
T E S S E R A L  R E S O N A N C E  E F F E C T S  O N  S A T E L L I T E  O R B I T S  

G. S. GEDEON* 
TR W Systems, Redondo Beach, Calif., U,S.A. 

(Received 26 May, 1969) 

Abstract. Resonance effects on satellite orbits due to tesseral harmonics in the potential field have 
been studied by many authors. Most of these studies have been restricted to nearly circular 24-hour 
orbits and to the deep resonance regime, where there is exact commensurability between earth rotation 
and orbit period. Resonance effects have also been noted, however, on eccentric synchronous and 
subsynchronous orbits and on orbits with far from commensurate periods. These have received much 
less attention; the object of this paper is to study the whole spectrum of orbits with respect to res- 
onance effects. 

1. Introduction 

Synchronous  (24-hour) satellites are currently o f  great utility for communica t ion  and 
navigation purposes. However,  the synchronous orbit is just a particular case o f  
satellites with periods commensurate  with the earth's rotat ion;  and the special feature 
o f  such orbits is that  resonances are induced by the longitude-dependent terms in the 
geopotential.  The relevant literature on this subject is extensive [i-11 ]. 

The first studies were in connection with the drift o f  24-hour satellites under the 
influence of  the dominant  longitude-dependent term, namely that associated with the 
ellipticity o f  the earth 's  equator.  A brief description o f  this phenomenon  will point  up 
the basic dynamics and will set the stage for the more advanced development that 
follows. 

Consider a satellite launched into a 24-hour circular equatorial orbit, and let us 
examine the mot ion  in a frame of  reference rotating with the earth. I f  the equatorial  
cross-section were circular, the force on the satellite would be central, and in a syn- 
chronous  circular orbit  the satellite would always be at the same geographic longitude 
(geostationary). In  the presence of  equatorial ellipticity, however, there is also a net 
transverse force toward  the nearest long axis. F r o m  symmetry it is clear that  this 
transverse force must  vanish on the extensions o f  the principal axes of  the equatorial 
ellipse, and that  these constitute equilibrium positions. 

For  a satellite launched in a synchronous orbit at some arbitrary longitude the 
effective acceleration will be opposite in direction to the force, and the satellite will 
move toward the minor  axis. This is another  case o f  the 'satellite paradox '  which is 
well known for  drag-perturbed satellites. The drag-perturbed satellites accelerate 
(because they fall in radially), the synchronous satellites decelerate under the forces 
F shown in Figure la  because o f  an outward movement.  The resulting mot ion  will 

be a long-period (2 years and up) libration o f  the satellite about  the nearest stable 
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equi l ibr ium posi t ion (Figure lb). In  an inclined orbit  the satellite's apparent  mot ion  

to an earth-fixed observer will be a diurnal  figure-eight pattern,  symmetrical  with 

respect to the equator ;  while the node will exhibit the long-period mot ion  in longitude 

as displayed in Figure lb.  
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Transverse force (Ft) on satellite, stable equilibrium position at A and C, unstable ones at 
B and D (equatorial ellipticity exaggerated). Coordinate system rotating with earth. 
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Fig. lb. Paths of geostationary orbits in coordinate system rotating with earth 
(equatorial eltipticity exaggerated). 
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In cases where the commensurability is not exact, the longitude of the ascending 
node has a secular rate upon which oscillatory resonance effects are impressed. This 
regime has received much less attention and only Garfinkel [10] has presented a unified 
treatment for the whole range of resonance. He established that the full resonance 
solution is valid in all cases, with the classical solution matching the resonance 
solution asymptotically outside the resonance band. The boundaries of this resonance 
band are defined by Garfinkel as orbit periods for which the two solutions differ by 
a quantity O(Jlm ), where Jz,, is the tesseral causing the resonance. 

This paper describes a different and physically more meaningful method of ana- 
lyzing resonance effects and applies the method to investigation of the entire spectrum 
of orbit periods. In general, the method consists of developing a second-order dif- 
ferential equation for the variation of a longitude dependent quantity, the 'strobos- 
copic' mean node (defined in Section 'Commensurabili ty ')  and using this equation 
with Lagrange's Planetary Equations to obtain the solution by starting at a point far 
from commensurability and gradually approaching it. 

The present paper is a comprehensive study based on previous publications co- 
authored by my colleagues M. P. Francis, B. C. Douglas, M. P. Palmiter, and O. L. 
Dial [12-14]. For more technical detail on certain of  the points presented, these 
references may be consulted. 

2. Gravitational Potential in Terms of Kepler Elements 

The gravitational potential V must satisfy Laplace's equation: V 2 V=0.  The standard 
expression of earth potential which satisfies the above equation is based on geographic 
polar coordinates. This form, however, is not a convenient one when applied to 
analytic perturbation techniques. Since Lagrange's planetary equations will be used 
for the study of the resonance problems (where the partials of  the disturbing function 
with respect to the Keplerian elements are required), it would be advantageous to 
use a potential function which is expressed in terms of the Kepler elements. Such an 
expression is available in [15] where the standard potential function is transformed 
into the following form: 

Z Z V'mp  R' (1) 
F /=2 m=0 p=0 q=--ao F 

where 

and 

( ~ ) l  ~COS ~ l ( / - "  ) . . . .  

Vtmpq = ~a Fo, w ( i) Gtpq (e) J,m L sin 0_]~t-m)odd ' 

= [ ( / -  2p) co + (l - 2p + q) M + m (f2 - 0 - 2,,.)]. 

(2) 

(3) 

In the above equation a, e, i, f2, co, M are the osculating elements, F,,,p(i) is the inclina- 
tion function and Gtv~(e ) the eccentricity function. Expressions for these functions 
(which can be incorporated into a digital computer program) are given by Kaula in 
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[15]. For  ease of  analytical investigation, however,  these are also tabula ted  in the 
same reference for  0~<l~4  and -2~<q~<2.  The function Glpq(e) is o f  order  e Iql there- 
fore the summat ion  for q need be over  only a few values near  zero for  orbits o f  low 
or modera te  eccentricity. The  rest of  the symbols  appear ing in Equat ions  (1), (2) and 
(3) a/-e the following: #=g rav i t a t i ona l  constant  times mass  of  ear th;  a e = m e a n  
equatorial  radius ; r = posit ion radius;  0 = right ascension of  Greenwich;  Jim, 2~,, = coef- 
ficient and the longitude of  major  axis of  symmetry  of  the (/, m) spherical ha rmonic ;  

= a r g u m e n t  of  the t r igonometr ic  expressions. 

LAGRANGE'S PLANETARY EQUATIONS 

According to Lagrange,  the rates of  change of  the osculating orbital  elements for  a 
disturbing potential  R may  be writ ten as follows: 

da  2 0R 
- ( 4 a )  

d t  n a  O M '  

de  1 - -  e 2 OR x/1 - -  e 2 OR 
d t  na2e  O M  n a 2 e  00~' 

(4b) 

dO 1 aR_, (4c) 

d t  na  2 x/1 - e i s i n i  3i 

di cot i OR 1 OR 
- - - ,  ( 4 d )  

d t  na  z x / 1  - e z ~o9 na  2 x/1 - e ~ sin i 0f2 

de) co t /  0R x/1 - e 2 0R 
- + - - ,  ( 4 e )  

d t  na  z x / 1  - e 2 t?i h a z e  Oe 

d M  1 - e 2 OR 2 OR 
- n ( 4 f )  

d t  naZ  e de na  Oa " 

See e.g., [15]. 
In  Equat ion  (4f) the mean  mot ion  n may  be related to a by 

# = n2a  3 . (5) 

3 .  C o m m e n s u r a b i l i t y  

Resonance is due to longitude dependent  tesserals and to commensurabi l i ty  between 
orbit  and earth rota t ion periods. Its effect can be observed on all Kepler  elements, 
though these are small. The most  p ronounced  effect o f  resonance shows up on a 
longitude dependent  quantity,  the ' s t roboscopic * mean  node '  which will be introduced 

now. 

* The name was suggested by Dr. Boris Garfinkel. 
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I f  a number  s is defined by the equat ion 

s ( 0  - = + (6) 

it is then essentially the number  of  node to node satellite revolutions per  earth 
rotat ion.  Let s = s  o + As, where So =P/Q, the ratio of  two integers and As < 1, Equat ion  
(6) can then be rewrit ten as 

1 
- -  ( N / +  d)) - (0 - .Q) = )~N, (7) 
SO 

with 

( 8 )  
SO 

In tegra t ion of  Equat ion  (7) leads to 

1 
2 N = - -  ( M  + o~) - (0 - ~ ) .  (9) 

So 

I f  )'N =0 ,  2N remains a constant  defined by the initial conditions.* The physical inter- 
pre ta t ion of  2N is the following. In t roduce the 'mean  satellite', and assume that  at  
t = 0 ,  M + r  ' I l luminate '  ear th with a s t roboscopic flash light and  you will find 
the mean  satellite above  the equator  at 2N = (2--0 longitude. Q days later repeat  the 
same, then if 3t N = 0 the mean  satellite will be at  the same longitude, if A N # 0 it will 
be S )'N dt away. Recapi tulat ing above;  though Equat ion  (9) defines 2N as a cont inuous 
function, physically 2N can be interpreted only at  integral number  times Q days, thus 
the name s t roboscopic  mean  node. 

Since the rates .Q, d), and N / d o  not  remain  constant  under the act ion of  the tesseral 
harmonics ,  it is necessary to consider the acceleration 

= ii + ! + /5 ) .  (lo) 
SO 

Designating the Kepler ian  elements by c~i, and their rate of  change by ~i, where 
i =  1 . . . . .  5, the acceleration in any of  the elements can be wri t ten as 

6 

~ ? ~ i  dc~j a~ i 
d~ = ~ j  dt + ~t (11) 

j = l  

Equat ion  (11) can be rewrit ten as 

~ i  ~ ~ i  d/= a~  ~ + - -  o~j. (12) 
0c~j 

* The groundtrace (initially) repeats itself. 
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The order of the products in the summation is 0(J~ 2) with the notable exception of 
(8~/69a) d. This partial contains a zero order term 

8 M  69n 3 n 
+ o (J~,.), (13) 

69a - 8a - 2 a 

which is multiplied by d as given in Lagrange's Planetary Equation. Thus 

](4 = 8K4__ ~ 3 69Vlmpq -[" O(jz2m), 
(~1~ a 2 8M 

and 
.. 6905 

= - -  ( J , m ) ,  co 6 9 0 ~ + o  2 

fi = 8x) a~, ?' + o ( ~ ) .  

(14) 

(15) 

A note for those who are interested in deep resonance only: they can assume that 
~) =0  thus only the second term of Equation (14) will appear in Equation (10). This 
leads immediately to Equation (22) without the term A ( m 2 N -  q05)/n. 

Now from Lagrange's Planetary Equation for Nf, 05, D the required partials are 

where 

8)15I 1 [ 1 - e 2 G ' _  ] ' 
690 na 2 e G + 2 ( / +  1) V~m,q, (15a) 

8D 1 1 F' ! 

80 na 2 (1 - e2) 1/2 sin/ f ~"Pq' (15b) 

[ cot, 
69 0 -- na 2 (1 -- e2) 1/2 F e [/)~Pq' (15c) 

But 0 and 
tion (3) 

( ;o) 0 =  l - - 2 p + q  ( M + o g ) + m ( 2  N - 2 z , . ) - q ( o .  

Terms resonating with an orbit are those for which 

G' = 8Gzpq(e) F' _ 8F~,.p(i) V/~pq - 8Vz~Pq 

8e 8i 8 0 

can be expressed in terms of 2N if Equation (9) is introduced into Equa- 

(16) 

l -  2p + q = m/So. (17) 

These are called critical terms and for these 

I// = m (~ 'N - -  "~Im) --  qo). 

Next, we introduce the expressions 

1 [ (a/ae)l 11/2 
Plmpq = Z 3 [Ftmp(i) Gteq(e)] .It,,, ' 

( 1 8 )  

(19) 
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and 

where 

(1+ ~) 2~m I {'-m~ .... 
'~l,, = 2l,, + - -  - + ~o, 

m 
7~ 

2 m  ( l - m )  odd 

~ = { + I }  if Fzmp(i) G~pq(e){>}O. (21) 

(20) 

I t  will be shown that  when n =2=So (Librat ion regime) then Pt,,pq is the rat io of  the 
per iod of  small ampli tude l ibration and that  o f  earth rotat ion,  2~,~ is the longitude of  
a stable node. Note  tha t  due to the (qoJ/rn) term, the stable node  in the general case 
rotates  with angular  velocity (qgo/m) in the equatorial  plane. 

Figures 2 and 3 show small ampli tude l ibration periods for several circular commen-  
surate orbits.* 

N o w  substituting 65, ~ and 2~/into Equat ion  (10) and making  use of  Equat ions  (18) 
th rough  (21), after some manipula t ion  one obtains:  

2~ = - ~ 1 + A ~ sin m (2N - I,m) + 0 (J,~) (22) 
S O 1l mPlmp,  t 

cri t .  

8 - -  
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* Note that these and the following graphs up till Figure 9 are based on Guier and Newton's (1965) 
tesseraI coefficients. Figures 10 and 1 i. however, are based on the 1966 Smithsonian coefficients. 
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Small-amplitude libration periods of circular subsynchronous orbits. 

with 

I e ( 1 -  e2) ~/2 G' So-COSi F' 1 
So 2 ( I +  1) + e2)1/2 + . . . . .  . (23) 

A = - 3m 1 + (1 - G (1 - -  e2) 1/2 sin/ 

No general solution to Equation (22) is known, but several approximate solutions 
are available for varying degrees of  closeness to commensurability. The following 
discussion will begin with cases that are far from commensurability and gradually 
approach the point of strict commensurability. 

4. T h e  C l a s s i c a l  S o l u t i o n  R e g i m e  

We begin with the six first-order differential equations (Equation 4) for the rates of  
change of the orbital elements, plus one second-order differential equation (Equation 
22) for the stroboscopic mean node. In order to integrate Equations (4) we introduce 
the expression 

dt = (1/~) dO (24) 

and if ~) is a constant then integration can be executed in closed form (see Equation 
(3.76) of  [15]). This is the definition of the classical solution. Now ~ usually is constant 
if the only variations considered are the secular rates 3)/, (b, X) due to oblateness and 
the rotation rate 0 of  the earth. The resultant perturbations of  the elements are 
sinusoidal, with periods that are submultiples of  the periods of orbital motion, earth 
rotation, the rotation of the line of  nodes, the apsides, and any combinations of these. 

Consideration of Equation (18), however, reveals that the 

= ra). s -- qcb (25) 
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must also be constant for a term Vzzpq that satisfies Equation (17). Thus new periods 
must be added to those already defined. These are the circulation periods *, defined by 

Pc = 2 l(mAN - q o). (26) 

We next determine those conditions under which J-N may be considered constant. 
Examination of Equation (22) reveals that when J.yo, as defined by Equation (7), is 
large, the rapid variation of the sine function yields negligible mean acceler~tion. 
Therefore in cases that are far from commensurability, where the circulation periods 
are not considerably longer than the orbit period, the variation of 2N can safely be 
neglected. 

This regime can be qualified numerically by introducing the ratio of  the circulation 
period to the orbit period, which Garfinkel calls the resonance parameter  R. For 
circular orbits there is only one circulation period, that associated with q =0.  This is 
identical with the time it takes for the mean node to drift f rom one stable node to 
the next. Using Equation (8), the circulation period becomes 

2rc/m 
Pc - (27) 

( 0  - 
SO 

I f  we define the m = s  o case as ' fundamental '  resonance, then m =2s  o is its 'first 
overtone'. Higher 'overtones'  have not yet been observed; even the first overtone is 
very weak, although it has yielded coefficients of  27th and 28th order tesserals (see 
[16]). 

Relating this circulation period to the fundamental resonance and writing the orbit 
period as 

2re 
P ~- (So + As)  (0 - l ) ) '  (28) 

the ratio of the two periods (the resonance parameter) becomes 

R = Po/P = 1 + so /As .  (29) 

Since A s <  1, it can be seen that for orbits corresponding to many revolutions per day, 
the ratio R is at least in the low tens, while for low values of s o the ratio can be less 
than 10. 

This result explains the physical fact that resonance effects can be observed for all 
satellites making more than about 10 revolutions per day, while for those making 
fewer than about 10 revolutions per day it is possible to observe resonance only when 

* Also often called: beat periods. 
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the orbit period is nearly commensurate (i.e., As is small). It  follows that when the 
resonance parameter R is less than 10, resonance effects can be ignored.* 

When R reaches values in the tens, however, the perturbation due to a critical 
tesseral builds up to appreciable amplitudes. This is the beginning of the so-called 
'shallow' resonance regime where the classical small divisor problem appears (i.e., ~) 
in Equation (24) is small). As long as ~ remains constant, however, it is still possible 
to integrate Lagrange's Planetary Equations analytically, although resonance effects 
begin to appear as forced along-track oscillations impressed on the motion of the 
secularly processing ellipse. These along-track oscillations can be calculated from 

A ~- a(Aco + Af2 cos i + AM).  (30) 

Evaluating Aco, A f2 and A M  with Equation (3.76) of [15], above becomes 

e(1 -- e2) 1/2 
A = an (a~) t Elmp(i ) Glpq(e )Jlm 2(l + l) + e2)1/2 

\ a ]  1 + (1 - 

�9 3 ~  sin 0 .  (31) 

Equation (31) is written for one Vl,,pq and is directly applicable for circular orbits, 
since for e=0 ,  q must be zero because G l p q ( O ) = O  for qva0. The quantity rn is also 
fixed; for fundamental resonance, it is s 0, the closest integer to s, or for overtones, its 
multiple. 

For eccentric orbits there are several sets of lmpq's which produce resonance. For 
a single order m, a solution can be obtained using a procedure similar to that described 
later, with Equations (34) and (35). More detail is presented in [14]. 

It  should be pointed out here that satellites in eccentric, non-critically inclined 
orbits in the shallow resonance region are ideal for geodesy purposes because of the 
frequency split present in the terms of Equation (31). That  is, for any 2No the circula- 
tion periods depend on q. This was verified in [17], where those circulation periods 
that produce perturbations greater than 50 meters are tabulated for a great number 
of  satellites. 

5. Solution in the Circulation Regime 

When the resonance parameter R is in the high tens or in the hundreds, circulation 
periods become considerably longer than the orbit period and the variation of ).N, as 
described by Equation (22), should not be ignored if an accurate solution is desired. 
For a closed-form solution to Equation (22), however, certain assumptions must be 

* Incidentally the drift period expressed in days has the same numerical value as the resonance 
parameter. This is due to the fact that the drift period is defined as P d  - -  2rc/2~,  thus P a  - -  m P c .  I f  
we express the orbit period as P ~ P E / s o  where PE is the earth rotation period, then 

P d  P~, 
R = P e / P  - -  " P a / P E .  

m so 
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made. First we note that the resonance parameter R, which was assumed to be high 
in this regime, can be written as 

R = n/(m]4 N - q (b) .  (32) 

Since the constant A in Equation (22) is small, the term 

A 
A (m2N -- qdo)/n = (33) 

R 

in Equation (22) can be neglected. It will be shown later that this term becomes 
important only in the transition from the circulation to the libration regime; i.e., for 
the case of a nearly 'stalled' satellite. 

The next task is to remove the summation sign from Equation (22), which will 
reduce it to the differential equation for an m-fold pendulum. For purposes of a 
mathematical analysis this could be done arbitrarily (see [13 ]) and the solution obtained 
even if J-tin is not stationary. (In the non-stationary case the system can be made 
autonomous by transformation into a coordinate system rotating with angular 
velocity q69/m in the equatorial plane. The solution then turns out to be an oscillation 
about the mean motion of 2N.) Though such solutions are quite interesting, in this 
paper we confine ourselves to cases which relate to the 'real world'. Analytic solutions 
to Equation (22) apply in two real cases which follow here. 

First for the case of  negligible eccentricity the number of critical terms is low, 
since the eccentricity function reduces the solution to the q = 0  terms. Likewise, the 
stable nodes are stationary. 

Second, for the case of orbits at the critical inclination all ~,, are also stationary. 
Thus, in both cases terms of the same order (m) cart be combined. The period P of 
a small amplitude oscillation and the longitude of the stable node 20 for the resulting 
motion are then given by 

1 

P = { [ ~  1 ]2 V ~ / 2  12}i/2 (34) 
P/L  Sill m~lm + COS m~lm 

LLa Pl, q 
l,q l,q 

and 

pl2q sin m21m 

tan m2 o = t, q (35) 
)--~ i 

p~22q cOs tTl~lm 

l,q 

Since one order (m) dominates in both cases; the analytic solution is realistic. 
In order to avoid the complexity of the m-fold pendulum problem we will return to 

the variable ~p, but it must be kept in mind that the value of ~ considered will be that 
defined by Equations (17) and (20) as m(•N--2lm ). Ignoring d ) ~ N ,  we can write 

~) + ~c 2 sin ~p = 0, (36) 



178 G.S. GEDEON 

where 
?'l/S O 

tc = (37) 
Plmpq 

is the circular frequency of motion. 
Equation (36) has a first integral 

~2 = C + 21r 2 c o s ~ / .  (38)  

In the circulation regime ~)>0, hence C>2~: 2. Equation (38) can be integrated to 

yield f d~ 
t = [-C + 2~c 2 cosO] 1/2 + const. (39) 

Equation (39) will be evaluated in two different ways. In the rapid circulation 
regime bordering the regime where the classical solution is applicable, an approxima- 
tion for O may be used. In [18], O is expanded as 

K 2 tr 4 
= (ut + e) + ~ sin(ut + ~) + 8~ ~ sin2(ut  + e) + . . . ,  (40) 

where u, the secular rate, is related to the period P by 

2~ 

2n f d0 p - -  
u [C + 2~: z cos ~k] 1/2' (41) 

0 

and e is a phase angle. In the rapid circulation regime u>> to, so that only the first 
two terms in Equation (40) are needed. 

It is also possible to find u and e from the initial conditions by setting Equation (18) 
equal to Equation (40): 

/s 

(ut + e) + ~5 sin(ut + e) = m(2N -- ~,,,). (42) 

For convenience we can choose initial conditions such that the right-hand side of 
this equation is zero at t=0 ,  with the result that e =0  at the same time. 

Now, differentiating Equation (42) and applying the initial conditions, we have 

/(.2 

u + - - c o s ( u t )  - - -  m f t N O  - -  qd~ = ~b o . (43) 
u 

Recalling that u>> ~c, we can write u_-__ ~o. With these constants, the solution becomes 

/s 

0 = ut + ~ sin(ut). (44) 

For cases where this first approximation holds, the amplitude B of the variation in 
O is 

r c Z [ n / s ~  z (45) 
- - - -  

\Plmpq/ 
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If  we return to the integration of Equations (4) and consider Equation (44), then the 
trigonometric term becomes 

sin o = s i n u t + ~ u  ~ s i n e u t + 0  ~ . (46) 

This can be integrated to yield 

sinO dt = - cosut + cos2ut (47) 
u 4 ~  " 

We have already seen that u is almost the same as meNo- qcb. The basic amplitude 
therefore does not change, but a higher frequency motion appears and produces a 
sharper change around the stable node and a less sharp change around the unstable 
node. The greatest deviation from the classical solution will occur midway between the 
nodes, when the displacement calculated by the circulation method is 

2 \Plmpq/ 

where A is the amplitude of the Small Divisor solution. 
In the slow circulation regime the period of the motion is defined by Equation (39), 

which can be rewritten as 

i d4, P = 2 [C + 2 X  2 - -  4~c 2 sin 2 ~/2] 1/2" 
0 

(48) 

Introducing 4~ = 0/2 and 

4to 11/2 

k = c+  2J ' 

which is always less than unity since C> 2~: 2, the period becomes 

~/2  

2k f d~ p = i  
~: [1 - -  k 2 sin e q~2]1/2 ' 

0 

o r  

(49) 

(50) 

/s 

P = - P , , , , p ~ K ( k ) ,  (51) 

where K (k) is a complete elliptic integral of the first kind. From the period the secular 
rate is given by 

= �89 2 r c / P .  (52) 
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To find the amplitude of the periodic part of the overturning pendulum, Equation 
(33) should be written in the form 

k f dq~ R 
t - to = ~ P ,  mpq J [1 -- k 2 sin2 q~] 1/2" (53) 

0 

Assuming that the inverse of the above is q5 = f ( t ) ,  the periodic part is 

A~ = f (t) - ~ t ,  (54)  

which has a maximum when 

d(A~b) = f ( t ) -  ~ =  0. (55) 
dt 
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Fig. 4. Theoretical values of amplitudes, periods, and Circulation velocities of 12 hour, 30 ~ inclined 
circular orbits due to V32~0. 
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Thus 
1 27r 

f (t) - dt/d(o kPlmpq 
from which 

[1 - k 2 s in  2 ~)m] 1/2 = =/P, 

1{1 I- ~i2 1~*'~ 
s i n  q~,. = ~ - LK (;jJ ; " 

The corresponding amplitude is obtained from 

Aq~m = G , -  ~tm. 

(56) 

(57) 

where 

where c~ is the amplitude. Expressing C with tc and c~, Equation (38) becomes 

~2 = 4•2 (sin 2 c~/2 - sin 2 0/2).  (60) 

I f  we introduce the auxiliary variable qS' by 

sin 4 / =  (sin 0/2)/(sin c~/2), (61) 

then Equation (60) can be integrated between fixed limits to yield 

~/2  

4 f dqY P =  
~C (1 -- k '2 sin2 ~')  1/2' 

0 

c~ [C + 2~c2T/2 1 
U=sin~ 4,~ ~ l =k" 

(62) 

(63) 

Figure 4 shows examples of periods, amplitudes, and secular rates calculated from 
the above equations. 

Note that in this regime (and in the libration regime to be treated next) we con- 
centrate on the stroboscopic mean node and do not mention the variation of the 
other elements. This treatment is due to the fact that ~9 is no longer constant and it is 
therefore no longer possible to integrate Lagrange's Planetary Equations analytically. 
I f  more information is required, the equations of motion must be numerically in- 
tegrated. I f  tesserals are included, resonance effects are automatically accounted for. 

Numerical integration is also required in cases of eccentric orbits with noncritical 
inclinations, where no analytical solution is available even for the stroboscopic mean 
node. 

6. Solut ion in the Libration R e g i m e  

When the integration constant of Equation (38) is smaller than 2~ 2, the satellite 
begins to librate. In this case ~ will vanish, as in the case of a pendulum, at its extreme 
elongations. For this case, 

C + 2K 2 cos o~ = O, (59) 

(58) 
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Equat ion (62) can also be written i f  n/so = 2~/day as 

2 
P = Pt,,,vq K (k') days,  (64) 

7r 

where K (k') is a complete elliptic integral of  the first kind. For  small amplitudes k '  
is small and K (k')-~ 7:/2. Thus Ptmvq truly represents the period o f  small amplitude 
librations. 

The borderline between circulation and libration is at the point  where C=2tc z, 
corresponding to a 'stalled' pendulum. At  this point  and in its vicinity the term AIR 
should not  be neglected, since it has an effect similar to that o f  drag or thrust and 
can modify enormously the behavior o f  the pendulum in this regime. No  closed-form 
solution is available for this case, and the equations of  mot ion must  be numerically 
integrated. 

Typical examples o f  l ibration in circular orbits are shown in Figure 5. Figure 6 
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yEARS 

Fig. 5. Examples of libration of 12-hour 30 ~ circular orbits. 

shows the libration o f  a geostationary satellite under the influence o f  one critical 
tesseral and under that  o f  three critical tesserals. The latter result was obtained by 
numerical integration, since the three critical tesserals were not  o f  the same order. 
The principal term is much more dominant  in cases of  other circular resonant  orbits. 

Resonance effects on eccentric orbits are shown in Figure 7. The three upper curves 
represent librations with respect to a stable node rotating with angular velocity + 6). 
As soon as the integration was started, the satellites began their librating motion.  
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For the two lower curves of  this set, this starting 'jolt' o f  nodal  rotation was enough 

to carry the satellites past the unstable node and into the circular regime. Note  that 

curve labelled 0 ~ represents a satellite which was on the stable node, but began to 

librate because of  the mot ion  o f  the node. 

For cases o f  more than one critical tesseral, resonance effects were calculated by 

numerical  integration, using a high-speed computer program devised for resonance 
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investigations. The results are plotted in Figure 8, where again three of  the satellites 
(0 ~ 30 ~ and 60 ~ behind the node)  librate and the other two (at 75 ~ and 90 ~ behind 
the node) circulate. In this case the mot ion  is analytically intractable. An exception is 
the case o f  critical inclination and for criticals with same order m, plotted in Figure 9. 
It is seen that the librations are regular, due to the absence of  rotating stable nodes .  
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7. Boundaries of the Resonance Regimes 

Garfinkel [10] defines a resonance band within which the solution is accurate to 
within quantities o f  order Jm. From the point  of  view of  practical applications, 

however, this definition is too narrow because it leads to overlapping resonance 
bands calculated for neighboring commensurate  orbits. Admittedly it would be 
difficult to set up practical criteria sufficiently accurate in the general case to suit all 
purposes. More useful than such arbitrary criteria would be the use o f  the appropriate  
equations for the particular regime under investigation and compar ison of  the results 

to assess the accuracy of  a simpler calculation. 

8. Station Keeping 

Equat ion (38) can be also written as 

~ 2  = 2 [cos 0 - cos G 1 ,  
with 

(65) 

{ ~  1 s i n 2  [(2N, T - )bN B = 4re 2 2 -~lm) -{- ('~N, B ; l ,  m)] 
' 1TI P l m p q  

m ~ ) a / 2  

x sin ~ {,AN, T - -  ~"N, B ) ~  " 
) 

(68) 

I f  the deadband width is _+A2 and the distance of  the deadband center f rom a stable 

node is firm, then the libration velocity change 52N ='~N,B can be expressed as 

5)t N = 4rr 2 2 sinmfit m s inmA2 . (69) 
m Plmpq 

Taking the variation o f  Equat ion (7) which defines the libration rate 

5f~N ~ (~t'~/So ( 7 0 )  

we see that it is caused by a variation of  the mean motion. 

n/so 2~ 
~c = -~ (66) 

for deep resonance where station keeping might be required. Since station keeping 
restricts the satellite to a small bandwidth, it is possible to consider more  than one 
critical term. Thus, Equat ion  (65) is generalized to 

1"~2 ? (2n/'m~ 2 
~ZN = Z..a \Pzmpq--/ [COS m (2N -- '~,m) -- COS m (2N. 0 -- 2,=)], (67) 

where summation is on all critical terms considered. 
The libration rate at the top of  the deadband is zero, and the libration rate at the 

bot tom,  2N, B, can be written as 
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NOW the mean motion is defined by Equation (5), thus 

6n = - ~n 6a/a (71) 

and from the vis-viva integral 

1 V)~a 
6 V -  , (72) 

2 V a  

where Vc is the circular orbit velocity, and V is the velocity at the point where correc- 
tion is made. Combining Equations (70) through (72) we get 

~)-N = - 6 ~  V "  

Applying a 6 V would only stop the libration rate, but twice the amount will make the 
orbit librate to the top of the deadband. Thus, introducing the inplane deadband 
halfwidth, ___Aq5 =soA2, the required velocity correction is 

6 V 4 2 1 sin m i l l  m sin m A q5 (74) 
- - ~ - -  2 - 2  " V 3 m Plmpq SO 

TO find the period of the limit cycle we can use the average acceleration of the strobos- 
copic node from the simplified Equation (22) written at the deadband center for all 
critical terms as 

m 2 ~ 1 
[~N, AV] = S-~- n 2  sin mfllm. (75) 

iql Pl m p q 

Using this acceleration to 'fall' 2A2, the half period is obtained. Thus the full period is 

F4A4)/s~ (76) 
T =  2 L ~ N  _] ' 

o r  • 
1TI Plm pq 

Dividing Equation (74) by Equation (77) the yearly A V requirement can be obtained 
(if n is expressed in radians per year). For small deadbands, A~b cancels out from the 
resulting equation, which reads as follows: 

v/v n/so (vq  V 
T -- 3 \ V] /_.a mP~e~qSin infirm. (78) 

For 24-hour orbits .122 dominates, but J3t and J33 are significant; -/42, and J44 are 
negligibly small. See Figures 10 and 11. 

The stable and unstable nodes shift with the introduction of other critical terms. 
�9 The new positions can be found easiest (see [19]) if the partial of the potential function 
with respect to the node is set to zero. Expressing Equation (1) with 0 = m (2N-- 2l,,) -- qco 
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where  s u m m a t i o n  is o n  all critical terms.  (79)  
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The values 2 o which satisfy Equation (79) are the stable and unstable nodes under 
the influence of  all critical terms considered. For eccentric, non-critically inclined 
orbits Equation (79) is time-dependent. Thus it yields a solution which is valid for 
only a specified time. 

9. Summary and Conclusions 

(1) Resonance was treated through the motion of the longitude of the ascending node 
of the mean satellite ('the stroboscopic mean node'). 

(2) The differential equation of the motion of the 'stroboscopic mean node' in 
general form is not amenable to analytic solution. 

(3) In order to characterize the resonance regimes, a resonance parameter R was 
introduced. This parameter is defined as the ratio of  circulation period to orbit 
period. A satellite in a circular orbit has only one circulation period, corresponding to 
the time taken by the mean node to drift from one stable node to another. Satellites 
in eccentric orbits have a number of  different circulation periods and corresponding 
resonance parameters. For low-altitude satellites the resonance parameters are at 
least in the low tens and for high-altitude satellites they can be less than ten if the 
orbit period is not commensurate. As commensurability is approached they can 
become arbitrarily high. 

(4) I f  the resonance parameters are less than 10, the differential equation of the 
stroboscopic mean node can be ignored and Lagrange's Planetary Equations can be 
analytically integrated. The result is the classical solution. 

(5) If  one or several of  the resonance parameters are in the low tens, a small divisor 
appears in the classical solution. The result is an oscillation impressed on the secularly 
precessing orbit, with period equal to the circulation period. 

(6) For resonance parameters in the high tens or greater, the differential equation 
of the stroboscopic mean node must be solved. The procedure is first to neglect a 
mean node rate term. Next the summation sign must be removed from the differential 
equation, which can be done for critically inclined orbits and for tesseral terms with 
the same order m. In the case of  circular orbits, one term clearly dominates and the 
others can be ignored. 

(7) The solution for the stroboscopic mean node in the rapid circulation regime 
can be approximated by one additional term with twice the frequency of the circula- 
tion. In the slow circulation regime the solution is in the form of an elliptic integral. 
The slow circulation period is not defined by the initial drift velocity alone, but by 
the field strength of the critical tesseral as well. 

(8) In the libration regime, the pendulum-type differential equation can be solved 
by elliptic integrals under the same restrictions as were imposed in the case of slow 
circulation. 

(9) The solution in the libration regime agrees with the solutions published in 
[l-10], the solution in the circulation regime agrees with that of [10] and with results 
obtained by numerical integration. 

(10) The full differential equation yields a small drag or thrust type of force that 



TESSERAL RESONANCE EFFECTS ON SATELLITE ORBITS 189 

is no t i ceab le  on ly  in  the  case o f  the  ' s t a l l ed '  p e n d u l u m ;  i.e., on  the  b o r d e r l i n e  b e t w e e n  

l i b r a t i on  a n d  c i rcu la t ion .  

(11) F o r  s t a t i on -keep in g  app l ica t ions ,  ana ly t i c  so lu t ions  are  ava i l ab le  fo r  any  

n u m b e r  o f  tesserals.  
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