5) and (52) are

3 (R _
al=50—5(7°) (1-e332=0, 0,=0.

There exist periodic solutions on the axis OX, whose generating orbits are ellipses.
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For any given value of T( or a), 8, and consequently T’ are determinated for
O<e<l.

4.3, THE CIRCULAR CASE: ¢ =0;i{#0

The equations of the motion are the same as in Section 4.1. but the associated system
(2a) has a family of periodic solutions with period T' which depends on two
parameters, y and a; i is a function of a since C = (,ua)” 2 cos i.

Let z (¢, p;) be these solutions, we have

zy=a(l-2z3)"?

zy=asinlsini

Z(t),pi) n .,
Z3=—, 21

n
Z24="7,22

n

The matrix @ is made up by the two vectors ¢' =9z/dy, ¢ =dz/da, and the two
vectors ¢~ and ¢* with period T'/2. The matrices L™ and ¥ = (L '¢*J)* are
calculated as in Section 4.1.

0 2 0 0
'1261
2 0 0
1 na
L_:
1
0 0 0 =
1
0 0 -5 0

The four Equations (5) and (5a) lead to

3 /Ro\’
0'1:50—5(7()) (3_4SiH2i)=0,

or=03=04=0.

So, for any value of the inclination i, there exists a family of periodic solutions with
period T, in the meridian plane XOZ. The generating orbits are circles. For any
value of T (or a), 8, and consequently 7" are determinated for 0 <i <.

4.4. CIRCULAR EQUATORIAL CASE: e =0, =0

This is a trivial case; f(z) =0 and the two Equations (5a) and (5) are reduced to:
O1=02= 0.
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TABLE 1

Solutions in  Solutions in the meridian plane

a fixed
frame
e 0 0 O<exl 0<e<1 0 0
i 0 /2 i, =63°26 0 O<i<n 0
3¢ 3¢ 3e 3e 2 o=0
' Ll S 1+ 1+—(3—4sin“i
T 1+3e71 2 ! 10(1 ~ %) ™372 21-e?)73? 2 ( sin” 1) T' undetermined

* e =12(R0/a)2

5. Conclusion

The conditions for periodic solutions are summarized in Table I. Some of the
periodic solutions were already obtained by different methods. Our results are not
always directly comparable, but after some calculations, they are found perfectly
consistent with those given by other authors. For instance, Delmas (1978) investi-
gates the equatorial case. He proves the existence of periodic orbits in a slowly
rotating frame, for 0 < ¢ < 1. This case can be compared with the case 4.2. We will get
the same result, if the rotating plane is not the meridian plane, but a plane rotating
with the velocity of the perigee. MacMillan (1922), considers the orbits in the
meridian plane. He takes an earth’s potential with even zonal terms and divides the
orbits in two classes:

(a) the orbits for which T =T (‘orbits re-entrant after one revolution’),
(b) the orbits for which pT’' = kT, where p and k are relatively prime integers,
(‘orbits re-entrant after many revolutions’).

He does not find the orbits for i = i, which however are mentioned by Kammayer
(1976), in an other rotating frame. Further, MacMillan gives a method for con-
struction of these orbits. He finds orbits of first class in the equatorial plane, where
the generating orbits are circles; this is our case 4.4. If the orbits are inclined on the
equatorial plane, there exists only one orbit for assigned values of the inclination and
the mean distance; the orbits reduce to circles for vanishing oblateness. This result is
consistent with our case 4.3, in which generating orbits are circles, and the condition
T'=T leads to sin i = 33/2 (first order in J»). For orbits with pT’ = kT, it is only
necessary to verify whether this condition is consistent with the relation o; = 0 which
leads to the value T'/T.
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