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Abstract. Quantization of a mechanical system with the phase space a K/ihler 
manifold is studied. It is shown that the calculation of the Feynman path 
integral for such a system is equivalent to finding the reproducing kernel 
function. The proposed approach is applied to a scalar massive conformal 
particle interacting with an external field which is described by deformation of 
a Hermitian line bundle structure. 

1. Introduction 

In the case of ordinary quantum mechanics the space of pure states is a projective 
complex Hilbert space. As a consequence the role of complex numbers is crucial in 
the description of quantum phenomena. On the other hand, the classical 
mechanical systems are described in terms of real differential geometry. However, 
many leading quantized classical systems have complex differential manifolds as 
phase spaces. Let us give a few examples: 1) the space of orbits of the n-dimensional 
harmonic isotropic oscillator is II;lP(n-1) (see [6]); 2) the phase space of a spin 
system is given by II~P(1); 3) IE~(I)×¢E]P(1) is the phase space of orbits 
corresponding to the negative energy level in the Kepler problem (see [16]). The 
twistor theory provides us also with a wide class of complex phase spaces. In 
general they are realized as the orbits of the conformal group on twistor flag spaces 
(see [10]). In particular, the space of positive projective twistors is the phase of the 
photon with positive helicity (see [13, 14]). Finally one should emphasize the 
important role of the Bargmann-Fock-Segal representation in quantum mech- 
anics (because of its holomorphicity). 

In Sect. 2 of this paper we study the quantization of a classical mechanical 
system where the phase space M is a Kfihler manifold. The basic feature which 
distinguishes such a system among the others is the possibility of quantization of 
classical states. This means that in some special case, when the Hilbert space of 
quantum states satisfies some condition of ampleness (see Propositions 2 and 3), 
one can embed M into ¢EN(~'), where Jg consists of square integrable holo- 
morphic sections of a Hermitian line bundle IE over M. Using this embedding one 
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can calculate the transition probability amplitude from one point of M to another. 
In such a way, we find the interpretation of the normalized reproducing kernel 
function as the transition probability amplitude between any two points of 
complex phase space M (see Sect. 2). The above interpretation is possible if and 
only if the holomorphic and metric structures of IE satisfy a certain geometrical 
condition, which in coordinate terms becomes the complex Monge-Amp6re 
equation. The rules of superposition and multiplication of transition probability 
amplitudes allow us to calculate them along any path. On the other hand, 
summing up contributions from all paths we obtain the transition probability 
amplitude between two corresponding points of phase space in terms of the 
Feynman path integral. 

In Sect. 3 we link this fact with the idea of Penrose that interaction can be 
described as a deformation of a complex structure. Therefore, the holomorphic 
structure of IE plays the role of an external field. The path integral description 
provides us with a Lagrangian depending on this deformation. 

The last section of this paper contains the application of the developed 
formalism to the case of a conformal scalar massive particle. The phase of a 
conformal scalar massive particle is taken to be an open subset NI + + C G(2, T) of 
two-dimensional positive definite subspaces in twistor space T (see [-11]). In the 
free case, i.e. when the holomorphic structure is not deformed we take as the 
quantum bundle IE the tensor product of the tautological Hermitian bundle over 
]M + +. The above theory contains a parameter which has a natural interpretation 
as the Planck constant h. After introducing the external field, i.e. deforming the 
hotomorphic and metric structures of IE, we obtain the model of a charged 
conformal scalar massive particle interacting with this field. Expanding this model 
in powers of h we find that the linear approximation of it becomes a model of a 
charged scalar massive particle in the electromagnetic field. 

Finally, let us emphasize that the purpose of this work is to indicate some 
relations between quantum mechanics and complex analysis. One of the most 
interesting results of this paper seems to be the reduction of path integration to the 
calculation of the reproducing kernel function for the Hilbert space of states [see 
(2.27) and (2.28)]. Although the explicit form of reproducing kernels is known for 
some special cases only (see e.g. [5]) we believe that this approach to quantum 
mechanical problems could be physically fruitful, see e.g. the formula (4.23). We 
would also like to underline that complex analysis and complex differential 
geometry have proved to be useful in solving many other problems in theoretical 
physics, see e.g. [1, 14, 15]. 

2. The Quantization of Classical States 

In addition to quantizing observables we also want to quantize states of the 
classical physical system. By quantization of classical states we will understand an 
embedding ~ : M  ~IP~(J~) of classical phase space M into quantum phase space 
]P~J/t) which is a complex projective Hilbert space (finite or infinite dimensional 
depending on the considered case). Because POE(d/t) has the canonical K/ihler 
structure given by the Fubini-Study metric, we assume for consistency reasons that 
M is a Kfihler manifold, too, and its symplectic structure ~ is given by the Kfihler 
form. 
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This section consists of two parts. In the first one we discuss some necessary 
facts concerning geometric quantization in the K/ihlerian case. Moreover, we find 
the explicit form for the Kostant-Souriau quantization prescription. In the second 
part we expose the role of the reproducing kernel function in ordinary quantum 
mechanics. 

Let E ~ M  be a differentiable complex line bundle on an n-dimensional 
complex manifold M. Let us also assume that lE admits the structure of a 
holomorphic vector bundle with trivializations 4~,:rc-l(f2~)--+f2~x~, where 
(g2,; z~ .. . . .  z~) is a holomorphic atlas on M. Fixing a metric structure H on ]E one 
obtains the metric connection 

V: C ° ( M ,  E) - - .C~(M,  ]E® T ' M ) ,  

(i.e. the connection consistent with holomorphic and metric structures of IE) on IIE,, 
see [4]. Assuming that the curvature (1, 1)-form curv V is nonsingular, one can 
consider M as a symplectic manifold with symplectic structure given by the form 
co = i curv V. It follows that IE is a quantum bundle (see [6, 9, 18]), for which the 
connection and the metric structure are given by V and H respectively. The 
complex structure defines the canonical K/ihler polarization F:  = T (°' I)M. (Let us 
recall that the n-dimensional complex involutive distribution F C T e M  is called a 
polarization iff: distributions Fn /7  and F + F have constant dimension and F c ~ f i s  
involutive, where/7 is the complex conjugation of F. If Fc~F= {0}, then F is called 
K/ihler polarization.) Hence, the space of F-stable sections 

V 

is given as the vector space of holomorphic global sections H°(M,  (9(1E)). 
By the definition, the complex Hilbert space of quantum states ~¢/will consist 

of holomorphic sections s e H°(M,  (9(]E® T *("' °)M)) which satisfy (s, s) < + o% 
where the scalar product ( - , - )  is given by 

(s,  t ) :  = i "2 ~ H(s, t), (2.1) 
M 

with s, t e ~ .  By definition s and t are ]E-valued holomorphic n-forms, thus, H(s, t) 
is an (n, n)-form. Therefore, because M is an oriented manifold, the integral (2.1) is 
well defined. The proof of completeness of J# can be found for example in [3]. In 
geometric quantization X/ is  usually defined as a subspace of square integrable - 
with respect to the Liouville measure -- holomorphic sections of ]E. However the 
above definition of J¢  is more natural from the reproducing kernels theory point of 
view. 

In order to eliminate those cases when ~ is not sufficiently ample, let us 
postulate the following condition: 

r~l~(Z*), wxe(z2)] 
g ~ such that det|tpz=(zl),[_ lp2/~(Z2)j q=0, (2.2) 

Z 1 ~ 2~2 E J3~t ¢ $ 1  ~ $ 2  ff ~A~ 

where si=~pi~s~®dz ~/x ... a dz~, s¢=lpips~®dz ~ A ... A dz~, i=  1,2, and z 1 ~f2~, 
z z ~f2l~. Here s~: f a ~ ] E  and dz~ i,, . . . /x dz"~ are holomorphic frames defined by 
s,: = ~ -  1(f2, x {1 }) and by holomorphic coordinates . 1 (12~, z~, ..., z~) respectively. 
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Let g~ : O~n~2~--* C* be the cocycle defined by s~ = g~s~, and l e t ~ "  f2~nf2~ ~ (9" be 

the cocycle defined by 

~Z~ 1 dz~ A. . .  A dz~" = ~ a z ,  ^ . . . / ,  dz~. 

Then, for z I e/2~nf2~ and z2 ef2pn/2o we have 

det[;~l~*t)) ', ~Pl~(za)] =g~=(zl)gap(zz)OZ~(zl)OZa(z2)det[~l~(z*), /P~o(z2) 1 

which shows that the condition (2.2) is independent on the trivialization of the 
bundle IE® T*("'°)M. 

The equality: co_JT(f)=df defines a homomorphism 7:(Coo(M, lR), {-,-}) 
~(H(M), [ - , .  3) of the Poisson Lie algebra COO(M, IR) into Lie algebra of Hamil- 
tonian vector fields on M. The Lie algebra of quantizable observables is de- 
fined as 

Cvr: = { f e  Coo(M, IR): [y(f), F] C F}. 

The Kostant-Souriau quantization is given accordingly by 

CFF ~ f ~ f :  = 1 T [(%(~) + / f ) ®  ~¢,(s)], (2.3) 

where the Lie derivative 5¢ x acts on the section, of the canonical bundle T *("' °)M. 
It is merely a technical problem to show that f preserves Fv(E) and i{f~} = [f, ~] 
for f g e Ctv- For the detailed description of the geometric quantization procedure, 
see for example [3, 6, 9]. 

Dealing with the K/ihlerian case we are able to describe the space of 
quantizable quantities explicitly. Namely, let us fix [g,~] e Ha(M, (P*), where g,~ is 
the cocycle providing the holomorphic structure on E. Let go be a holomorphic 
vector field on M. Acting by go on logg~p we remove the ambiguity due to the choice 
of the logarithm branch. Thus, [go(logg~)] depends only on [g~p], and we obtain 
the map z : H°(m, (9(T (1" °)m))-~Ha(m, (P), where z(go) : = [go(logg~)]. Let Hvv 
consist of Hamiltonian vector fields of the form go + ~b, where q~ e Ker~. Then we 
have: 

Proposition 1. The following sequence of Lie algebras 

0-*IR ' , Ci~ r ~ , Hpv~0  (2.4) 
is exact. 

Proof Since 0-MR ' > C°°(M) ~, H(M)--,O is an exact sequence and Cvvc Coo(M) 
and Hvv C H(M) are subalgebras, it is enough to show that 7(Cvv)= Hvv. 

From Iv(f), F] CF and f = f  we obtain ?(f) = ~o + ~, where 
go e H°(M, (9(T (~' °)M)). Because co = iJO logo~,, this gives 

i~q)(log0~)- i~ ( log  0~,) = ~f+  ~f (2.5) 

on f2,, where 0,~:= H(s~, s~). Formula (2.5) is equivalent to 

f =  iq)(logo~,) + go~, go, e (P(f2~). (2.6) 
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Using the transformation rule Oa~ = g,p~,p@~ and (2.6) we find 

~0(logg~) = - iq~ +iq~ on f2~nf2p. (2.7) 

This and 7(f) = c0 + q3 give 7(CFv) ( HF~.. 
In order to prove the inverse inclusion, let us take X =  (p+ O E HFF. By 

definition, (o satisfies (2.7). Thus, there is a function f e  C°~(M, IE) such that (2.6) is 
satisfied. From 

co_a X = - J f -  0 f=  - d(Ref)  + i (~ -  ~) I m f  (2.8) 

and from £fxCO = 0 we get J0 Ira f =  JO[~(q~ + ~) log0~j  = 0. The last formula shows 
that ~ 0 + O ) l o g o ~  is a pluriharmonic function. Thus, (see [193), there is a 
2~ ~ (9(O~) such that ~cp + 0) logQ~ = i(2~- X~). From this and from (2.6) we obtain 

I m f =  ~ ( 2 2 ~ +  %-2~-~-q3~) on ~2~. 

Since I m f  is defined globally, one has 22, + cp~-- 22 B + q)~ on f~nf2p which in turn 
defines a holomorphic function (~(9(M). The cocycle {q~,} is given up to a 
holomorphic function ~ ~ (9(M). Therefore, we can choose ~ in such a way that 

=0,  which gives Ira f = 0 .  From this and from (2.8) we see that HtvCy(Cvv). []  

Because of Proposition 1 the Kostant-Souriau quantization prescription (2.3) 
takes in a holomorphic frame the following form: 

f s=  -up~}--~= -~7~z~ +~o~)V; ~ s=®dz~ ̂  . . .Adz:,  (2.9) 

~a  
where s = ,&s=@dz~ ,x... A d~, ~o = q), ~-~, and %, ~o are given by (2.6). Using (2.9) 

we obtain 

d Jill(s, t)_a 7(f)] = H(fs, t) - H(s, ft) (2.1 O) 

for f ~  Cvv. After integrating both sides of (2.•0) and applying Stokes theorem we 
see that f is a symmetric operator on ./g if OM = 0 or if the Hermitian metric H 
vanishes on 8M. 

Fixing of z e (2~ and of a holomorphic frame s~®dz~ A.../x dz~ enables one to 
define the evaluation functional X{ ~ s--+V)~(z), where ,p~ are the components ofs  in 
the fixed frame. Because of the inequality I~p~(z)l <c,]lsll (see e.g. [3]), where c, is 
some positive constant depending only on s~®dz~ A.. .  A dz~, this is a continuous 
linear functional. Thus, by Riesz's theorem, there exists Ka(5,-) such that 

V~(z) = (Ka(:~,.), s(. )>. (2.11) 

From condition (2.2) we have K~(ff,. ) # 0. In the opposite case one has for each 
s e J /  that s(z)=0, which is in contradiction with (2.2). Therefore, taking into 
account the transformation rule 

~Zc~ 
(2.12) 
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we obtain, that the following 

M ~ f ~  ~ z - ,  [K~(~, • )] ~ CP(~g) 

is a well defined map from the classical phase space M into the quantum phase 
space tEIP(~g). 

Writing down K~(ff, v) in a chosen frame, 

Ke(~, v) = Ke~(~, v)s~®dvJ /x ... A dv"~ , 

we obtain the reproducing kernel function K~t~(i, v) which has the following 
properties: 

a) positivity 

b) reproducing property 

K~,(~, z)> 0, (2.13) 

K~(ff, v) = (K~(~,.), Ka(ff,. )) ,  (2.14) 

where v 1 E ~'~, V 2 ~: (~ ,  Z 1 ~. ('~0~, and z z ~ Qp. (The  condition (2.17) does not depend on 
the trivialization of  E ®  T *~"' °)M.)  

c) Condition (2.2) is satisfied. 

Proof. If OF is an injection, then for each zl, Zz ~ M and for c e t12", we have K~(il, • ) 
cK~(~2,. ). Thus, for each za, z2 ~ M and for c e ti;* there exist vx, v2 E M such that 

Because of K~(Z, v) = K~(6, z) the last condition is equivalent to (2.17), which gives 
b). Using (2.15) we find that (2.17) does not depend on the trivialization of 
IF®T*~"'°)M. Putting s~=K~(0a,.) and sz=K~(~2,.) ,  we obtain c) from the 
statement b). 

c) transformation rule 

_ 3z~ ~v~ 
K~(z ,  v) = g~(z)go~(v) ~zp (z) ~v~ (v)K~o(~, v), (2.15) 

d) the quadratic form 

ds2= ~ c?21°gK~(i,z) j ~k 
j,k= 1 ~ dz~d ~ (2.16) 

is invariant under changes of holomorphic frames s, and coordinates (z I . . . .  , z~). 
These properties will be crucial for the following considerations. 

Proposition 2. The following statements are equivalent: 
a) ~ :M~II~P(~N)  is an injection, 
b) for each z 1, z 2 ~ M there exist Vl, v2 ~ M such that 

det~ K~(~ l ' z0 '  K~(v1'z2)~ =P0, (2.17) 
kKa=(Vz, zl), Kap(152,z2) A 
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In order to show that c) implies a) let us assume that Y is not an injection. 
Thus, there exist z~, z2 ~ M and c ~ IE* such that K~(~,. ) =  cK~(~z,. ). Multiplying 
the last equality by s~J¢/ we find ~p,(zO=ctp~(zz). This means that there are 
Zl, zz ~ M such that for each Sl, s2 E J / w e  have 

act [~Pl=(zl), ~Pa~(za)] = 0 
L~2.(z0, ~ ( z 2 ) J  ' 

which is in contradiction with c). []  

Proposition 3. The map ~" : M~PIF4~¢//) is an anti-holomorphic embedding if and 
only if the condition (2.17) is satisfied and ds 2 is positive definite (in this ease it is 
called the Bergman metric). 

Proof The proof stated here is a simple extension of the proof contained in [8] to 
the case of general line bundle. Let ~/~, = {~p e ~¢/:p(z)=0} and let ~¢/~ be the 
orthogonal complement of ~{z in Jg. From the condition (2.2) one has: 
dirn~/E~ = 1. Let us choose an orthonormal base {So, s~, s2, ...} in ~ consistent 
with the decomposition ~/=~¢/,@J¢/~, i.e. (Sl ,S 2 . . . .  ) = ~ / ~ z  and < S o ) = J ~ .  

Taking K~(5,. )=  ~ ~,(£)s, and s , =  ~,~s~®dz~/~ ... Adz 2, one concludes from 
~t=O 

the reproducing property that ~ , (~)=  ~p,~(z), which gives 

ds z. = ~ dtq"(z)dtq"(O 
. = 1  ]K~O(Z)[ 2 

(2.18) 

From (2.18) one sees that ds z is positive definite at z e M if and only if for every 
~o~ ~ T) 1' °)M there exists s ~ J¢/, such that (P,0P~) + 0, where s = ~p~s~®dz~ A. . .  A dz"~. 
But the last condition strictly means that the differential dgf  of W :  M~IPIIS(J~) is 
nonsingular. Due to this and from Proposition 2 we have that f is an embedding. 
If one assumes that c f  is an embedding then according to Proposition 2 the 
condition (2.17) is satisfied. For  ds ~ one has ds 2 = ~ '*dsZs ,  where dsZs is the Fubini- 
Study metric on 1PIE(jE). Thus ds 2 is positive definite. []  

The above propositions show that the positive definiteness of ds z and (2.17) 
ensure that the classical phase space is embedded into the quantum phase space. In 
this manner, we can quantize not only observables f ~ f  but also the states 
3g" :z-~[K~(ff,. )]. In the case of the Bargmann-Fock representation [K~(i,- )] is a 
so-called coherent state; hence we extend this terminology to the general case. The 
reproducing property guarantees that coherent states form a linearly dense subset 
in rig. 

Also some other properties of the reproducing kernel {K~(& v)} are to be 
mentioned here. From (2.15) we see that it is a section of the line bundle 
pr*(~®T*(°'")M)®pr~(E®T*("'°)M), where pri is the projection of M x M on 
the i th component. Thus, the diagonals {K~,(ff, z)} define a section of 

Oz, where TE®IE® T *("'")M. The transformation rule m~ = o)~ Oz~ Oz~' 

n 

co~=det[~o3~]+0 is a component of the Liouville 2n-form /kc° 
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= - n ! o ~ j e ~  ^ . . .  ^ d 8  ^ dz~ ^ . . .  A c/z~", g ives  

K~(ff, z) K~(ff, z) 
(_i),~o.)B~(Z)=[g~(Z)12(_i),,O)r~(z) for zsf2,c~f2~. (2.19) 

This means that ( -  i)"e)~ are components of some section/~ of the bundle lE* ®E*  
Ke~ 

written in the frame g~®s~. Because o is nonsingular we have ( - i )"o~,  4=0. 
K~ 

(w 0. (-i)"o~ 
Therefore,/~ or - H - - - - i s  negativel defines a new metric structure on 

IE. Everywhere below we shall assume the positivity of ( -  i )%~.  
K~ 

The physical meaning of K~(~, v) is determined by the following. Identifying 
the classical states z e (2~ and v e O~ with the coherent quantum states [K~(~, • )] and 
[K~(~,. )] respectively, we can calculate the transition probability amplitude 

( K~(~,.) K,(g,.)  ) K~(~,z)  (2.20) 
a~(~,  z) :-- II K~(e, .)11' lIKe07, ")l[ - K~¢(~, v) ~/2 K~,(e, z) ~/2" 

After passing to a new frame [see transformation rule (2.•5)] a~,07, z) changes only 
by a phase factor. Hence, the transition probability density la~(zS, z)I 2 does not 
depend on a choice of the bundle trivialization, but it naturally depends on points 
z~ (2~ and v~(2~. The transition probability amplitude from z to v with the 
simultaneous transition through the point w s f2~ is a~,(#, z)a~(6, w), and it also 
does not depend on the choice of frame s~: ~2~-~. Rephrasing the reproducing 
property (2.•4) in terms of the transition probability amplitude we obtain 

a,~(~, z ) :  y, ~ a~(~, z)a~,(~, w)K~(~,  w)~e(w)h~(w)dw~ A ... A d ~ ,  (2.21) 
), M 

where supp h 7 C f2~, ~ h~ = 1, and h7 e C ~(M, ~),  i.e. {h~} is a partition of unity. The 

natural measure on the phase space is the Liouville measure 

d#L : = (-- i)"o~,dw~ /x ... A dw~ /x d#~ A ... A d#~. 

It is then physically reasonable to perform an integration in (2.21) with respect to 
d/~L instead of O~(w)K~(#, w)dw} A . . .  A d#~. Therefore, let us assume 

dl~L(w) = Ce~(w)K~r(&, w)dw~ A , - 1 - ,  ... i', dw 7/', dw~ A ... /~ dw~ , 

where 0 < C, which means that the metric /~ coincides, up to a real positive 
constant, with the metric H , / t  = CH. Locally the above condition takes the form of 
the complex Monge-AmpOre equation 

d "  r02 l o g ~ ( w ) 7  "("+ ~) 1 
et L- ~ j = C ( - 1 ) -  2 ~..Q,,(w)K,v(O,w) on Y2,. (2.22) 

In this way we obtain a differential equation for 0~ = H(s,r, sr), because {Ky~} 
depends on the holomorphic and metric structure of]E. In [12] one shows that in 
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the case of M being biholomorphic with the bounded domain in tE", {K~p} depends 
on {0~} analytically. 

Integration of the complex Monge-Amp&e equation according to its non- 
linear character is a difficult problem, and the discussion of it goes beyond this 
paper. Significant progress in this direction has been made by Yau (see [20]). In the 
following sections we consider some cases for which one can find solutions of 
(2.22). 

Now, in order to describe our model in the language of path integrals we shall 
calculate the transition probability amplitude along the path 7 for the physical 
system defined by the phase space M. We shall treat this path as a piecewise 
smooth curve in M, beginning at z and ending at v. Let zi = 7(z~), i = t , . . . ,  N, be a 
sequence of points on 7 such that z 1 = z and zN = v. The transition probability 
amplitude from the state z to the state v with its simultaneous transition through 
the states z 2 . . . . .  zN- 1, according to the amplitude multiplication rule, will be equal 

N - 1  

to [1%+,,i(z~+l,z*) • With the division {zi} of 7 getting denser and denser we 
i=1 

shall find the formula for the transition probability amplitude along 7, 

N - t  

a~(7; ~, z) = lim exp • log % +1~i(~ + 1, z~), (2.23) 
N ~  i = 1  

where ~ = ~1,/~- ~N, and z~ ~ ~2~. Hence, because of K ~  ~,(zi+ 1, zi) are differenti- 
able functions of their arguments, we obtain 

a~(7; ~, z) = exp [i ! Im(JtogK~,  (2.24) 

where the 1-form Im(J logK)  is given locally by Im(JlogK~r). The formula (2.24) 
has a geometrical interpretation. Namely, one can see from (2.15) that K~r(i ,  z ) - 1  
can be considered as the component of some Hermitian metric H K on the bundle 
E ®  T*(" ' ° )M taken in the holomorphic frame s~.®dz~ /~ ...  A dz'~, 

n 1 n K~7(i, z ) -  1 = : HK(s~®dz~ A ... /x dz~, s~®dz~ A ... /x dz~). 

Let us take the unitary frame 

We have 

VKa~ = i Im(Jlog K~a)®a~, (2.25) 

where V K is the metric connection on IE® T *("' °)M defined by H ~. From this we 
conclude that a~(7; ~, z) is the parallel transport with respect to the connection V K 
from point z to point v along the curve 7- As a consequence of this and (2.15) we find 
that after passing to a new frame, a¢~(7; ~, z) changes by the phase factor which 
depends on z and v only. 

Let K2, ..., K N _ 1 be a sequence of regions in M such that 7(zi) = z i e K i. Then, 
according to the rules of superposition and multiplication of the transition 
probability amplitudes the formula 

a~(g,  z; K 2 . . . .  , K N -  1): = [. d#L(Z2). . .  ~. d#r (Z~-  I) 
K 2  K ~  - 

x a~(Y.z, z ) . . .  a;a~,_ ~(f, z~_  1), (2.26) 
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where for simplicity we assume K~Cf2~,, describes the transition probability 
amplitude from state z to state v with a simultaneous transition through "the 
gates" K2 ....  , KN-1. While using the path integral formulation, we assume 

a~(g,z;K2 . . . .  ,KN-1) = :  S ~ [ 7 ] e x p ~ i f l m ( J l ° g K ) ]  (2.27) 
~ [ ~ J 

to be the definition of the path integral of the functional exp[i ! Im(~logK)] over 
m ¥ j 

the set ~ffN, where YN is the set of paths which satisfy: 7(21)=z, 7(zi)sKi, and 
7(~cN) = v. In the special case we will have 

1 
Here we integrate over all paths which connect points z and v. 

The standard metric on projective Hilbert space IEIP(J/d), 

. ~  lieU's1 eitZs2 
d([s l ] , [ s2]) :=  mI . . . .  (2.29) 

, , , , 2 ~  Ilslll IlszH I1' 
can be transported onto the classical phase space M by the imbedding 
a f  : M ~(EP(J#). Putting sl = K~(~, - ) and s2 = KB(z2, " ), 21 ~ ~ ,  and z2 e ~?p, after 
simple calculation, we obtain 

riM(z1, zz) = I/2(1 --la~p(ffl, z2)1) 1/2 • (2.30) 

The properties OfdM in the case when M is a bounded domain in t12" are studied, e.g. 
in [17]. It is shown there that the topologies induced by dM and by the Euclidean 
metric are the same, and M is complete with respect to dM. From (2.30) we can see 
for example that the probability of transition from zl to zz is nearly i if zl is close to 
z z in the sense of the metric dM. The sequence of states {zu} of the physical system is 
a Cauchy sequence if starting from a certain natural number JP  the probability of 
the successive transitions zN~zN+ 1 is arbitrarily close to 1. In other words the 
most probable physical processes are those which are described by the Cauchy 
sequences. 

3. Deformation of the Holomorphic and Metric Structure 
of the Quantum Bundle and Interaction 

One of the ideas of Penrose's twistor theory is the description of electromagnetic 
and gravitational interactions by the deformation of the holomorphic structure of 
some complex bundles over twistor flag spaces (see [13,14]). The fruitfulness of 
such an approach for classical field theory was manifested in the problem of 
classification of the instanton solutions of Yang-Mills equations (see I-1]). Making 
use of this idea, we fix the differential structure of the quantum bundle ]E--, M and 
vary its holomorphic and metric structures, interpreting them as external fields 
interacting with the physical system described by M. The purpose of this section is 
to show how the action functional of the system depends on the above mentioned 
structures. In order to do this we will compare (2.28) with the Feynman definition 
of the transition probability amplitude along the path. 
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We shall start with the presentation of some necessary facts concerning the 
spaces of all possible holomorphic and metric structures of the complex differential 
bundle 1E. First of alt, let us recall that hotomorphic line bundles on the complex 
differential manifold M are, up to isomorphism, described by elements of 
Hi(M, (9*) (see e.g. [4]). The exact sequence of sheaves 

0~2~ ' ,(9 ~xP~(9*~0 

defines the boundary homomorphism 6 :Hi(M, (9*)-~H2(M, 2~) (see e.g. [4]). Thus, 
because the differential structure of ]E has been fixed, the classes of isomorphic 
holomorphic structures on ]E are parametrized by 6-  i(cl(lE)), where c~(lE) is the 
Chern class of liE. For a more explicit description, let us now fix a holomorphic 
structure on lie and let gO ~ (9*(t2~nf2p) and s° :O~--*E be the transition functions 
and holomorphic frames of it respectively (we will assume that {f2~} is an acyclic 
cover of M). L~t us also fix a Hermitian metric H ° on ]3. Now, for any holomorphic 
structure oflE, which is trivialized by the system of frames s~: Q~IE ,  s~ = g~asp, one 
has s~ =f~s °, where £ ~ C~(O~). Any metric structure H on E is given by H - - c H  °, 
where ¢ ~ C°(M, ]R+). Therefore, the system of the smooth functions {f~} taken up 
to the holomorphic factors g ~  C*(f2~) and satisfying the transformation rules 

fB= g ~ f  g0p J~ on ~c~O# describes the possible holomorphic structures of ]E. On the 

other hand the possible metric structures are determined by positive valued 
smooth functions on M. One has 

2 0 e~=elLl e~, (3.1) 

where 0~=  H(G, s,) and o o o o Q~ = H (s~, s~). For the later application, it is reasonable 
to introduce the following notation 

eB':=olf~l 2 and eA':= K~ K~ o . (3.2) 

The functions A~: ~ - ~ R  describe the reproducing kernel deformation resulting 
from the deformation B~: Q~-~IR of the holomorphic and metric structures. 

The dependence of {A~} on {B~} plays the fundamental role in our theory. The 
effective use of it demands the formulas that would explicitly express the potentials 
A~ = A~(~, z) in terms of B~ = B~(~, z). The search for such formulas is equivalent to 
the calculation of the reproducing kernel functions K~(~, z), which is in the general 
case an unsolved problem. However, the result obtained in [12] suggests that in 
the case of a small deformation (i.e. when B~ is small) the perturbative methods can 
be used in the analysis ofA~ = A~({Bp}). In view of the dependence A~ = A~({B~}) the 
equation 

021°g~°~ + OZB~--]=det~C321og~-~°]e "~+a~(~"~l,, (3.3) 
detk oz O Oz~O~J L ez Oe  3 

which is the consequence of imposing condition (2.22) on (s °, 0°,) and (G, O~,), can 
be treated as a field equation for the field {Ba}. If {Bo} is a solution then {A~} can be 
obtained from (3.3). 
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In order to simplify further considerations we shall study the case with the 
existence of coordinates (z 1,..., z") on the domain g? C M which covers M up to the 
zero measure set. We will also assume that there exist holomorphic frames 
s ° : O ~ E  and s : O ~ E  corresponding to holomorphic structures defined by the 
1-cocycles {gOp} and {g~p} respectively. From now on all quantities appearing 
above will be denoted by the same symbols and without the indices enumerating 
the frames. Let us now take the map O ~ z~K(~,. ) ~ JCl. This allows us to consider z 
as an element of a Hilbert space and in such a way to calculate its norm fl K(~,-)ll 
= K(£ z) 1/z. Hence, a unitary process [% z r] ~ z ~z(~)= K(~(r),. )~ J f  satisfies the 
condition K(~(z), z(z))= k0 = const. Generally one can take 

f[~--~K(~(z),z(z))] =fo =const,  (3.4) 

where f is a one-to-one real smooth function on N +. The examples presented 
below show that for many reasons it is reasonable to put f =  log. 

Let us then calculate the transition probability amplitude a(v?, z) however, 
under the condition that the transitions of the system from z to w will be realized by 
the unitary processes z(~), i.e. when the restriction (3.4) is taken into account and 
z(Ti) = z, Z(Vs)= w. Unitarity of the process ~-+K(ff(r),- ) is a quantum states phase 
space counterpart of the energy conservation law which is assured in the classical 
phase space M, while unitarity in ~//g is assumed. 

Using the standard arguments and (2.28) we obtain 

aOr~,z;ko)=~dz(z)dS(z)~If(~K(z(r),z(z)) ) --f(1)lexp[ilm(fflogK)] 

i(~± l - l ( O l o g K  dff k c~logK dzk) = ~ I] dz(v)d~(z)d2(r) exp-  ~ h 

+ 2(z) ( f ( ~-~ K(~(z),z(z))) - f (1)) l dz } . (3.5) 

where 2(z), z e [% Zs] are the Lagrange multipliers resulting from (3.4). Integration 
over d)~(z) respects the contribution to functional integral given by all the possible 
parametrizations of the considered processes. Fixing 2(~), it is natural to treat 

t 

t = f 2(z)dz as the time parameter, measured by some classical measuring instru- 
to 

merit - the clock. Therefore, taking into account the Feynman definition of the 
transition probability amplitude along the path, we will define the action 
functional for the system as 

's [ imgA ( ~ ) ]  S[7]=~dL:~ =h ,,~ Im(Jl°gK°) + L dt +f K dt. (3.6) 

While defining S we substitute K(~, z) = Ko(~, z)e a(~' ~) and neglect the phase factor 
exp [i(t s - t~)f(1)], which has no meaning in the considerations presented here. The 

expressions Im(01ogKo) and Im ~A ( I K )  -&-+ f koo will be interpreted as the one- 

form responsible for the Legendre transformation and the Hamiltonian of the 
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considered system. According to the previous interpretation of A the term Im JA 
ensures the interaction of the system with the external field, dt 

As an illustration we will consider the following: 

Example. Let us take M = ~" and ]E= ~" × ~ as the quantum bundle with the 
Hermitian metric 

e°=H(s° ,s°)=exp[-~(Iz~12+. . .+lz"12)] ,  

where the holomorphic frame s o : •" ~IE is given by the s°(z) : = z x { 1 } and h > 0. 
After a simple calculation one finds the reproducing kernel function 

Ko(~,z)=(2rth)-"expIl(~lz~+. . .  + b"z")]. 

n(n+ 3) 
The function Qo satisfies the condition (2.22) for C = ( - 1 ) ~ - - - n ! .  Taking 
z k = x k + iy k, f =  log and A = 0 (i.e. the external field is zero) one obtains from (3.6) 
the action functional 

t$ 1 "tf 
S[7] = ~h t~ ~ pkdxk -½ (pkpk +xkxk)dt _ __2h pkxk t, -- (t y -- t~) logko 

for the n-dimensional isotropic harmonic oscillator. As a consequence (3.5) gives 
the Feynman propagator for the harmonic oscillator. The quantization procedure, 
described in Sect. 2, leads to the Bargmann-Fock-Segal quantization for the 
physical quantities and replaces the classical state v by the corresponding coherent 

state (2Tch)-" expI~---h ~kzk ]. 

6S 0 The variation principle E-V-= for (3.6) leads to the following Hamiltonian 
equations: 

oJC J X = - d f  ( l-o- K ) , (3.7) 

where the (1, 1)-form co K = iJ0 logK is the curvature form of metric connection 
dzk O d~ k 

V z¢ and X -  dt Oz k + dt Oz ~" The choice of the function f influences only the 

time parameter rescaling. 
To end this section let us make a few remarks on the invariance of the presented 

theory with respect the holomorphic gauge transformation, given by replacement 
of the holomorphic frame s: f2~IE by s' = gs, where g e (9*(0). The transformation 
rule (2.15) shows that the transition probabilities la(g, 012, [a(g, z; K1 .... , Ku-  1)12, 
la(y;g,z)[ 2, and the metric dM are gauge invariants. Also the Monge-Amp&e 
condition possesses this property. On the other hand, since, one has 

K'(~(z), z(r))= J g(z('r))J2K(~(~:), z(z)), 
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where K'(Y., z) is the reproducing kernel function taken in the new frame s', the 
unitarity property (3.4) is lost after passing to the new gauge. Therefore, the 
problem of physical meaning of the holomorphic gauge arises. We suppose that its 
choice should be made in each individual case independently. So, it is reasonable 
not to discuss this problem generally. 

4. The Application to the Scalar Massive Conformal Particle Case 

In this section we apply the formalism developed in two previous sections to the 
phase space ~/I ÷ ÷ of all possible "creations of classical scalar massive particle." By 
"creations of classical scalar massive particle" we mean the separate effects of 
identification of what is called an object, localized in space-time with momentum 
and with both positive energy and mass. We shall not fix the mass, therefore, ]IV[ ÷ ÷ 
is an 8-dimensional manifold parametrized by four spacetime coordinates and 
four-momenta. We shall assume also that ~vI + ÷ is an SU(2, 2)-homogeneous 
symplectic manifold. The conformal group SU(2, 2) is a natural extension of the 
Poincar6 group by dilatation and four-acceleration transformations. If we want to 
obtain the phase space for the relativistic scalar massive particle, which could be 
described as some trajectory in NI ÷ ÷ localized on a constant mass hypersurface, 
we should reduce the symplectic structure of IM + ÷ to the mass-shell. Hence, it is 
natural to call the "creation of scalar massive particle" the conformal scalar 
massive particle. 

It was shown in [11] that one of the possible realizations of IM + + is the 
Grassmannian of two-dimensional positive definite complex subspaces in twistor 
space T. Let us recall that ~f by definition is 1124 equipped with a Hermitian form t/ 
with signature + + - - ,  and a two-dimensional subspace z e G(2,T)= :NI  is 
positive definite iff the twistor form ~ restricted to z is positive definite, i.e. sign 
t/l = = + +.  The conformal compactification of Minkowski space is the Grass- 
mannian IM °° of isotropic (with respect to t/) two-subspaces in T. M OO and ~vl + + 
are conformally homogeneous spaces. One can consider SU(2,2)/Z 4 as the 
biholomorphism group for tM + +. The complexification of IM °° gives IM and 
MO°C 0NI + +. Fixing oe e IM °° (the point at infinity) one defines the Minkowski 
space Moo as the set of points x e M o  ° which are transversal to oe. Fixing 
additionally 0 E M= (the origin of Lorentz system of coordinates) one can define 
the Poincar6 group Po~ extended by dilatations as the stabilizer SU(2,2)o~ of 
infinity; the intersection of stabilizers SU(2, 2)~ c~SU(2, 2)0 as the Lorentz group 
Lo, ~ extended by the dilatation group Do, ~; Lo, ~ and Do. Go as the commutator 
and centralizer of SU(2,2)~o~SU(2,2) o respectively. The group of Minkowski 
space translations T~o is defined as a set ofexp)~, where )~  5O~//(2, 2) is such that Im)~ 
C oo C Ker)~. The group of four-acceleration Ao is formed by exp)~, where Imz C0 
C Kerx. One also has the decomposition 

C - K  
5o0//(2,2) ~ 5o~g(2,2)*- ~r*m c~o* * • = - J  ~ ~ o . ~ o G @ o , ~ ® s J ~ ,  (4.1) 

where ~ o r . ~  c~o, ,~=~o~,  * J o~=~o, , ~ o , ~ = ~ o , ~ ,  and d*~- -~o  are dual spaces to 
corresponding Lie subalgebras (isomorphisms are given by the Cartan-Killing 
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form). Everywhere below we shall use the representation: t l = i ( ?  E EO), 
\ -  

L i e  subalgebras appearing in (4.1) will have then the form 

g/~r~*= {(  O 00):P=P+eMat2×2(l12) }, 

0 T r M = 0 } ,  ~.~'. oo = {(  0 M _ M + )  : M ~ Mat2 × 2((E), 

A + 

The connection between Lorentz and matrix coordinates is given by Pauli 

matrices au, where ~r0 = E = (I0 ~ ) a n d # = O ,  1 ,2 ,3 ,  i . e .Z=zUau=(xU+iyU)cru ,  

P = p~cr~, M = ~(mOk~rk -- ekijmkJ~h), A = a~cr~, where rn kj = -- m jk and m °k = - m k°. 
The exhaustive discussion of phase space ]M + + on the classical mechanical 

level is to be found in [11]. Here, let us only mention that the symplectic form is 
given by 

02 l°gyZ 2, 
~o~=i20z~O - d z  A d z ,  0~e2e~ ,  (4.3) 

and the momentum map Jx is of the form 

[ ( Z + Z + ) ( Z - Z + )  -1  , - 2 Z ( Z - Z + ) - I Z  + -] 
J ~ ( z ) = i 2 [  2(Z_Z+)_ 1, _E_Z(Z_Z+)_Iz+]~(2,2), (4.4) 

where z e IM + +. After decomposing Ja(z) according to (4.1) and passing to Lorentz 
coordinates, one obtains the four-momentum, angular momentum, dilatation and 
four-acceleration 

yU z u _  Z~, 

p . =  = C; e- , 

v v #  • 1 U s. "~li v --v v --v l i  "~li mU~=xUp - x  p = t 2 ~ [ ( z  +z  )(z - z ) - ( z  +z ) (z  - z  )], 

(4.5t 
d = 2xUpu = 2i2 (z" ( z -  ~)2 ' 

( 2~) ~2z~-zZ~ 
a ~ = - 2 x . p x  ~+ x 2 -  p '=2i2 7---q7 , 

tz -- z) 
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From (4.5) one has y "=  2P--~ and c%= d x " ^  dp,, and then (x ~, p~) respectively. 
/ 2  

becomes the canonical system of coordinates on NI + +. 
In order to find the quantum mechanical description of the scalar massive 

j 2 

conformal particle let us assume the tautological bundle E j: = @/~  S--* IM + + as a 
quantum bundle E, where S~: = z. The restriction of twistor form ~/to S ,  defines 
the metric structure on S, thus lE j is a Hermitian line bundle. For the explicit 
calculations let us fix in S the holomorphic frame 

, = 

and define the holomorphic frame S o : = @ e l  A e2:  ~,I  ++  ---~E j in E j. The Her- 

mitian metric on ]E i, expressed in So is given by 

Thus the scalar product (2.1) in the Hilbert space of quantum states ~ j ,  o attains 
the form 

( s , t ) j . o -  2J+4cN~ ÷ t p ( z ) q ~ ( z ) d e t [ ~ ( Z - Z + ) ]  d*xd4y, (4.6) 

where s = t O s o ® d z ° ^ . . . A d z  3, t=gOSo®dz°A . . . A d z  3, and c > 0  is a constant 
introduced for technical reasons. The condition of ampleness (2.2) for ~/g~,o is 
satisfied when j > -  3 (see [7]): therefore, in this case we can use the formalism 
developed in two the previous sections. 

2 
First of all let us observe that if one puts ~ =j ,  then the symplectic form e)x is 

equal to the curvature form of the metric connection of the bundle ]EJ. Because the 
parameter 2 has the dimension of the action we introduce the elementary unit h, 
which will be interpreted as the Planck constant. The momentum map compo- 
nents (4.5) are quantizable quantities, i.e. belong to Cry. Hence, from (2.9) one finds 

8 
p,  = - ih OzU, 

rh,~ = - ih z ,  ~z- ~ - zv 

d =  - ih2zU ~-ff - 2(j + 4)hi, 

(4.7) 

~ = -- ih(z26~ - 2z,,z p) -~Z H + 2ih(j + 4)z v . 
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The conformal group SU(2, 2) acts on ]EJ~ M + +, preserving its holomorphic and 
metric structure. This enables us to define the unitary representation Tj: SU(2, 2) 
-~ U(d/j, o) of the conformal group: 

(Tj(g)Ip) (z): = det (CZ + D)-J-4~[(AZ + B) (CZ + D)- '],  

where g-1 = ( A BD)~SU(2,2)andA, B, C,D~Mat2 × 2(ll2) (see [7]). It is easy to 

check that (4.7) taken without the factor - i h  gives the generators of Tj. Thus, by 
Stone's theorem (see [21]), p~, rfi~,,., d, and c~ v are selfadjoint operators. 

The reproducing kernel function for ~//{j, o is calculated in [7]. For  c = 2-3u+ 4) 
it has the form 

l K j, o(~, z) = ~[1_ ( z -  ~) = cj g r ( j  + 3)r(j + 4) f ~Pk(W)-------~k(Z) d4k, 
(L2i c ÷ 

j (4.8) 
where C+ denotes the future cone and vpk(z):=c~(k2) -£+ a e i*~ is the generalized 
eigenvector of the four-momentum operator, pCpk(Z) = hk~k(Z ). In order to have 
(~Pk, ~Pk')j, o = 64(k-  k'), we put 

-]- i/z 

The Laplace transform 

~(z)= ~ q)(k)~pa(z)d4k, (4.9) 
C+ 

where q~L2(C+,d4k) plays here a similar role as the Fourier transform in 
Schr6dinger quantum mechanics, i.e. it allows us to pass from momentum to 
holomorphic representation. Using the momentum representation it is easy to 
compute the average values of quantities in coherent states K j, o(Y,. ). In this way 
one obtains 

(K~'°(~")'fKJ'°(~"))J'° = ( 1 +  ~)  f(z), (4.10) 
(K~, o(~," ), K j, o(~,. ))j, o 

where f is an element of the conformal Poisson algebra, i.e. f is a linear 
combination of generators (4.5). 

As one would expect, the weight function 0~, o fulfills the condition (2.22) for a 
suitably chosen constant C. Therefore, 

aj, o(~,z)= ( (~-~_~ j (4.11) 

is the probability amplitude that the scalar massive conformal particle after 
detection in the coherent state z will be detected in the other coherent state w. 
According to (4.8) the ~pk(Z), where ke  C+, form a complete system of generalized 
states. Hence, one can interpret 

F -1--1/2 j+ , [ (  )2] j+4 
-~z - eik" (4.12) 
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as the transition probability amplitude from the state with a given four- 
momentum hk to the coherent state z. Using (4.12) one can rewrite (4.8) in the 
physically more transparent form 

a j, o(V?, z) = ~ aj, o(Z, k) ai, o(W, k)d4k. (4.13) 
C +  

Consequently, the transition probability amplitude for a scalar massive relativistic 
particle, i.e. a particle which in all processes satisfy (hk) 2 =pZ= (mc)2= const is 
given by 

((h;) aj, o,m(vg, z ) :=  ~ aj, o(Lk)aj, o(w,k)6 k 2 -  d4k=[~F(j+ 3) 
C+ 

4 - 1 . 2 ( j + 4 )  t ? l c  4 x Fq+ )] j ( - h - ) -  J+ eik'z-~)6 ( k 2 -  ( h - )  2) d4k" (4"14) 

It is remarkable that the condition of mass constancy p(r) 2 = (mc) 2 = const defining 
the relativistic process 

[zi,~,] ~ ~, Kj, o(e(~),')~ ~2o 

is equivalent to the unitarity condition IlKi, o(ff(~),-)l ! =const .  Specifying the 
formula (2,24) to the case considered here one finds that 

i 
aj, o(?; ~,z)=exp [ -  -h ! ~udx t (4.15) 

is the probability amplitude of transition of the scalar massive conformal particle 
along the path ~ beginning at z=7(~i) and ending at w=y(zi),  where the 

zcu:=(l+~)puistheaveragefour-momentumobtainedfrom(4.10). 

Let us now make some remarks about  the coherent states K j, o(~," )e  J¢dj,0, 
where z e IM + +. The average values of all kinematic quantities f computed in 

4 
Kj.o(~,- ), see (4.10), are equal to their classical counterparts up to factor 1 + -_. On 

J 
the other hand it is a matter of simple calculation to show that the probability 
density laj, o(g,w)[ z to detect the scalar massive conformal particle in the state 
K j. o(~," ) in the point w ~ NI + + is concentrated around the point z and attains in it 
the maximal value. As a consequence of this one can consider the scalar massive 

h zt" 
conformal particle as the object localized at the point zU=xU+ i ( j+4) . . . .  , mc mc 

where (mc) ~ = zc 2. If the Compton wavelength h and average four-velocity - -  are 
mc mc 

small, i.e. in the case of low energy, the scalar massive conformal particle is 
localized in a region of NI + ÷ closed to Minkowski spacetime (y"~0). It is 
interesting to mention that IM °° is the Shilov boundary of NI + + (see [15]) and the 
maximal value of Ki, o(~,. ) is attained at the spacetime point x = Rez ~ Moo. Let us 
also notice that because of 

Tj(g)Kj, o(~, • ) r d e t ( A - Z + C )  q - j - 4  KJ'°(~") (4A6) 
i!Tj(g)Kj, o(~,.)I I = Udet(A_Z+C)IA Kj, o(~,gz) 1/2' 
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the imbedding ,~fj,0: ]M+ +~IEF(J//j,o) is the conformally equivariant map of 
classical phase space into quantum phase space. 

We shall now discuss the interaction of the scalar massive conformal particle 
with the external field. In accordance with Sect. 3, the external field is described by 
the deformation (3.2) of the holomorphic and metric structure of the bundle E j. 
Applying the definition (3.6) to the present case we find the Lagrangian dL which, 
expressed in the canonical coordinates (x u, roy) , is given by 

h 7r 2 h 
dL = - 7cudx ~ + ~ log ~ dt + ~ A(x, n)dt 

h ~A . h 2 ~A rd' 
+ ~ y ~ ( X ,  rc)dx - ~-(j  + 4) ~x~ (x, rc)d 0c-~), (4.17) 

1 V moc ~ 2(j+4) 
where we put f =  2(j 4) log and ko = i_(j+4)h j . Since the deformation of 

the reproducing kernel A = A(x, re) results from the deformation B = B(x, re) of the 
structure of the Hermitian vector bundle E j [see (3.3)] we shall interpret the three 
last parts of (4.17) as the interaction Lagrangian dL x. The remaining two parts will 
form the Lagrangian dL o for the free scalar massive conformal particle. From the 

dx = h ~2 and dTz~ variational principle 6 ~ dL o = 0  one obtains -dt -d)-= 0. Thus, it is 

h 
reasonable to assume that s: = - -  t is the particle proper time measured in natural 

mc 
units given by the Compton wavelength. 

In order to study the Lagrangian (4.17) in the low energy region (y",~ 0) one 
needs the expansion. 

a(x, y) = A(x) + Af,(x)y ~' + A~v(x)y~y " + .... (4.18) 

Substituting (4.18) into (4.17) one finds 

h u 2 h h 
A(x)dt + ~ A~,(x)dx" + 60(h2), dL = - rc.dx ~ + ~ log ~ dt + 

2(j+4) 
(4.19) 

where (9(h2)dt is the part of the Lagrangian which contains the second and further 
orders of the Planck constant. Neglecting C(h:)dt and assuming that the average 
relativistic mass m of the particle does not change during the interaction and that 
m= mo (such an assumption seems to be acceptable if the low energy case is 
considered), we obtain the Lagrangian for the charged scalar massive particle in 

hc 
the external electromagnetic field of the four-potential - ~eAu(x), where e is the 

h 
electric charge of the particle. The term A(x) can be interpreted as a 

2(/+4) 
scalar potential for some additional (nonelectromagnetic) force acting on the 
particle. According to the assumption 7r2=(m0c) 2, the second term in dL 
disappears. Hence we see that the interaction with the electromagnetic field is a 
linear approximation- in the sense of expansion (4.18)- of the interaction with the 
holomorphic field. The effects that would expose the difference between the 
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holomorphic theory and Maxwell electrodynamics depend on the higher order 
terms of the expansion (4.18), and because of that they can be noticeably large only 
in the high energy region. Therefore, for the low energy case it is reasonable to seek 
an approximate calculus that would relate the low order terms of the expansion 

B(x, y) = B(x) + B~,(x)y ~' + B~,~(x)y~'y " + . . .  (4.20) 

and such of (4.18). The expansion of the field equation (3.3) with respect to yU gives 
the infinite sequence 

B(x)+ A(x)=O,  

B~,(x) + Al,(x ) = O, 

Buv(x ) + Au~(x ) =j/t/u~(½lN 3(x)  + B~(x)) 
I_ 

e~B(x) BAx)  ] 
C~XI,~X ,, 

(4.21) 

of equations on the fields B(x), Bu(x), B~,,,(x) . . . . .  The above interpretation of A~,(x) 
raises a fundamental question. Namely, is there any relation between the first order 
approximation of (3.3) and Maxwell equations? 

Finally let us calculate the probability amplitude at,~(kl, ki) of the transition of 
the scalar massive conformal particle from the state ~k, to the state ~Pks in the 
external field B(x, n). In order to attain it, we shall consider the case when the field 
B(x, re) is concentrated in the bounded region of phase space. In accordance with 
the above considerations, the transition probability amplitude is given by 

at, n(ky, k,) = <~Pk~, ~Pke>t,n = 2- 2U+ 4) ~ -~k~(Z)IDkf(Z) (y2)JeBd4xd4y" 
~,¢I + + 

(4.22) 

Substituting (4.20) into (4.22), one obtains 

J+ 
[ b 2 6 2 ~  ~ 1 

a j, 8(ky, k~) = 64(ky - kO + 22j + 5(j + 9"~ t,~ ,~yJ _ ~- B~,(ky- ki) (kf + kUr ) 
- '  [(k~ + ks)2y + 3 

k2/~2 
_ 92j + 4~ i .  ")~ '~i "L (B~,B,, + 2B~) ( k ¢ -  ki) 

- " - - '  [(ki + k~)2y + 3 

(k~ + ks): + (9(h3) ' (4.23) 

where Bt,, B~,B~ + 2B~,, . . .  are Fourier transforms of the corresponding quantities. 
(9(h 3) denotes the terms in the Planck constant of the order higher than two and 
they are negligible when only a low energy process is considered. The at, n(kf, ki) 
depends also on the index j > - 3 ,  which could be interpreted here as a 

/ 

regutarization parameter. Considering the singular case j = - 3  (for which 
N 

re" = h)-~ of (4.22), and postulating that the mass of the scalar massive conformal 

particle does not change as the result of interaction, one obtains up to the constant 
factor the standard formula for the transition probability amplitude, see (9.24) in 
[2] as the linear approximation of (4.23). 
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