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Abstract .  The  general properties of certain differential systems are used to prove the existence of periodic 
orbits for a particle around an oblate spheroid. 

In a fixed frame, there are periodic orbits only for i = 0 and i near rr/2. Fur thermore,  the  generat ing 
orbits are circles. 

In a rotating frame, there are three families of orbits: first a family of periodic orbits in the vicinity of the 
critical inclination; secondly a family of periodic orbits in the  equatorial  plane with 0 < e < 1 ; thirdly a 
family of periodic orbits for any value of the inclination if e = 0. 

1. Introduction 

The present paper aims to apply the general properties of nearly-integrable 
differential systems in order to demonstrate the existence of classes of periodic 
solutions for the motion of a particle which gravitates around an oblate spheroid. 

The potential is limited to the J2 term. The equations of the satellite's motion form 
a differential system which is close to an integrable system. The properties of periodic 
solutions for such a system are described by Roseau (1966), Haag (1948) and others. 
By applying these properties we find all the periodic solutions in the vicinity of the 
periodic solutions of the integrable systems. Among them are some solutions found 
by other authors with different methods, e.g. MacMillan (1920) and more recently 
Delmas (1978), Kammeyer  (1976). 

The main interest of the described method is probably the fact that the formalism is 
the same for all classes of orbits and a great part of calculations has to be done only 
once. 

2. Equations and Method 

The method we use was described in previous papers by Stellmacher (1976; 1977; 
1979). We summarize the main points. 

In a cartesian frame, the equations of the motion are given by the autonomous 
system 

= f (x )  + ]2g(x) . (1) 

Equation (1) defines a sixth order system; x, f (x )  and g(x) are vectors with six 
components;  f (x)  and g(x) have successive continuous derivatives with respect to x. 
J2 is a small quantity which is approximatively 1 0  -3  in the Earth's case. For ./2 = 0, 
system (1) is reduced to 

=/(x). (2) 
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System (2) has a family  of elliptical solut ions depend ing  on six p a r a m e t e r s  p~, 
i = 1 . . . 6 ;  the elliptical e lements  for  instance.  No te  that  the  per iod  T of these 
solutions,  is a funct ion of one  p a r a m e t e r  pj, i.e., the s e m i m a j o r  axis of  the ellipse. 

T h e  ques t ion  is: D o e s  (1) possess a (or several)  per iodic  solut ion which tends to a 

(or several)  solut ion of (2) for  J2 ~ 0. 
Sys tem (1) is an a u t o n o m o u s  system, its per iodic  solution,  if any, has a per iod  T '  

close to T ;  we put  T '  = T/(1  + J26), where  6 is a cont inuous  funct ion of Jz expanded  
in a power  series 6 = 80 +J28a + ' . ' .  Sys tem (1) can now be  wri t ten  

2 = (1 +J26) f (x)+J2~, (x ,  J2) 
( la )  

g(x ,  ]2) = g ( x ) -  8 f ( x )  . 

W e  define as ma in  sys tem associated with ( la) ,  the sys tem 

2 = (1 + J 2 6 ) f ( x ) .  (2a) 

Sys tem (2a) has a family  of per iodic  solutions,  with per iod  T ' ,  depend ing  on six 
pa rame te r s .  Le t  z (t, pi) be  this family  of solutions;  pi can be  arbi t rar i ly  chosen.  

The  var ia t ional  equa t ion  is 

)~ = (1 + J 2 6 ) O ( t ) y .  (3) 

Q(t)  is the mat r ix  6 • 6 of e lements  (afi/Oxi) . . . .  Sys tem (3) is a l inear  differential  
sys tem with per iodic  coefficients. It  has a set  of i ndependen t  solut ions q i = Oz/Opl, 

i = 1 . . .  6. Le t  qO be  the matr ix  of e lements  ~pl. 
For  Pi # Pi, q i are per iodic  solutions with p e r i o d T ' .  If  pl = Pi, z (nt ' ) ,  pi) is solut ion 

with per iod  T with regard  to t' of the sys tem d x / d t ' = f ( x ) ;  t ' = ( l + J 2 6 ) t  and 
n = 2 r r / T  is a funct ion of pj; z ( n ( t ' -  7),  p~) = z(l ,  p~) is also solut ion of this system. 

~~ i 6z Oz Ol On Oz l On Oz 
- - - - _ - - + I X I X - - =  

Spi Ol an ap i Op i n 2 Opj a T 

q~J = ~ + K l~  j-1 , 

with K = ( - l /nZ) (on /Opi )  and pi-~ = 3'. 6 means  the explicit der iva t ion  and q~i is a 
solut ion of d y / d t ' =  O(t ' )y .  With  var iable  t, ~pi is solut ion of (3). ff is a per iodic  

funct ion with per iod  T ' ,  l = n (t' - y)  = n (1 + J23) t - n3" = n ' t  - n3". 
R e m a r k .  T h e  p a r a m e t e r s  pl can be  o rde red  in any way. If the  semi m a j o r  axis carr ies  

the index L we only admit  that  7 carries the index ] - 1. 
T h e  adjoint  sys tem to (3) 

~, = - ( 1  + J z 6 ) O ( t ) * y  (4) 

has a set  of six solut ions th i; a m o n g  t h e m  five solut ions are per iodic  with per iod  T ' ,  

one  solut ion is ~0 j-1 = 4 7 - K I ~ (  47 is a per iodic  funct ion with per iod  T ' .  Le t  W be  the 
mat r ix  of e l ements  ~/,i; r  is the co lumn vec tor  associated with the  co lumn vec tor  ~i  
in the t r ans fo rma t ion  gt = (~-~)* .  
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A necessary condition for which (la) has a periodic solution which tends to a 
particular solution of (2a) for J2~ 0 is: (Roseau, 1966) 

T '  

ori(pk)= I th~g(z'O) dt=O'  i # j - 1 .  (5) 
0 

Since -Oil(z)= cl = cste, Equation (5) can be written as 
T '  

~176 I O~g(t)dt=O' iCj-1  
0 

if i = j -  1: 
T' 

OrJ - l (Pk)=Cj - l t~oT"{ -  I [~lg(z){-n'KI t~ig(z)dt]dt=O. (5a) 

0 

Proof. z{n[(1 +J28) t - r ]}  is solution with period T' of system (2a).r = 8z/80j is 
solution of the differential system 

(o=(l+J28)[O(t)~+ 8f ( Lz] 
it is: 

(~ + I ~(Sf/SPi)dt] ~" 

Evaluating the integrals: 

Opj d op i 

by part, and writing the condition of periodicity: ~5(T') -qS(0) = 0, we have 
T '  T '  

O= ~ [q~i(0) I ~p' ~ d t l + ~ ( O )  f ~pj ~ d , +  i~] oPi J oPi 
i# j -1  0 0 

T' 

+r 2rrKAi+ I "O," . 

0 

Functions q~ are linearly independent, their coefficients, in the last equation, have to 
be equal to zero, then for i # ] -  1: 

T '  T '  

~pj dt = 0 and 0 dt=TO___n_nA. n Opj 1. 
0 0 
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We have f(z, pj) = p(pj) k(z), so the last two equations give respectively: 
T'  T'  

f ~bif(z)dt = f c dt=O, i r  
0 0 

and 
T '  

T On AI p(pj) 
f f f ( z ) d t = n  ~Pi O ~ P i '  
0 

it follows that ci = 0 for  i # ] - 1. 
The system )~ =(1+J23)O(t)y+h(t) with h(t )=g(z ,O)=-8of(z)+g(z) ,  must 

have a periodic solution with period T', it is: 

i=1  

From the condition of periodicity, and with ci = 0 for i ~ j - 1, we derive: 

and 

T t T r 

I '  f tO g(z, O) dt = ~b ~g(z ) dt = O, 
0 0 

i r j - 1 (5) 

T'  T '  

0 0 

(5a) 

These are Equations (5) and (5a) with 

Aj On p(pj) 
C ] - i  = 

n Opj Op/Opi 

Equation (5a) determines 3o. 

3 .  P e r i o d i c  S o l u t i o n s  in  a F i x e d  F r a m e  

3.1. THE GENERAL CASE: i # 0, e ~ 0. 

System (la) is explicitly given 

f i  = X i + 3 ,  f i + 3  = --(Id,  x i / r 3 )  , g i  : - - (~Xi+3 , 

[6x1+3 x l ( _ l  5x~\] 
+-7-)J 

i = 1 , 2 , 3 .  
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[ 6 X 2 ,  3 r,~2 5X32"~7 
~5 = / z l T - r ~  ~Xo ~52 ( - 1  + - ~ - - )  ] (6) 

f a x 3 ,  3 ~ , 2 x 3 /  _ 5x~\q e6=qT - ,,07k- +7)j 
where  /x = kM, 

k = gravi ta t ional  constant ,  

M = mass  of the planet ,  

R0 = Equa to r i a l  radius  of  the planet ,  and 

r = dis tance f rom the part icle  to the p lane t ' s  center .  

T h e  per iodic  solut ion of (2a) can also be  wri t ten explicitly, but  it depends  on six 

p a r a m e t e r s  Pl which are in this order :  
3' = instant  of per igee  passage,  

a = semi m a j o r  axis, 

e = eccentrici ty,  

to = longi tude of the per igee  in the orbi ta l  p lane,  

-- longi tude of the ascending node  of the orbit ,  

i -- inclination of the orbit.  

W e  get 

Z l = A k l - B k 2 ,  

z2 = Ak3 - -  Bk4, 

z3 ~ -  Aks + Bk6 , 

Zi+3 = 2i(1 +J28 )  -1 , i = 1, 2, 3 

with A = a ( c o s u - e ) ,  B=a(1-e2) l /2s inu ,  u - e s i n u = n ' t - n 3 " = l ;  n'= 
n(1 + J 2 8 ) .  ke, i = 1 . . .  6 are the well known funct ions of to, S2, i .  

2 3 

k 2 i + l =  '~ k 2 i = l  
i=0 i=1 

klk2 + k3k4- ksk6 = 0 and n2a 3 = lz. 

T h e  fundamen ta l  mat r ix  qO, solut ion of ,system (3) can be  calculated easily; we have:  
q a =Oz/O3"; 2=Oz/Oa =7+(3/2na)I~1; 3=Oz/Oe etc . . . .  

In o rder  to obta in  the fundamen ta l  mat r ix  qt, solut ion of sys tem (4), and  finally 
Equa t ions  (5), we mus t  calculate the inverse of the mat r ix  q~. In general ,  this 
ope ra t i on  is ra ther  compl ica ted ,  but  in the p resen t  case there  exist s o m e  proper t i es  
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which allow large simplifications. The 6 x 6 matrix Q(t) has the form: 

O(t )=(A~t  ) Io) . 

I and A(t) are matrices 3 x 3. I is the identity matrix A(t) = A*(t) with 

,=C 0') 
we get ~b*&b = L. L is a constant matrix; t h e n  (~-1  = L-Qa*J and ~ = ( ( ~ - 1 ) ,  (Battin, 
1964; Broucke,  1970). It can be seen (Broucke, 1970) that the matrix L is the matrix 
with 'Lagrange Brackets'  hence L -x=  - P  where P is the matrix with 'Poisson 
Parenthesis'. Following the classical definition (Chazy, 1953) we have 

Lik  "= -n7 i~=l \Opi OPk OPk -~iPi/ ' 

1~<i~<6; l~<k~<6.  

The elliptical elements Pi are used in the previous order,  we successively obtain L 
and L -1 

/o 
2 
2 

n a 

1 - e  2 
2 2 

n a e  

0 

0 

0 

2 1 --e 2 \ 
0 0 0 n2a n2a2e 

0 0 0 0 0 

(1 --e2) 1/2 
0 0 2 0 

n a  e 

(1 --e2) 1/2 
0 0 0 na 2e 

0 0 0 0 

0 0 
cot g i 1 

na2(1--e2) 1/2 na2(1--eZ) 1/zsin i 

Now, it is easy to obtain the matrices qb -1 and ~. 
Equation (5a) leads to 

= + 3  R o  2 
j t~sm i - 1 ) = 0 .  

Equations (5) can be calculated for i = 2 . . .  6; we find 

0 

- c o t  g i 
naZ(1-e2) 1/2 

1 
na2(1 - e2) 1/2 sin i 

o / 

0"2 ~ 0"3 = 0"6 ~ 0 
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TI 
O'4 = ~  ( - - 1 + 5  COS 2 i) = 0 ,  

T' cos i 
0"5 = ( l - - e 2 )  3/2 = 0 .  

It is clear that this system of six equations has no solution thus, in the general case, 
there are no periodic solutions for system (la). 

3.2. EQUATORIAL CASE" i = 0; e ~ 0 

System (la) is reduced to a fourth order system and the solution z(t, pi) of (2a) 
depends only on the four parameters: y, a, e, ~o. We can construct the matrices L -1 
and gt as in Section 3.1 we get 

0 

2 
n2a 

L - l =  
( 1  - e 2) 
n2a2e 

Io 

22 l - e 2  0 1 
n a n2a2e 

0 0 0 

(1 - e2 )  1/2 
0 

n a  2e 

(1 - e 2 )  1/2 / 
0 na2e 

Equations (5a) and (5) determine four relations between the parameters pl 

=8 -3-(R~ 
0-1 o 2\ a ] 

0-2 = 0-3 ~ 0  , 

T' 
o r 4 = ~ # 0 .  

No periodic solution, even in the equatorial plane, does exist here. 

3.3 CIRCULAR CASE: e = 0; i # 0 

The periodic solution of Equation (2a) is 

"zl = a(cos /2  cos l - s i n / 2  sin I cos i) 

z2 = a ( s i n / 2 c o s / + c o s / 2  sin I cos i) 
z(t, p~), 

z3 = a sin l sin i 

n 
zi+3=-~.i ,  i = 1 , 2 ,  3 ,  

where l = n't-n3,. 



1 5 2  L S T E L L M A C H E R  

The matrix ~,  solution of Equation (3), is made up by four solutions ~ 1 = OZ/O~/, 
r  Oz/Oa, r  Oz/M2, 6= Oz/Oi and two solutions 3 and @4 with period T ' / 2  

which are obtained from solution r of the general case (Section 3.1). 
We calculate the matrices L and L -1. It is 

L - I =  

0 

2 
n2a 

0 

0 

0 

cot g i 
n 2 a  2 

2 cot g i 
2 0 0 0 2 2 

n a  n a  

0 0 0 0 0 

1 
0 0 2 0 0 

n a  

1 
0 2 0 0 0 

n a  

1 
0 0 0 0 2 . 

na sin i 

1 
0 0 0 0 

na 2 sin i 

Thus the matrix ~ = (4~-1) * = (L-lga*J)  * is known. 
The six Equations (5) lead to: 

(U o ' 1 = 6 o + 3  ( - ~ + 2  sin2 i ) =  O, 

0 .  2 = 0 .  3 = 0..  4 - 2  0 .  6 ~ 0 

= _3(R0~ 2T, cos i = 0 
0"5 2 \  a / 

3 2 This system has for solution i = ~r/2; a0 = - ~ ( R o / a )  . 

So, for each given value of T, (or a),  ( la)  has a family of periodic orbits of first kind, 

with period 

T 
T ' -  3 2 " 1-g(Ro/a) ,12 

These orbits tend to circles in the plane i = rr/2, for J2-+ 0. The initial position on 
these generating circles is arbitrary. 

3.4. CmCULAR EOUATORIAL CASE: i = 0; e = 0. 

Solution of system (2a) is a family of circles lying in the equatorial  plane. The matrix 
is made of two vectors r = az/O'y, r  az/Oa and two vectors r and r having 

the period T ' / 2  (Stellmacher, 1976; 1977). In this simple case, the matrix (4~-1) * can 
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be obtained directly from the matrix qb. We get 

/ 1 , 1 t ( - s i n  l -  3 l  cos  l) 2 c o s /  - c o s  2l - s i n  2/ 
n a  a a 

1 1 1 
-Z-(cos l - 31 sin l) 2 sin l - sin 21 - -  cos 21 
n a  a a i'~-~)* 

c o s l + 3 l s i n l )  2 s i n l  1 s in2l  1 (2 n . . . . . .  a n 2 n a  2 n a  ( 3 - c o s  2/) 

( 2 s i n l - 3 l c o s l )  2 c o s /  1 ( 3 + c o s 2 / )  2--~aSin2/ 
n 2 n a  

The four Equations (5) and (5a) lead to: 

o'1 = 6o - 3 = 0 , 0 "  2 = 0"  3 ~-- 0"  4 ~ 0 . 

So, there exist periodic solutions, of first kind with period 

T 
T '  - 1 + 3 J 2 ( R o / a )  2" 

in the equatorial plane. 
For  3"2 -~ 0, these orbits tend to circles with radius a, and the initial position on these 

circles is arbitrary. 

4. Periodic Solution in a Rotating Frame 

4.1. THE GENERAL CASE i r 0; e # 0. 

We choose as rotating plane, the meridian plane ZOX (Figure 1), which contains the 
particle S and its projection on the equatorial plane. Because of the integral 

z 

r s 

x 

x 

Fig. 1 
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0r 2 cos 2 r = C, the equations with variables X, Z and 0 can be separated. We get 

t zX.  C 2 3 . ~2 X [ , 5Z~\ 
7r+-  ' 

/./.,Z 3 2 Z [ 5 Z 2 \  
2 = - -~-x-- x/,dzR o ~ ~3 - - ~ - ) ,  (7) 

t i= C 
X 2. 

The first two Equations (7) constitute an independant fourth order  system. If we put 
x~ =J~, x2 =Z,, x3 =X,  x4 = Z ,  this system has the form (la) with : 

f ( x )  = 

g(x ,  J~) = 

f l  = x3 

f2----X4 

/.l,X 1 C 2 

f3  = -  r---T+x--T 
/./~X 2 

f 4 - -  3 

g l  = --~X3 

g 3 = 6 ( ~  x~ CZ) -31z R--~-~ Xl( r 2 ] 

g4 = O 7 - - 2  /.s --~- X2 3 -  

The associated system (2a) has a family of periodic solutions with period T', which 
depends on the four parameters y, a, e, ~o; i ia a function of a and e, defined by 
cos i = C/(lza ( 1 -  e2)) 1/2 . Let  z (t, Pi) be this family of solutions; we have 

z ( t ,  p~) = 

zl = ( a2 (1 -  cos u) 2 -  Z2)  1/2 

Z 2  = Ak5 + B k 6  

n 
Z 3  = - -  Z1  

l,t t 

n 
z 4 = - - ~ 2  and u - e s i n u = l = n ' t - n y .  

n ~ 

The 4 x 4 matrix Q(t) in Equation (3) conserves the property given in Section 3.1. 
The matrix ~b, solution of (3), is made up by the vectors l = a z / 0 y ,  2 = 0 z / a a ,  

3 Oz/ae, 4 =  Oz/Oto the matrix ~ (L-lq~*J) *, solution of (4), is obtained after 
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calculation of the matrix L = ~b*J@. We obtain 

0 2 1 - - e  2 

2 n 2 a 2  
n a e 

L - l =  

2 

n Z a  

(1 - - e  2) 
2 2 

n a e  

0 0 

0 0 

( l _ e 2 )  1/2 
0 2 

n a  e 

with ~, the four Equations (5) are calculated. 

00e  l,2 t o/ 
Equation (5a), 0" 1 = 0, leads to the same equation as in Section 3.1. 

0"2=0"3-0 ,  0"4 = - -  n ( l_e2)Z  ( 1 - 5  cos 2 i ) = 0 .  

This system has for solution cos 2 i = ~ i = ic and 80 = - 3 ( R o / a ) 2 ( 1  - e2) -3/2. Thus, 

in the meridian plane XOZ,  there exists a family of periodic solutions with period 
T'~- T/(1 +3"230). 

For -/2 -~ 0, the family tends to the family of elliptical solutions in the plane with 
inclination i = ic. 

4.2. THE EQUATORIAL CASE: i = 0; e r 0 

The system (la) is reduced to a. second order system. The periodic solution with 
period T'  of system (2a) is 

z a = a ( 1 - e  cos u) 

z(t, pi)= n 
Z2=~-SZl 

zdepends on the two parameters 3' and a;  e is a function of a, since C =  
(/d.a (1 -- e2)) I/2. The matrix qb is made up by the vectors 1 = 3z/Oy, q2 = 3z/3a. In this 

simple case we can directly obtain the matrix ~ = (~b-1) *. It is 

( 2 2 2 i )  -- ~a-a  q02 n 2a ~0 

2 2 2 
n--~a r n 2a q~l/ 

The two Equations (5) and (5a) are 

3 (Ro]2 (1 e2 ) -3 /2  
0-1 = t~0--~ \ T /  -- = 0 ,  0 " 2 " 0 .  

There  exist periodic solutions on the axis OX, whose generating orbits are ellipses. 
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For  any given value of T(  or  a),  60 and consequent ly  T '  are de te rmina ted  for 

O < e < l .  

4.3. THE CIRCULAR CASE: e = 0; i r 0 

The  equat ions  of the mot ion  are the same as in Section 4.1. but  the associated system 
(2a) has a family of periodic solutions with per iod T '  which depends  on two 

parameters ,  3' and a ; i is a funct ion of a since C = (/za) 1/2 cos i. 

Let  z(t, pl) be these solutions, we have 

"zl = a (1 - z~ ) 1 / 2  

z (t), Pl), 

z2 = a sin I sin i 

n 
Z 3 = - - ~ t  

i i  p 

n 
Z 4  = - -  Z 2  �9 

�9 n t 

The matrix ~ is made  up by the two vectors  1 =  Oz/Oy, ~r Oz/Oa, and the two 
vectors  3 and r  with per iod T ' /2 .  The matrices L -1 and ~ = (L- lck*J)  * are 

calculated as in Section 4.1. 

L - l =  

0 2 0 
2 li a 

2 
2 0 0 

n a 

0 0 0 

1 
0 0 2 

na 

The four  Equa t ions  (5) and (5a) lead to 

0 " 1 = 8 o - ~  - -  ( 3 - 4 s i n  2 i ) = 0 ,  

0 

1 
na 2 

o/ 

0"2  = 0"3  = 0 " 4  ~-~ 0 �9 

So, for any value of  the inclination i, there  exists a family of per iodic  solutions with 

per iod T' ,  in the meridian plane X O Z .  The  generat ing orbits are circles. For  any 

value of T (or a),  60 and consequent ly  T '  are de te rmina ted  for  0 < i < 7r. 

4 . 4 .  C I R C U L A R  EQUATORIAL CASE: e = 0, i = 0 

This is a trivial case; f ( z ) =  0 and the two Equa t ions  (5a) and (5) are reduced to: 

0 - i  = 0 " 2  ~-~- O .  
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TABLE I 

157 

Solutions in 
a fixed 
frame 

Solutions in the meridian plane 

e 0 0 0 < e < l  0 < e < l  
i 0 7r/2 ic = 63026 ' 0 

3e 3e 3e 
T/T' l + 3 e * l - ~ - - 1  10(1_e2)_3/2 1+2(1_e2)_3/2 

0 0 
O < ~ i ~  0 

1 +32~e (3 - 4 sin 2 i) trl --- 0 
T' undetermined 

* e=J2(Ro/a) 2 

5. Conclusion 

The  condit ions for per iodic  solutions are summar ized  in Table  I. Some of the 

per iodic  solutions were a l ready obta ined  by different methods.  Our  results are not  

always directly comparable ,  but  after some calculations, they are found  perfect ly 

consistent  with those given by other  authors.  For  instance, Delmas  (1978) investi- 

gates the equatorial  case. H e  proves the existence of periodic orbits in a slowly 
ro ta t ing frame, for 0 < e < 1. This case can be compared  with the case 4.2. We  will get 

the same result, if the rota t ing plane is not  the meridian plane, but  a plane rotat ing 

with the velocity of  the perigee. MacMillan (1922), considers the orbits in the 

mer id ian  plane. H e  takes an ear th ' s  potent ial  with even zonal  terms and divides the 

orbits in two classes: 

(a) the orbits for  which T ' =  T ( 'orbits re -en t ran t  after one  revolut ion ') ,  

(b) the orbits for which p T '  = kT,  where  p and k are relatively pr ime integers, 
( 'orbits re -en t ran t  after many  revolutions ') .  

H e  does not  find the orbits for  i = ic, which however  are men t ioned  by K a m m a y e r  

(1976), in an o ther  rota t ing frame. Further ,  MacMil lan gives a me thod  for con-  
struction of these orbits. H e  finds orbits of first class in the equatorial  plane,  where  

the generat ing orbits are circles; this is our  case 4.4. If the orbits are inclined on the 

equator ia l  plane, there  exists only one orbi t  for  assigned values of the inclination and 

the mean  distance; the orbits reduce  to circles for  vanishing oblateness.  This result  is 

consistent  with our  case 4.3, in which generat ing orbits are circles, and the condi t ion 

T '  = T leads to sin i = 3~/2 (first order  in J2). For  orbits with p T ' =  kT,  it is only 

necessary to verify whether  this condit ion is consistent  with the relation o-1 = 0 which 
leads to the value T'/7". 
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