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ABSTRACT. It is shown that the Hori auxiliary system for the motion of 

two planets, whose motions around the Sun have commensurable periods 

in the ratio 2:1, is completely integrable and, an intermediate orbit 

that includes the effects of the resonance is obtained. The difficul- 

ties of classifying some solutions as librations or circulations are 

discussed. 

I. INTRODUCTION 

In this paper we study the motion of two planets whose periods around the 

Sun are commensurable in the ratio 2:1. 

This problem is similar to the problem of the motion of two satellites 

of a planet, whose periods are commensurable in the ratio 2:1, in the 

particular case where the flattening of the central planet and the influence 

of the Sun over the system are neglected. Some systems of natural satellites 

have orbital periods in the same conditions as the problem under considera- 

tion here: Io - Europa and Europa-Ganymede among Jupiter's satellites and 

Mimas-Tethys and Enceladus-Dione among Saturn's satellites. 

In the neighbourhood of the conditions where resonance occurs, the 

general theories of the motion of planetary systems contain small divisors 

and so the formal convergency of the series giving the solutions is lost. 

This is the main difficulty in the study of this kind of problem. In order 

to overcome it, it is necessary to obtain a new intermediate orbit that 

includes the resonance effect and is closer to the actual motion than a pair 

of Keplerian orbits. 

Most of the published results about orbital resonance in the Solar 

system deal with problems where only one critical argument appears and in 

such a case the resulting dynamical system is completely integrable. How- 

ever, it is well known that the general problem of orbital resonance in a 
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system of two planets where the usual methods of Celestial Mechanics are 

applied, leads to dynamical systems with at ].east two critical arguments. 

We show in this paper that the dynamical system obtained when the Hamil- 

tonian is developed in the neighbourhood of the exact commensurability and 

truncated at the first order in the eccentricities, is separable and com- 

pletely integrable. 

The construction of a new intermediate solution including resonance 

effects, is the first step in order to built a formal theory of the motion 

of planetary system where the commensurability 2:1 takes place, as it 

happens with some pairs of orbits in the Solar System. 

The problem is introduced in Section 2; in Section 3 the associated 

Hori auxiliary system is obtained and in Section 4 its complete integra- 

bility is shown. The rest of the paper has two parts to which correspond 

different approaches. The first one gives the topological structure of the 

flows in the phase space (Sections 4, 5, 8, and 9). It is shown that by a 

convenient change of variables, one of the components of the flows in the 

phase space is reduced to the classical case of the averaged circular 

restricted problem of three bodies in the case of a resonance (Jefferys, 

1966; Message, 1966; Schubart, 1966). The second approach, of a quantitative 

nature, concerns the study of a polynomial of 4th degree (Sections 6, 7, and 

Appendix). The explicit solution of this polynomial is necessary when one 

intends to use the solution of the Hori auxiliary system, to the construc- 

tion of a formal theory of higher order. 

2. EQUATIONS OF MOTION 

Consider three mass points S, PI' P2 whose masses are M, m', m, respectively. 

We suppose that m and m' are of the same order of magnitude and much less 

than M. We introduce Jacobi coordinates and define the vectors 

M m' 

- = r r' {I r'; K2 
M + m' M + m' 

which origin is the center of mass A of S and PI" The vectors r, r' are the 

heliocentric vectors of position (see Figure I). 

Following Brouwer and Clemence (1961) we introduce 2 sets of Delaunay 

canonical variables. However instead of referring the semi-major axis of 

the first planet to the Sun and the semi-major axis of the second planet to 

the center of mass of the Sun and the first planet, we introduce in the 

coordinates of the first planet the factor M/(M +m') and thus refer the 

sems axis of both planets to the point A. 

2 
L. = m V~ a G = L. I - e 
3 3 j j' 3 3 J' (1) 

H. = G. cos I. ; ~ 0~ 
3 3 3 J' J' J' 

( j  = 1, 2) 
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P, (m') 

A 

S(M)  r 

Fig. I. Mass-points configuration. 

P2(m) 

where 

k2M 3 k2(m + m' + M)M 

Pl = 2' P2 ' 
(M + m') (m' + M) 

m' (m' + M) m(m' + M) 
= m = ml - ' 2 ' 

M (m + m' + M) 

and the Keplerian elements aj, ej, I 

orbits having focus at A. 

j' s ~j, ~. refer to osculating 
3 

In these variables, the canonical equations of motion are 

F=F0+R 

d 
(L G H.) = - 

dt J' J' ] ~(Z 

d 

dt 
(~j, ~j, ~j) 

~F 

j, ~j' ~j) 

~F 

(Lj, Gj, Hj) 

is the Hamiltonian where 

(2) 

2 3 
2 pjm. 

F 0 = ~ L32. , (3) 
j=1 2 

] 

mm ! 

A 

I I )] <,, 

r ~2 

R = k 2 

The mean motions are defined as 

~F 
0 

n. - --. (5) 
3 ~L. 

3 

The disturbing function R may be expanded in a power series with 

respect to the small parameter m'/M, and also with respect to the eccentri- 
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cities and inclinations, assumed to be small. The disturbing function ex- 

panded to the first order in the small parameter and, to the second order 

in the eccentricities and inclinations, may be found in Marsden (1966), or 

in the classical literature about planetary systems. In the expansions the 

ratio of the semi-major axes was defined by ~ = al/a 2 < I. That is to say, 

the orbit of PI was assumed as interior with respect to the orbit of P2" 

We also assume the elimination of the short periodic terms was performed 

(see Sessin, 1981). 

The following set of canonical variables is introduced 

x I = L I + �89 2, 11 = 41 + 5 I, 

X 2 = -�89 

�9 - L. = L.(/I - e 2 I), 
YJ = G3 ] ] J - 

/ 2 2 
z. = H. - G. = -2L. I - e. s 
] ] 3 3 3 J' 

0 = 11 - 212 , 

= + 

3 ] J' 

aj, 

where 12 = 42 + ~2 and s.3 = sin(Ij/2) . 

The canonical equations of motion then become 

(6) 

d 
-- (x x y_ 
dt I' 2' 3 , zj) = 

d 
(I 0 : - 

dt I' ' j' 3 

The Hamiltonian is 

~F 

~(I I, 0, ~j, n.)] 

3F 

3(xi, x2, yj, zj) 
(7) 

where 

F = F 

m __ 
0 

0 + R(xI' x2' Yj' 

23 23 
Plml P2m2 

+ 

2 (x I + x2 ) 2 8x~ 

zj, -, 0; ~j, ~j), (8) 

(9) 

Since the Hamiltonian F is independent of 11 , x I is a constant and 

Equations (7) may be reduced to five degrees of freedom. The 2:1 commen- 

surability condition now takes the form 

23 23 
3F 0 -Plml ~2m2 

3x 2 (x I + x2 ) 3 4x 3 
- -n I + 2n 2 --~ 0. (10) 

3. RESONANT TERMS 

Consider the canonical equations (7), where x I is a constant. In order to 

study the resonant terms we expand the Hamiltonian F in the neighbourhood 

of the conditions for exact commensurability. Let 

x = x 2 - x20 , (11) 
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where x20 is the value of x 2 at the exact resonance, such that 

 F01 
<~x2 x = 0 

= 0. (12) 

Further it is assumed that 

X 

<xTo --) = ~ ( Vm--F~). (13) 

At the exact resonance we have 

LIO = Xl + x20' L20 =-2x20' ~0 - 

2 2 
m2~2 /LIo'  ~ 

2 t,L 2 ) ' 
mI~I 0 

2 

I > 2 z 2 Y~ s = J 
ej0 = I - I + ' j0 + L ) 

Lj0 2(yj j0 

(14) 

We also assume t~at the variables y_ and z. are of the order of the 
3 3 

square root of the small parameter, that is 

z) 
' ( 230 = 0(vm--~)'x (15) 

and therefore 

2 2 = ~ (~m--T-/M) (16) ej0 = 0 (%/m--TYM) , sj0 

The expansion of the Hamiltonian to the order 3/2 in the small quantities 

leads to 

x 2 m' (>+ 
FI = F02 x20 M 

• [P00 - P30e{ cos(@ + 31 ) + P40e~. cos(0 + 32 ) ], (17) 

x 3 m' x (->+ ( )+ 
F3/2 -F03 x20 M 1 x20 

I I ,2 + ,2 
+ P10 (el e 2 ) Q10(Sl 

2 4 

2 + s~2) + 

<x> 
P3 ' cos(0 + 31 ) + I el 

x20 

- P41 ( x ) e'2 cos(0 + 32 ) 

x20 

+ 

I 

P50 
2 

,2 ~ 
e I cos 2(0 + ~I) + 

+ 
I 

! 

P30el 
8 

I 
! 

- P40e2 
8 

1 

P60e2 
2 

3 
cos(0 + 

3 
cos(8 + 

2 cos 2(0 + 

3 ) - 
I 

32 ) + 

32) - 
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! ! 

P70ele2 c o s  ( 2 6) 
+ ~1 + ~2 ) + P8Oele2 cos(~ I - ~2 ) + 

+ 

I 
! 

Q30Sl 
4 

2 
COS 2(6) 

+ ~1 ) + 

I 2 ! 

Q30s2 cos 2(6) + ~2 ) - 
4 

2 

! ! 

Q3oSlS2 cos (26) 
+ ~I + ~2 ) + 

+ 

I 
Q 

2 

! ! 

10SlS2 cos(  
1 - ~2 )] I' 

(18) 

where 

, /-2C2YI ) 

e I = [ x20 

/-2C z ) 
, = [ 21 

Sl x20 

I/2 

1 / 2  

! 

e 2 

! 

s 2 

I/2 

"~20 
1/2 

"~20 

and the time scale has been changed by the factor 

stants that appear in (17) , (18) , and (19) are 

2 3 2 
(~2m2/8x20) . The 

(19) 

con- 

x20 = 
m I (2P I ) 

C I = ( I - C 2 ), 

2/3 
-m2u 2 
2f3 

+ m2(u 2 

C 

) 2/3 Xl ' s0 

m (M 
= -  ( 

2 m' 4M(M 

(Pl > 1 / 3  
I 

4l~ 2 
2 

+ m') 

+ m + 

I/3 

m,)> 

F02 = 3(I - C 2) , F03 = 4 ( I - C 2 2 ) , 

P00 = A~ 0)' 

(0) + 
PI0 = [AI 

A~ 0) ] 

P01 = 2 II + 

P30 = [ 4A~ 2) 

C1s 0 ~ A , 
ds 0 

+ A~ 2) ], 

P31 = [(2 + 
d 

�89 2) + 2C Is 0 
ds 0 

(I) _ 4s 0 P40 = 3A I) + AI 

(4) + A~4) P50 = 22A 4) + 7A 1 , 

c4A 2  
+ A~ 2) ] 

5 
=( + 

P41 2 

P60 = 19A~ 2) 

P70 = 21A~ 3) 

2C 

+ 

+ 

d 
is0 h (3A~ I) 

ds0/ 

(2) + A~2) 
7A I 

(3) + A~3) , 
7A I 

+ - 4s 
9 

0(2 2c2) 
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where the A 
(i) 

P 

P80 = A~ I) 

Q30 = B~ 3) ' 

(i) 
and B 

P 

(I) _ A~I) = B(1) 
- AI ' QI 0 0 

are given functions of the Laplace coefficients 

A,i  dp i) (i) sP+1 dP 

- b (s 0 ) B - / (s0). p p! ds p /2 ' p P! d~ p b i 

The most important critical arguments in Equations (7) are (8 + ~i ) and 

(8 + ~2 ) since they appear in the first order of the small parameter. The 

critical arguments involving the ascending nodes appear in the order 3/2 

of the small parameter. Therefore, in this paper we consider only the 

resonance of the eccentricity type. The method of Hori (1966) applied to 

this system leads to the auxiliary system of equations 

d ~F d ~F 
(x, yj, zj)= I ~j ~j I , (8, , ) :- . (20) 

dT ~(e, ~j, ~j) dT (x, yj, zj) 

The solution of the Hori auxiliary system generates a new intermediate orbit 

that includes the effects of the resonance of eccentricity type. 

4. THE INTEGRABILITY OF THE HORI AUXILIARY SYSTEM 

Since F I is independent of zj, ~j, it follows that 

z. = constant, ~. = constant, (j = I, 2) 
3 3 

and the system may be reduced to three degrees of freedom. Note that 

besides the energy integral 

(21) 

F I = constant, (22) 

we also have the first integral 

x - Yl - Y2 = -(GI + G2) + Xl + "�89 = constant, (23) 

where G 1, G 2 are 

Equations (I). 

the angular momenta (of the Keplerian motions) defined by 

In order to study this reduced system in the neighbourhood of yj = 0, 

we introduce a set of non-singular variables defined by 

h. = e~ sin(8 + ~.), 
3 3 3 

k. = e' cos(8 + ~.), 
3 3 3 

x F 
02 

- --, A - (T - T 0) f 

x20 x20 
and the constants 

(24) 

(25) 

m 
I 

m' P30C2 

M F 
02 

m' P40 
D - 
2 

M 2F 
02 

(26) 
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It must be emphasized that D I ~ 0 and D 2 ~ 0 except if m' = 0 or m = 0. 

This new set of variables is not canonical, and the Hori auxiliary 

system of equations becomes 

d E D I de 
= h I - 2D2h2, - -2~, 

dA C 2 dA 

dh. dk 

dA ~ = -D.3 - 2~kj, dAJ = 2~hj, (j = I, 2). 

(27) 

From this system it is easy to obtain the integrals 

D2h I - D lh 2 = p sin(8 + 81) ' D2k I - D Ik 2 = p cos(8 + 01) ' (28) 

where p, 81 are two new constants of integration. 

By • the variables 

D D 
I I 

H - h I - 2D2h2, K - k I - 2D2k 2 
C 2 C 2 

(29) 

and the positive constant (since C 2 < 0) 

2 m' 2 P 2 2 
D = D I + 2D2 = (_~ \ / 40- 2P30C2 

C2 2 2F 2 
(30) 

Equations (27) become 

dE d8 dH 
- H, - 2~, .. 

dA dA dA 
= D - 2~K, 

dK 

dA 
: 2~H, (31) 

and the first integrals (22) and (23) become 

2 2 2 
- K = E, H + K = 2D(~ + G), (32) 

where E is the energy constant and 

I x I 

G = - (G I + G2) I + p2 

x20 x20 DC 2 

+1, 

is a constant related to the angular momenta of the undisturbed Keplerian 

motions. 

The dynamical system defined by Equations (31) has only one critical 

argument, the polar angle a associated to the rectangular coordinates H, K 

(see Equation (38)), while the dynamical system defined by Equation (20) 

had two critical arguments: 8 + ~I and 8 + ~2" 

An easy manipulation of Equations (31) and (32) leads to the differen- 

tial equation 

dA 
- + ~-P(~), (33) 
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where P(~) is a 4th degree polynomial 

p(~) = ~4 _ 2E~2 _ 2D~ + (E 2 - 2DG). (34) 

Once, Equation (33) is solved, the solution of the auxiliary system (31) is 

obtained through 

A 
K = ~2 _ E, H = _+ V-P(~), 8 = 80 - 2 r J | ~ dA, (35) 

0 

with four integration constants E, G, 80, T O . The solutions of the 

auxiliary system (27) obtained from Equations (28) and (29) are given by 

h. = S.H + T. sin(8 + 8 ), 
3 ] 3 I 

k. = S.K + T. cos (8 + 8 ), 
] 3 ] I 

(36) 

where 

D. D 2 D 

Sj = - D)' T I = 2 D P, T2 _ DC21 P, (37) 

and have six integration constants E, G, p, 80, 81 , T O . This completes the 

solution of the Hori auxiliary system (20) in non-singular variables. 

Because of the definitions of D. and D, the quantities S. and T. are 
3 ] ] 

of the order of the inverse of the small parameter and, apparently the 

solutions (36) have small divisors. However, from the hypotheses (13) and 

(15), ~ and e! 2 are quantities of the order of the square root of the small 
] 

parameter; as a consequence E is of the order of the small parameter, G is 

of the order of the square root of the small parameter, and p is of the 

order of the small parameter raised to the power 3/2. Therefore, h~ and k. 
�9 ] 3 

are finite quantities without small divisors. 

5. THE MOTION IN THE PLANE (k, h) 

A new intermediate orbit can be obtained from the Hori auxiliary system, 

which includes the resonance effects due to the most important terms in the 

disturbing function. This orbit is likely to be a better intermediate orbit 

than a pair of Keplerian orbits, for the construction of a formal theory 

of the motion of a 2-planet system where the 2:1 commensurability takes 

place. 

In the plane (k, h) these orbits are similar for either j = I or j = 2, 

except for the values of the constants S. and T ; as a consequence both 
3 J 

cases may be analysed together and the subscripts are dropped out from 

now on. 

The orbits in the plane (k, h) are a composition of the orbits in the 

plane (K, H) , given by Equation (35) , and of the circles 

{T cos(8 + 81 ) , T sin(e + 81 ) }, cf. Equation (36) . It is worthwhile mentioning 
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that the orbits (SK, SH) are the same given by Equation (35) multiplied by 

the scale factor ISJ and reversed with respect to axis K = 0 when S < 0. We 

always have S ~ 0 since S = 0 implies D I = 0 or D 2 = 0, which we have ruled out 

in Section 4. Therefore, in the subsequent analysis we will consider S as 

equal to I. The composition of the orbits is shown in Figure 4. 

We emphasize that while S is a function of the physical parameters 

(masses), T is an integration constant. 

We may introduce the polar coordinates 

w COS O K = e 0 , ' sin o (38) H = e 0 

associated with the cartesian coordinates (K, H). When T = 0 the motion in 

the plane (k, h) reduces to the first component and we have e' =e 0' and 

o=@+~. 

The other oscillation is given by a circle of radius T and does not 

present any special feature to be emphasized. %(A) will be composed of a 

progressive part with half mean motion equal to the average of ~(A), plus 

periodic oscillations. Therefore the angle 8 + 81 will always circulate. 

6. THE ROOTS OF THE POLYNOMIAL P(~) 

In order to solve the Hori auxiliary system one must solve Equation (33). 

Since P(~) is a fourth-degree polynomial with two arbitrary constant E and 

G, the solution of Equation (33) will depend essentially on the value of 

E and G. 

The theory about the roots of an algebraic equation of the 4th degree, 

developed in the XVIth Century by Ludovico Ferrari, may be applied to the 

study of the polynomial P(~). This study is rather cumbersome while not 

involving any theoretical difficulty. The main results (Sessin, 1981) are 

listed in the Appendix. These results may be described taking into account 

Figure 2. In that figure the plane (E, G) is divided in three regions. The 

nature of the roots of P(~) = 0 is different for each region of the plane 

(E, G) and the transition from one to the other occurs at the transition 

curves e i (i = I, 2, 3) where multiple roots take place. 

Once the nature of the roots of P(~) = 0 is known, the explicit form 

of the solutions may be obtained for every region of the plane (E, G). 

When P(~) has only single roots and elliptic integrals are needed, they 

could be obtained directly from Byrd and Friedman (1971). Otherwise, when 

multiple roots occurs and common integrals are needed, any usual handbook 

of integrals could be used to obtain these solutions. 

For the sake of simplicity, in Figure 2, we have normalized the value 

of G by taking 

27D 
G,3 - 

F 

32 

as the unit. 
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I0 

I 
9 I 

I 
8 I 

I e 2 
7 I 

I 
I 

- 6  I 

@ "5 I 
I 

- 4  I 
I 
I 

3 I 

"2 I 

\\ G o  . . . .  I 

P2 

E I 

6 5 4 3 2 I I 4/321 3 4 5 6 7 8 9 I0 

@ 

I 
-2  I 

I 
3 I 

I 
-4  I 

I 
-5 I 

I 
"6  I 

I 
-7 I 

= E / G  . 2  

= G / G *  

Fig. 2. Regions of the plane (E, G). 

Let us now summarize the main results about the nature of the roots of 

P(~) = 0 and of the solutions of Equation (33). 

Region III. P(~) = 0 has only complex roots. Therefore, no motion is 

possible for (E, G) in this region. 

Curve e 3. P(~) = 0 has one double real root and two complex roots. 

Equation (33) has just the stationary solution ~ = ~I = constant, which 

corresponds to a stable periodic orbit of the Hori auxiliary system. 

Re~ion II. P(~) = 0 has two simple real roots and two complex roots. 

The solutions of Equation (33) are periodic and oscillate in the interval 

~2 < ~ ~ ~I" 
Curve e2" 

Equation (33) 

P(~) = 0 has two simple real roots and one double real root. 

has a stationary solution ~ = ~2 = constant, which corresponds 
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to an unstable periodic orbit of the Hori auxiliary system, and two asymp- 

totic solutions that tend towards ~2 when A tends to • These asymptotic 

solutions are defined in the intervals ~4 ~ ~ ~ ~2 ~ ~ ~ 

Re~ion I. P(~) = 0 has four simple real roots. Equation (33) has two 

families of periodic solutions oscillating in the intervals ~4 ~ ~ ~ ~3 and 

~2 ~ ~ ~ ~I' respectively. 

Curve e I. P(~) = 0 has two simple real roots and one double real root. 

Equation (33) has a stationary solution ~ = ~3 = constant, which correspond 

to a stable periodic orbit of the Hori auxiliary system, and a periodic 

solution ~ = ~(A) that oscillates in the interval ~2 ~ ~ ~ ~I" 

Point T. Curves e 2 and e I meet at the point T where P(~) = 0 has one 

simple real root and one triple real root. At this point Equation (33) has 

the stationary solution ~ = ~2 = ~3 = constant, which corresponds to an un- 

stable periodic orbit of the Hori auxiliary system, 

solution defined in the interval ~2 = ~3 ~ ~ ~ ~I that 

when A tends to • 

and an asymptotic 

tends towards ~2 = ~3 

The period of the periodic solutions may be obtained immediately from 

Byrd and Friedman (1971) or tables of definite integrals, as functions of 

the roots of P(~), that is, as functions of the constants E and G. 

An atlas of the polynomial P(~) is shown in Figure 3. For the sake of 

showing all distinct possibilities every region is subdivided by the 

s t r a i g h t  l i n e s  E = E* = ~G . 2  ( w h e r e  i n f l e x i o n  p o i n t s  o f  P ( ~ )  o c c u r )  a n d  
3 

G = G* both passing through the point T 

7. THE TRAJECTORIES H(K) 

The trajectories H(K) are given by 

H(K) = • ~Q(K) , (39) 

where 

Q(K) = -P(~) = -K 2 • 2D ~K + E + 2DG. (40) 

To Q(K) there corresponds two polynomials: Q+(K) and Q_(K), given by the 

positive and negative determination of ~ = • V~+ E. 

The roots of the function Q(K) are roots of the function R(K) = 

= Q+(K)-Q_(K) and obviously they are related with the roots of P(~). Thus, 

an analysis similar to that made for P(~) in the Appendix can be made for 

implica- Q(K). Also, in the Appendix, the peculiarities of Q(K) and their 

tions in the trajectories H(K) are pointed out. 

The real roots of Q(K) (when they exist) have the following 

K I > 0 > K 3 > K 2 while K 4 may be positive, negative or zero (K 1 > K 4 

signs: 

> K ). The 
3 

sign of K4 is determined by the equation G 2 = E, represented by the parabola 

P2 in Figure 2. K 4 is positive outside and negative inside the parabola P2" 

The sign of K 4 has special interest in the analysis of the types of motion 
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REGION m 

(E <E *) ( E = E*) (E >E*) 

C U R V E  E]S 

(E<E*) (E =E*) (E >E ~) 

REGION ]'r 

. + e ( { ~ l  ,, . 4 ~ e l : { )  . _ _ , l e t . _ { )  I 

(E<E*) (E=E*,G<G ~) (E=E* ,G>G*)  

~;, 

(E> EI,G>G-~-) "~ 
(E >E ~, G<G ~ ) 

CURVE E 2 

_ _ +PL{I / 

CURVE E]I 

POI NT T. 

�9 - = -  A P I ~ I  / 
- 

REGION I 
_ ~ P t { _ 1  / 

Fig. 3. Atlas of the polynomial P(~), 

been take into account.) 

(Note: the sign of ~2 has not 
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i h, 

H 

e+oo 

T 

e 

e+el 

e0 

K k 

Fig. 4. Composition of the motions in the plane (k, h). 

of the trajectories H(K). Note that the parabola P2 intersect the curve e 2. 

The value of G for which this intersection occurs is denoted, in Figure 2, 

by G0 and it is used to subdivide the plane (E, G) in order to show all 

possible kinds of motion. 

It must be emphasized that Q+(K) corresponds to positive values of 

and Q_(K) to negative values; the transition from Q+ to Q_ (when it exists) 

occurs for ~ = 0, i.e., K =-E. The points where this transition occurs are 

branch points (they have a vertical tangent) and exist inside the parabola 

E 2 PI of Figure 2, determined by the equation = 2DG. The sign of the real 

roots of P(~) (when they exist) are: ~I > 0 > ~3 > ~4 while ~2 may be positive, 

negative or zero (~I > ~2 > ~3 )" The sign of ~2 is determined by the parabola 

PI and it is positive outside and negative inside this parabola. Note that 

at the branch point we have ~ = 0, that is to say, the exact commensurability 

of the mean motions. 

The trajectories H(K) exist only when Q(K) ~ 0 (i.e., P(~) ~ 0) and are 

different following the values of E and G. They are shown in Figures 5 to 8. 

In each of these figures, all possible trajectories are obtained keeping G 

fixed while E varies from left to right crossing the different regions of 

Figure 2. 

Re@ion III. No motion is possible since Equation (33) has no real 

solution. 

Curve e 3. The motion only exists at the stationary solution of Equation 

(33) and the corresponding curve is one point, the center S I. 
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Re~ion II. There is only one interval in which Equation (33) has real 

solution. When G ~ G* and the point (E, G) lies between curves e 3 and e2, 

the corresponding trajectories are curves 4 of Figure 5 and curves 4 and 5 

of Figures 6 and 7. But, if the point (E, G) lies at the right of the curve 

the corresponding trajectories are the curves 6 of Figures 5, 6, and 7. e I , 

When G < G*, the trajectories are the curves shown in Figure 8. It must be 

emphasized that the curves that have branch points are generated inside the 

parabola PI and at the branch points the exact commensurability of mean 

motions occurs. Therefore, the exact commensurability does not occur neither 

in a neighbourhood of the center S I nor for curves generated by G ~ 0 (as in 

Figure 8), but it may occur for curves of type 6 (Figures 5, 6, 7). Another 

noticeable feature of this region is the existence of curves of type 5 in 

Figures 6 and 7. Such a kind of curves exists for G* ~ G ~ G0 because the 

straight line G = constant intersect first parabola P2' then curve e2, and 

so the real root K 4 of Q(K) is negative. 

Curve e2. There are two intervals in which Equation (33) has real 

solution. But these two intervals have a common limit that is the stationary 

solution ~2 and it corresponds to the saddle point U in Figures 5 and 6. 

Inside these two intervals the trajectories are the lima9on-like separatrix 

curves 3. These two curves generate a motion asymptotic to the saddle point 

U, to which it tends as A tends to • Note that curve e 2 is inside para- 

bola PI' therefore the external separatrix has a branch point where the 

exact commensurability occurs. 

Re@ion I. There are two independent intervals in which Equation (33) 

has real solutions. The corresponding trajectories are the curves 2, I, and 

6 of Figures 5 and 6. Curves 2 and I are situated inside the separatrix 

curve 3 and curves 6 are situated outside it. Region I has a thin subregion 

inside the parabola PI; therefore, some of the curves 6 have branch points 

where the exact commensurability occurs. 

Curve e I. One of the two intervals of region I becomes a point, which 

corresponds to a stationary solution of Equation (33). Thus, the inner curve 

is now one point, the center S 2. The outer curve continues as such, and the 

exact commensurability may exist over it. It is noteworthy that to the right 

of e I lies a part of region II where G ~ G* and to which corresponds only 

curves of type 6. 

Point T. Curves e I 

The features of curves 

and e 2 

and e I 

meet at this point and there we have G = G*. 

e 2 act together to give rise to a separatrix 

with a cusp (Figure 7). Over this separatrix the exact commensurability 

occurs since T is inside the parabola PI" 

The difference among Figures 5 to 8 is related to the separatrix 

curves 3, determined by the critical curve e 2. In Figure 5, the separatrix 

has two parts. When G decreases, the inner separatrix decreases. It crosses 

the origin and finally, for G = G*, becomes a point (C) . The outer separatrix 

still exists and has a singularity at the point C. When G < G*, this singu- 

larity disappears and the separatrix ceases of being a separatrix and sub- 

sists as a regular curve. 



324 w. SESSIN AND S. FERRAZ-MELLO 

8. TYPES OF MOTION IN THE PLANE (K, H) 

The points S I and S 2 are centers and U is a saddle point in the plane 

(K, H). Therefore they correspond to equilibrium points of the motion 

defined in this plane and to periodic solutions of Equations (27). The 

point C, in Figure 7, is also an equilibrium point. It is unstable and gives 

rise to an unstable periodic solution of Equations (27). 

The usual nomenclature used to classify the various types of motion 

of Figure 5 is imprecise. Here, various cases in Figures 5 and 6 will be 

considered and the imprecisions will be discussed. 

' o) defined in Equation (38) are used and The polar coordinates (e0, 

the classification is founded on the behaviour of the polar angle o. 

The curves of type 6 are called circulations since they correspond to 

motions that circulate around the origin of the plane (K, H). Froeschl~ and 

Scholl (1977) call them 'outer circulations' since they are external with 

respect to the separatrix. 

The curves of the type 2 are also circulations and are called 'inner 

circulations' since they are internal with respect to the separatrices. 

The curves of the type 4 correspond to motions that, in non-singular 

resonant problems, are called librations. In these motions the angular 

variable ~ oscillate around ~ = 0 with a bounded interval of variation. 

The curves of type I are oscillations around ~ = ~. Franklin et al. 

(1975) call them 'apocentric librations' since they oscillate around z. 

However, the word apocentric is not a good choice since these oscillations 

became pericentric when S < 0 (for instance in the system Io-Europa the 

signs of S 1 and S 2 are opposite; see Ferraz-Mello, 1979, p. 89). We call 

them paradoxal librations. Indeed, notwithstanding the fact in these curves 

the angle ~ behaves like a libration, this set of curves is an analytic 

continuation of the inner circulations and form with them only one family 

of structurally stable curves. 

Poincar~ (1982) analysing a figure similar to Figure 5, that appears 

in the study of the motion of Hecuba, did not consider curves of type I as 

' may become zero or very close to zero true librations. For these curves, e 0 

and ~ may take finite values. Therefore, the frequency o = 8 + ~ z may be close 

to zero for finite values of 8 = -2~ and in this situation the commensura- 

bility of mean motions is destroyed (~ is not in a neighbourhood of zero). 

Poincar~ considers as true librations only the curves of type 4. 

Indeed, as it was discussed in Section 7, the exact commensurability 

of frequencies takes place at the branching of the two determinations of 

Q(K) (points outside the H-axis having a vertical tangent). Thus the exact 

commensurability never occurs for curves of type I (only for curves of 

types 4 and 6). 

The curves of type 5 (Figures 6 and 7) correspond to motion where 

circulates. However they belong to the same topological family of the cur- 

ves of type 4. We call them paradoxal circulations �9 
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The main difference between the two types of oscillatory motions 

called librations in these figures is the existence or non existence of a 

bifurcation. For curves of the types I and 2 of Figure 5 (as for curves of 

types 4 and 5 of Figures 6 and 7) no bifurcation exists between trajecto- 

ries with oscillatory or circulatory behaviour and they form a single 

family of trajectories. On the other hand, the oscillatory motions of the 

type 4 in Figure 5 and of type I in Figure 6, are isolated from circulation 

(motions of type 6) by a bifurcation and form distinct families of trajecto- 

ries. Wisdom (1980) considers the curves that pass throught the origin also 

as separatrices; these separatrices isolate different kinds of motion in- 

side the same continuous family of trajectories. 

When a bifurcation separating libration and circulation does not exist, 

these two types of motion differ by elements that are not intrinsic to the 

curves themselves, that is to say, the origin of the coordinate system. 

However a translation in the coordinate system that alters the oscillatory 

or circulatory character of a given trajectory is usually not considered 

since the angular variable ~ is a natural variable of the problem. 

In Figure 8 the structure induced by the resonance disappear com- 

pletely. No separatrix exists whatever is the value of E. The family of 

curves shown there, is homeomorphic to that of the undisturbed problem when 

no resonance exists; when G* >G >0, the exact commensurability occurs 

(branch points exist). 

Figure 7 shows the catastrophe that separates the family of curves 

shown in Figures 5 and 6 from those shown in Figure 8. The inner branch of 

the separatrix disappeared and the center S 2 and the saddle U coalesced 

into the cusp C. 

Sessin and Tsuchida (1983) made an application of the theory developed 

here to the Uranus-Neptune system. For this system, they calculated the 

periods of all types of motion that appear in Figures 5 to 8. Their results 

show period similarity for the motions around the centers S I and S 2. 

9. TYPES OF MOTION IN THE PLANE (k, h) 

The complete solution given by Equations (36) may now be analysed. Let p 

be different from zero, i.e., T s0. First of all, let it be said that in 

general the motion given by Equations (36) is not periodic. Indeed the 

period of the motion in the plane (K, H) is given by 

P = 2 [RI d~ , (41) 

I JR 2 V-P(~) 

where R 2 ~ ~ &R I and R1, R 2 are two simple real roots of P(~). For each 

region of the plane (E, G) of Figure 2, this period may be obtained ex- 

plicitly as a function of the constants E and G. Besides this period, there 

is also the period of e(A) in the solutions of the Hori auxiliary system. 
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It is given by 

P2 - --' (42) 
<~> 

where <~> is the average of ~ over the period PI" These two periods are 

generally not equal and as a consequence the resulting solutions of Equa- 

tions (36) are not periodic. 

The type of motions in the plane (k, h) will depend on the relative 

'(A) and T Three possibilities may occur for each trajectory magnitude of e 0 

in the plane (K, H). We consider T ~ 0, since for T = 0 the trajectories in 

the plane (k, h) are the same as in the plane (K, H). 

'(A) > T for all A, the trajectory (k, h) is contained in a strip If e 0 

of width 2T around the curve (K, H). Therefore, the resulting trajectory 

(k, h) has the same behaviour as the trajectory (K, H). 

' (A) may be greater, less or equal to T depending on the value of If e 0 

A, the resulting trajectory (k, h) may have a different behaviour and the 

alternation between motions that have a libratory-like behaviour and motions 

that have a circulatory-like behaviour is possible. It must be remarked that 

this behaviour is due to an harmonic oscillation around a motion of a fixed 

type, allowing the trajectory to pass in either sides of the origin of the 

coordinate system. It is not to be confounded with similar results found 

by Sinclair (1972) and by Froeschl~ and Scholl (1977). In these papers per- 

turbations not taken into account in the construction of the Hori auxiliary 

system, were considered. Indeed when these perturbations are considered G 

is no more constant with respect to A (Sessin, 1983), and its variation 

may allow the separatrix to be crossed by the actual trajectories that will 

then be allowed to have the libratory-circulatory behaviour found by these 

authors. 

' (A) < T for all A, the behaviour of the trajectory (k, h) is If e 0 

determined by the circle of radius T. In this case, the resulting trajectory 

(k, h) will be always circulatory whatever is the type of motion of the 

angle o, since the angle e + 81 always circulates. 

10. CONCLUSIONS 

It was shown that the problem of the motion of two planets around the Sun 

with periods commensurable in the ratio 2:1, in the case of small eccentri- 

cities and inclinations, studied by Hori's perturbation method, leads to a 

completely integrable Hori auxiliary system and therefore to a new inter- 

mediate orbit. This intermediate orbit includes the resonant effects and 

therefore it is better than just a pair of Keplerian orbits as a first 

approximation to the study of this problem. These orbits are plane (not 

necessary coplanar) and show two components. One of them may behave as 

circulation or libration following the values of two main integration 
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constants E and G. These solutions were classified in the plane (E, G). 

All discussions in this paper were limited to the functions H(A), K(A) 

or h(A), k(A). (A is the independent variable in Hori's system.) In fact 

the complete solution of the Hori auxiliary system given by Equations (31) 

needs the solution of the remaining equations 

d~ d8 
- H, 

dA dA 
2~. (43) 

However, since H(A) is known, these two equations may be solved by quadra- 

ture. It is noteworthy that H(A) is periodic, except in the case of the 

asymptotic motion of the separatrices (bifurcations), and has zero average. 

Therefore ~(A) is also periodic and 8(A) will be composed of a progressive 

part with half mean motion equal to the average ~(A), plus a periodic 

oscillation. In each case the functions ~(A) and 8(A) may be obtained 

easily. 
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APPENDIX 

A. Introduction 

In order to construct Figure 2 and obtain the results shown in Section 6 it 

is necessary to study the polynomial P(~). In this appendix we give a short 

description of this study, as well as some properties of the functions Q(K) 

used in Section 7, and of the trajectories H(K). This study is rather 

cumbersome (see Sessin, 1981) while not involving any theoretical difficulty 

thus, we give only the main results without detailled proof. They are 

obtained using the classical formulae (Pincherle, 1906) for the roots of 

the fourth degree polynomial. 

B. The polynomial P(~) 

Consider the polynomial 

p(~) = ~4 _ 2E~ 2 2 
- 2D~ + (E - 2DG) . (44) 
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The roots of the algebraic equation P(~) = 0 are given functions of the cubi( 

resolvent 

H(y) = y3 + 4Ey2 + 8DGy + 4D 2 = 0, (45) 

or of its cubic transform 

< i 2> 32 > 
z + 8DG E z + E - DGE + 4D 2 = 0, (46) 

3 \27 3 

where y = z -4E/3. The roots of the cubic transform depend on the sign of 

the discriminant 

A = -1024g(E) , 
Z 

(47) 

where 

g(E) E3 G2E 2 9 < 27 D2 > = - DGE + 2DG 3 + . 
4 64 

(48) 

We have to consider, thus, 

criminant is 

the roots of the equation g(E) = 0 whose dis- 

A E = 8D(G 3 - G .3)3, (49) 

where 

27D 
G ,3 _ 

32 
(50) 

The equation g(E) = 0 has at least one real root given by 

E 3 =* 

G 2 
e G 3 3 + ~[G( + 8G* )] 

3 

I/2 
cos ~(~ + 2z), if G > G*, 

-~G .2, if G = G*, 

2 
G _ G 6 G3G.3 .6 3 I/3 (51) 

+ 13 { [ - 20 - 8G + -2 V-3AE] 

+ [G 6 _ 20G3G .3 _ 8G .6 _ _3 V_3AE]I/3 } 
2 t 

+ 

3 

if G < G*, 

and whose sign is opposite to the sign of (G 3 + G'3/4). Two others positive 

real roots exist when G > G*, which are given by 

G 2 2 
_ 1 E I + [G(G 3 + 8G'3)] I/2 cos ~, 

3 3 

G 2 2 
E2 _ + [G(G 3 + 8G,3) ]I/2 

3 3 

1 COS y(~ - 2~) , 

(52) 
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with E 3 < E 2 < E I. For G = G*, we have the double root 

E* = E I = E2 = ~G*2"a (53) 

The angle ~ is defined by the equations 

G 6 _ 20G3G .3 - 8G .6 

COS ~ = 
[G(G 3 + 8G,3)]3/2 ' 

2048 G *3(G 3 - G .3) 

sin ~ - [ G 3 G,3 ] 
9 G( +8 ) 

3/2 
(54) 

the sign of sin ~ is chosen to be positive in order to obtain E 3 < E 2 < E I. 

The roots are represented by the curves el, e2, e 3 in the plane (E, G) 

of Figure 2 and they divide the plane (E, G) in three regions. For each 

region the discriminant A has the opposite sign of the polynomial g(E) . 
Z 

Therefore, it is easy to determine the nature of the roots of the cubic 

transform (46) and consequently of the cubic resolvent H(y) = 0. However, 

the real roots of the algebraic equation P(~) = 0 only exist if all real 

roots of the cubic resolvent H(y) = 0 are negative (except in the case of 

double real roots of H(y) = 0). The cubic resolvent H(y) = 0 has always a 

negative real root; let it be YI" According to Hurwitz's Theorem, the ne- 

cessary and sufficient condition for the real part of Y2' Y3 to be negative 

is G > 0 and E > D/8G. Since the hyperbola 8EG = D has only one branch because 

of the condition G > 0, it lies completely in region II of Figure 2. There- 

fore, the sign of Y2' Y3 (when real), may be easily determined. Let us 

summarize these results according to the nomenclature of Figure 2. 

Re~ion III. A z > 0 and the cubic resolvent H(y) = 0 has three simple real 

roots Yl < 0, Y2 > 0, Y3 > 0. Therefore, the equation P(~) = 0 has four complex 

roots. 

Curve e 3. A z = 0 and the cubic resolvent H(y) = 0 has one simple real 

root Yl < 0 and one double real root Y2 = Y3 > 0. Therefore, the equation 

P(~) = 0 has one double real root and two complex roots. 

Re~ion II. A z < 0 and the cubic resolvent H(y) = 0 has one simple real 

root Yl < 0 and two complex roots Y2' Y3" Therefore, the equation P(~) = 0 

has two simple real roots and two complex roots. 

Curves e 2 and e I. A z = 0 and the cubic resolvent H(y) = 0 has one simple 

real root Yl < 0 and one double real root Y2 = Y3 < 0. Therefore, the equation 

P(~) = 0 has two simple real roots and one double real root. 

Point T. A z = 0 and the cubic resolvent H(y) = 0 has one triple real root 

Yl = Y2 = Y3 = -~E*3 < 0. Therefore, the equation P(~) = 0 has one s~mple and one 

triple real root. 

Re~ion I. A z > 0 and the cubic resolvent H(y) = 0 has three simple nega- 

tive real roots YI' Y2' Y3" Therefore, the equation P(~) = 0 has four simple 

real roots. 

The sign of the roots of P(~) (when they are real) are: ~1 > 0, 

has the same sign as (E 2- 2DG). The parabola E 2 = 2DG is ~4 < ~3 < 0; ~2 
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denoted by P 

inside. 

1 in Figure 2. ~2 is positive outside this parabola and negative 

In order to construct the atlas of the polynomial P(~) that is shown 

in Figure 3, we need to know the stationary points of P(~). These points 

are the solutions of the algebraic equation ~P/3~ = 0, i.e., of the cubic 

equation 

D 
~3 _ E~ - 0, 

2 
(55) 

whose discriminant is 

A = 4(E 3 _ E,3) , 

E* is defined in Equation (53). This equation has at least one positive 

real root, point of minimum of P(~), given by 

=4 

{[I + /I (E/E*)311/3 

+ [ 1 -  dl- (E/E*) 

+ 

(56) 

311/3}, if E < E*, (57) 

(2D) I/3 if E = E* 
, 8 

if E > E* 

1/2 
k 1 iT) cos 

where 

3/2 E* 
n = COS (58) 

For E = E*, P(~) has a point of inflexion 

I/3 

(59) 

It is noteworthy to mention that P(~2 = ~3 ) has the same sign 

This fact determines the position of the point of inflexion 

(~, P(~)) for different values of G. At Point T 

the point of inflexion is a triple root of 

two others stationary points of P(~). 

I/2 4E 
~2 cos 

P(~) . 

The point 

as (G* -G). 

in the plane 

(E = E*, G = G*) of Figure 2, 

When E > E*, there appear 

of maximum is 

(60) 

and the other point of minimum is 

1/2 (4E,  
g3 = iT) cos + 2~) < 0. (61) 

It must be emphasized that the angular coefficient of the line that joins 

the points (~1' P(~I )) and (~3' P(~3 )) is negative and this shows that the 

first point of minimum is deeper than the second one. 
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C. The Function Q(K) 

Consider the function 

Q(K) = -P(~) = -K 2 + 2D VK + E + 2DG, (62) 

where 

= + %fK + E. (63) 

To Q(K) there corresponds two polynomials: Q+(K) and Q_(K), given by the 

positive and negative determination of ~ respectively. The transition point 

from one polynomial to the other occurs for 6 = 0. 

The roots of the function Q(K) are roots of the 4th degree polynomial 

R(K) = Q+(K). Q_(K) and, obviously, they are related to the roots of P(~). 

Therefore, a similar analysis to that made for P(~) is made for Q(K). We 

will only point out some peculiarities. 

' > 0 ' < 0 ' < 0 at the The function Q(K) has double real roots K I , K 2 , K 3 

curves e3, e2, el, respectively, with K~ <K~. At Point T, it has a triple 

' = K{ < 0. The real roots of Q(K) have monotonic behaviour for real root K 2 

increasing values of E with fixed value of G according to the order 

, , > K 3 >- , > K 2 K I > K I > K 4 >= K 3 K 2 �9 

We recall that in Region III no real root exist. In Region II, only 

2 _ E) are real roots and in Region I, all roots K I = (~ - E) and K 4 = (~2 

= ~ = 2 _ E) K 3 ( 2 _ E) K 4 ( 2 K 1 (~ -E), K 2 (~2 ' = ~3 ' = ~4 -E) are real. Note that, 

only K 4 may change its sign according to the values of E and G. K 4 has the 

same sign as (G 2 -E). The parabola G 2 = E is denoted by P2 in Figure 2 and 

K 4 is positive outside and negative inside it. The parabola P2 intersect 
2 

the curve e 2 for G = G O such that E2(G 0) = G O . 

The positive and negative determination of Q(K) only exist when the 

real root ~2 is negative, i.e., inside the parabola P1" Outside it, Q(K) is 

given only by one of its determinations (the positive determination in 

Region II and in Region I by the positive determination for ~2 ~ ~ ~ ~I and 

by the negative for ~3 ~ ~ ~ ~4 )" 

The stationary points of Q(K) are also det:ermined by Equation (55) 

that gives the stationary points of P(~). They will be also stationary 

points of the curves 

H(K) : + qQ~. (64) 

KI = (~2_i E) is always a point of maximum of Q+(K) and, since Q+(KI ) > 0 for 

E > E3, than it is also point of maximum of the curve H(K). Other stationary 

K2 K3 ~2 -2_E,) is a point points of Q(K) only exist for G >G*. = = ( -E*) = (~3 

of inflexion of Q_(K) and, since Q-(K2 = K3 ) > 0, it is a point of inflexion 

of the curves H(K) . Note that for G = G*, the point of inflexion is the 

' ' of Q(K) and consequently also of the curves H(K) triple real root K 2 = K 3 , 
-2 

K2 = (~2-E) is point of minimum of Q_(K) and, since Q_(K2 ) > 0 for E <E2, it 
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is point 

of maximum of Q (K) and, 

of the curves H(K) for E* 

double roots of Q(K) and 

e 2, e I, respectively. 

K3 -2 of minimum of the curves H(K) for E* < E < E 2. = (~3 -E) is point 

since Q (K3) > 0 for E < El, it is point of maximum 

< E < E 1. The s t a t i o n a r y  po in t s  KI' K2' K3 become 
consequently of the curves H(K) at the curves e 

3' 

The tangents to the curves H(K) calculated at the point (0, K ) where 
S 

K is a simple root of H(K) and at the branch point (H(-E), -E) are per- 
s 

pendicular to the K-axis. They are oblique and have equal inclination at 

(0, K 2') , where K 2' is a double real root of H(K) . They become parallel to 

' = ' (triple real root of H(K)) the K-axis at this point (cusp) when K 2 K 3 
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