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Abstract. A new formulation is presented for the perturbed Lambert problem. The formulation employs 
the variation-of-parameters method in the KS transformed state space to determine perturbations of a 
Keplerian Lambert solution. The approach is universal (in that its validity is not restricted to a particular 
energy domain). For the case of the second zonal harmonic (oblateness) perturbation, first order 
perturbations are carried out entirely analytically; non-iterative corrections are determined through 
solution of a pair of algebraic equations. For more general perturbations, numerical quadratures are 
required. 

1. I n t r o d u c t i o n  

The  classical two-po in t -bounda ry -va lue -p rob lem of celestial mechanics  (Keplerian 

mot ion ,  for  given initial and final posit ion coordinates  and for given t ime of flight, 

de te rmine  the initial velocity coordinates)  is widely known as the 'Lamber t ' s  
Prob lem' .  This p rob lem and its variations play a fundamenta l  role in m a n y  naviga- 

t ion and guidance procedures .  Recen t  papers  by Sun (1979) and Battin (1970) have 

re-solved Winter ' s  (1917) classical integral equat ion  

rn/2 

1 "1 1 " -a/2 
A t =  /~-~ I ( r - ~ a a )  dr  (1) 

n/2 

in terms of hypergeomet r i c  functions. Sun's  deve lopments  established the 

equivalence be tween solutions of (1) and solutions of the n o n a u t o n o m o u s  linear 

differential equat ion  

d2r s d r  3 __ 0 2~)-3/2 
((1 - ~) ~ 5  + (3 - 3 ( )  ~--~ - aT = ~o,3(1 - , 2 ) ( 1  (2) 

where  a = semi ma jo r  axis; r = distance f rom occupied focus; /x = gravitat ional  mass 

constant ;  c = [ r 2 - r l l = c h o r d  length f rom ra to r2; m = r ~ + r 2 + c ;  n = r ~ + r 2 - c ;  

( =  m / 4 a ;  ~r 2= n / m ;  r = 4At(ix~m3) -~/z. Sun's  theoret ical  deve lopments  and 

parametr ic  studies brings the Kepler ian L a m be r t  p rob lem to a ra ther  comple te  state. 

Recen t  papers  by Jezewski  (1976) and Andrus  (1977) have addressed two new 

issues 

(i) Formula t ion  of  two-po in t -bounda ry -va lue -p rob lems  in the state space resul- 
ting f rom the KS t ransformat ion,  as deve loped  in Stiefel and Scheifele (1971). 

(ii) Per turba t ion  of the Kepler ian Lamber t  solution to account  for oblateness  of 

the central  body.  
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The present paper extends the work of Jezewski and Andrus, and makes use of a 
KS-variation-of-parameters formulation developed by Bond (1976). An especially 
attractive, non-iterative perturbation of the Keplerian Lambert  solution is 
developed~ to first order  in 3"2. 

2. Kustaanheimo-Stiefel (KS) Transformation 

Let  us consider the classical non-dimensional equations of motion of the perturbed 
two-body problem in rectangular coordinates, as given by 

d2r 1 0 V 
dt 2 + ~ r  = - - - + P 0 r  ' (3) 

where r represents the position vector, r the radial distance, V the perturbing 
potential and P the remaining perturbing force. 

Introducing the fictitious time s, defined by 

dt = r ds ,  (4) 

and the KS transformation 

r = L ( u ) n ,  (5) 

where 

I 
U --U 2 --U 3 U4J 

--U 3 L ( u ) =  u2 Ul - u 4  (6) 
U3 U4 Ul U2 

U4 --U3 U2 --Ul 

we obtain the universal set of differential equations 

fl+arU = Q ,  (7) 

with 

v 
r 2 ' (8) 

Q = --�88 ~u(rV) +2 L Tp , (9) 

T r = u u ,  (10) 

(.)___d( 
ds )" (11) 

The quantity aT represents half of the negative non-dimensionalized total energy. 



A GRAVITY-PERTURBED LAMBERT PROBLEM: A KS VARIATION OF PARAMETERS 

3. The  Universal  Keplerian Lambert  Problem 

With P = 0 and V = 0, Equation (7) becomes 

i i + a T U = 0 ,  

where 

(12) 

with 

f(0) = 2uT(0)/~(0), (18) 

~n ~ Cn(4aTS2), n = 0, 1 . . . . .  (19) 

Because 0(0) is not known, we must eliminate t~(0) from Equations (16) and (17). 
Using Equation (14) we have 

uT(0)UC0 = r(O)c 2 + n r  (0hi(0)S?l, (20) 

from which it follows that 

f(O)s(l = 2u r  (0)uc0-  2r(0)c 2 , (21) 

and 

Ur(O)il(O)scl = UT(0)U-- r(O)co, (22) 

where we made use of the identity 

S~l = SClCo. (23) 

Using Equations (21-22) together with Equations (16-17) we obtain 

r = - r (0 )  + 2HT(0)UC0 + $ 2 1 2 ,  (24) 

t = t(O) + HT(O)HSCl -~- $ 3 ~ 3 ,  (25) 

OfT ----- 1 (1 __ I~T~I) , ( 1 3 )  
r 

The universal solution of Equation (12) is given by 

u = u(0)Co + u(O)scl, (14) 

in which the Stumpff  functions (Stiefel and Scheifele, 1971; Bond, 1974) are 
abbreviated as 

Co~Co(OITS2) , CI ~CI(OITS2) , (15) 

and u(0),/l(0) are initial conditions. 
Furthermore,  using Equations (10) and (4) together with Equation (14) we can 

write 

r = r(O)~o + f(O)s~l + s2~2, (16) 

t = t(O) + r(O)s~l + f(O)s2~2 + s373, (17) 
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w h e r e  we  u s e d  the  i d e n t i t i e s  

~ 0 -  2c Zo = - 1 ,  (26) 

Cl 2 = 272 .  (27)  

E q u a t i o n s  ( 2 4 - 2 5 )  can  n o w  be  s o l v e d  fo r  a T  a n d  s r g iven  r(0) ,  r ( f ) ,  u(0) ,*  u( t )  a n d  

t ( f )  - t (O) ,  w h e r e  s r is t he  ' f ina l '  v a l u e  of  s. 

I n d e e d ,  u s ing  N e w t o n ' s  m e t h o d ,  we  can  i t e r a t e  a c c o r d i n g  to  

~ 1  (~+" ~ (~) ~ [  ~'~, ~ '  (~) (~ 

wi th  

wi th  

In o r d e r  to  

' ' _ o-jT' ~ '  .~(k) 
D ( k ) = ( ~ r ~ r  ~ t ~ T  ~ , 

=- r ( f )  + r(O) - s } & ( [ )  - 2 u r  (o )u ( f ) co ( f )  , 

= t ( f )  - t (O)  - s~83(/)  - u T ( O ) u ( f ) s r c , ( f ) ,  

~='~, = SrC~( f ) [2O~TUV ( O ) u ( f )  - c o ( f ) ] ,  

,~ - s } S z ( f ) - u  T ( O ) u ( f ) c o ( [ )  

�9 ~ '  = S ~ { u T ( O ) u ( f ) c t ( f )  --  2S~  [2~4(f)  -- (3 ( f ) ]} ,  

~ '  =-- - s }  {2s~ [3~s ( / )  - ~4( / ) ]  + � 8 9  --  C2(/)]} 

c . ( f )  = c . ( ,~Ts~) .  

o b t a i n  t he  d e r i v a t i v e s  ( 3 2 - 3 5 )  we  u s e d  

OCo 
- - =  OgTSC1 , 
Os 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

OCo 1 2 
=--~S r 

dOlT 

O(sc,) 
= C 0 ,  

as 

a(sc~) = ~s~(c~_ c:) , 
~Ol T 

- -  _ _  S ~  1 , 

Os 

O(sZ?z) 2s4(s?4_  ~3),  
OOt T 

* For brevity, we denote initially and finally evaluated functions b y / ( s  = 0) ~ f(0)  and f ( s  = sf) ~ f ( f ) .  
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o(s3~3) 2-  
~ S  C2~ 

cgs 

0(s3~3) = 2s5(3(5-  (4). (36) 
OaT 

Numerical experiments with this algorithm indicate that, even with starting estimates 
off by 25%, it will converge in 3 to 6 iterations. It contains implicit singularities, of 
course, for 0 ~ and 180 ~ transfers (in which case the orbit plane is undefined). 

Once a t  and sf are determined we find the initial velocity/t(0) from Equation (14) 

with s = s t as 

1 
i l (O)= s f c l ( f )  [u(f) - u(0)co(f)].  (37) 

The velocity in rectangular coordinates follows from 

i-f0) = B/~(0), (38) 

where 

FUl(0)  --U2(0) -- / /3(0)  U4(0)~ 

2 |u2(0) ui(0) -u4(0) -u3 (0 ) | .  (39) 
B = r - ~  L "~(~ //,(o) 

Also, note that the final position vector u(f)  must be calculated from r(f)  as indicated 
in Appendix A. 

4. KS Variation of Parameters 

A variation of parameters formulation for P = 0 is given by Bond (1974), leading to 
the following solution form 

u = - a C o  + [ $ S C l ,  (40) 

/t = etarSCl + [3Co, (41) 

3 -  
t = r + asEl + bsZE2 + s c3 ,  (42) 

with 

v(o) (43) aT = [�89 2 ' 

and the differential equations for the slowly varying elements 

& = Q s c l ,  (44) 

J~ = Qco,  (45) 

d = - G s ( 1 ,  (46) 
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6 = G?o,  (47) 

"r = G s 2 ~ 2 ,  (48) 

1 a 
Q = - ~  -~u(rV),  (49) 

G = - r V + 2 n r Q ,  (50) 

also, note that 

r a?o + bS~l 2 ~ = + S  C2,  (51) 

T a = a a ,  (52) 

b = - 2 a w l 3 .  (53) 

This set of equations is used below as the basis of a new solution for the per turbed 
Lamber t  problem. 

5. The  Perturbed Universal  Lambert  Problem 

We wish to follow an approach similar to that of the unperturbed motion. Therefore,  
it is helpful to eliminate/l(0) f rom Equations (42) and (51). We start by multiplying 
Equation (40) by ct r and using Equations (52-53), to obtain 

T 1 a u = - a c o - ~ b s c l .  (54) 

Using this result we can transform Equations (42) and (51) into 

r = - a  - 2otrUCo + $ 2 ~ 2 ,  (5  5 )  

t = 7" - -  o L T I I I S C 1  + $3~3 . (56) 

Let  us write these equations for s = s t 

r ( f ) = - a ( f )  2 r ( f )n ( f )Co( f )+  2- -- SrC2(f), (57) 

t(f) = r ( f )  - aT(/)u(f)srcl(/) + s e3(f), (58) 

and assume that the potential  V is a function of u only and is proport ional  to a small 
pa ramete r  e 

V = eVl(u) .  (59) 

Because of Equat ion (59) we can write 

u(s) = no(s) + eul ( s )  + O(e2), (60) 

with 

no(s) = u(O)co(ars 2) + u(O)sc x(~rs2) . (61) 

Next, let us consider an unperturbed Lamber t  problem with r(0), r(f)  and 
t ( f )  - t(O) given, and solve for Sro and aro.  Then,  f rom Equations (37), (41), and (36) 
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it follows that 

uo(O) = 1 2 , 2 \ [ U o ( $ f O )  - -  u(O)Co(OtToSfo)]. ( 6 2 )  
SfoClI, OtTOS fO ) 

Note that Uo(0)= u(0) and Uo(Sro) are constructed from r(0) and r(D as shown in 
Equations (A12-A13)  of Appendix A. 

Because of Equations (59) we can also write 

s r = Sro + esr~, 

Ol T = OlTo + ~OlT1 

U(f) = Uo(S:o) + e U l ,  

a ( f )  = ao(s:o) + e a l ,  

a( t3  = ao(Sro) + e " ~ ,  

1 3 ( ~  = 13o(Sro) + ~ 13~ , 

~-(/3 = ~:o(Sro) + ~ '~ .  

(63) 

(64) 

(65) 

(66) 

(67) 

(68) 

(69) 

Using Equations (63-69) in Equations (57-58), and discarding terms in e 2, we obtain 

r (D  = -ao(sro)  + s2~2]o- 2a~(Sfo)Uo(Sro)Co[o + 

- a x  + sfx 0---7[ o OaT I 0 

2[(M(seo)ul  + al~uo(sro)) • 

T OCo OCo 

t ( f )  = ~-o(Slo ) + S3esIo- otro(sro)Uo(Sro)SCl[o + 

+E{'~l+Sf l  0 ( 3 C 3 )  + 0($3 ~3) --  
0S 0 O/T1 OaT 0' 

[(ao~(Sro)ul + ~" - a ~  Uo(Sro) )SCdo + 

T . . . .  [ O(scl)l O(scl)l ~]~ (71) 
-t-~o~Sr 0 + 0 g T 1 0 0 i T  I o J J J  ' 

where, using Equations (44)-(50).  

ao(sro) = r(0),  (72) 

ro(Sro) = t(0),  (73) 

Oto(Sro) = - u ( 0 ) ,  (74) 

~o(Sro) = u(0),  (75) 
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s/- o 

Or1 : I QISCl(~176 ds  , 

o 
% 

[~1 : f QlCo(aToS 2) d s ,  

0 

Sro 

I a l  = - GIS~I(OtToS 2) ds , 
0 

s w 

rl = f GIS2C2(OITo $2) d s ,  

o 

Q1 = -- (rV1) 

T 
G1 = [ - r V l + 2 U  Q1]l,,=,,o, 

(76) 

(77) 

(78) 

(79) 

(80)  

(81) 

(82) 

(83) 

Uo = U(0)Co(o~ToS 2) + Uo(O)scl(C~ToS2), 

1 2 
uo(O) - 2 [Uo(Sro)- u(O)Co(aToSro)], 

SfoCl(OIToS fo) 

in which Uo(Sto ) is known. 
Furthermore, because Sto and O~T 0 are solutions of the unperturbed Lambert 

problem, it follows from Equations (24-25)  that 

r ( f )  = - a o ( s f o )  + s2~21o- 2~T(srO)Uo(Sro)Co[o , (84) 

t ( [ )  = ~'o(Sro) + s3r  ~T(sfo)Uo(Sfo)SClIo , (85)  

so that, Equations (70-71)  reduce to 

Os Io 

@ T OCo 

T = a l  + 2[~1Uo(Sro) - uT(0)Ul]Co[o,  (86)  

Os Io 

L OOlT Io o 

T T 
= - - T  1 + [Of l u 0 ( S f )  - -  U ( 0 ) U 1 ] S C l ]  0 �9 ( 8 7 )  



A G R A V I T Y - P E R T U R B E D  L A M B E R T  P R O B L E M :  A KS V A R I A T I O N  OF P A R A M E T E R S  11 

Equations (86-87) represent a set of two simultaneous algebraic equations in the 
unknowns Sfl and aT1. Therefore,  no iteration is necessary to solve for Sfl and C~T1. 
The actual initial velocity/l(0) is now obtained from Equation (40), 

1 
!1(0) Sf cl (Ol TS 2 f ) [ U ( f )  -I- Ot(f)Co(O!TS ~ ) ]  - -  ~' 1[~1- ( 8 8 )  

6. Computational Summary 

In this paper, the authors derived an algorithm to solve the perturbed universal 
Lambert  problem. The procedure works as follows: 

(1) Given: r(0), r(f),  t ( f ) - t (O) .  

(2) Construct u(0) from Equations (A2-A3) and u0(sf0) from Equations (A12-  
A13). 

(3) Solve the unperturbed universal Lambert  problem using Equations (28-37) 

with u(f)  -- u0(sfo), yielding aTO, Sfo and/lo(0). This involves an iterative process. 
(4) /lo(0) in Equation (82) is now known and Uo can be evaluated as a function of s. 
(5) It is now possible to determine oti and ~i from Equations (76-77). These 

integrals can be computed in closed form as shown in Appendix B or by any suitable 
numerical quadrature scheme. 

(6) Evaluate ql from Equation (A17) and determine ui from Equation (A21). 
(7) Determine al and ra from Equations (79-80) and sfl and aTa from Equations 

(86-87). 
(8) Find/l(0) from Equation (88). 

Note that there is no need for iteration to obtain the corrections aT1 and sf~ which 
account for the effect of perturbations; these are found by simply solving a set of two 
simultaneous algebraic equations. It is also clear that the solution is universal, i.e. it 
applies to all possible energies (aT arbitrary), excluding the 0 ~ and 180 ~ transfers 
(which are, as usual, singular due to the nonuniqueness of the orbit plane). 

7. Numerical Results 

The algorithm as discussed in the previous section has been programmed on 
F O R T R A N  H on the Virginia Tech IBM 370/158 computer. 

We consider here three test cases all with the same initial position vector 

x(0) = 6 478 km 

y (0) = 0 km 

z (0) = 0 km 

and time of flight 

t ( f ) -  t(O) = 1800.0009g sec 
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and we a d o p t  the  phys ica l  cons tan ts  

R = 6  378 .135  k m  

/z = 398 600.8  k m a / s  2 

J2 = 0.001 082 615 7 .  

The  final pos i t ion  vec tors  were  chosen  in such a way as to p r o d u c e  a pos i t ive  

nega t ive  and  ze ro  va lue  for  the  to ta l  ene rgy  cons tan t  a t ,  c o r r e s p o n d i n g  to el l ipt ic ,  

pa rabo l i c ,  and  hype rbo l i c  t ransfe r  orbi ts ,  respect ive ly .  

Case  1: x ( f )  = 10 970 .928  k m  

y ( f )  = 1 435 .480  k m  

z(f) = 4  304.951 k m  

To ta l  E n e r g y  = - 3 2 . 0 6 3  76 k N k m .  

Case  2: x ( f )  = 12 534 .300  k m  

y ( f )  = 4 654 .640  k m  

z(f) = 12 518 .690  k m  

To ta l  E n e r g y  = 0 k N k m .  

Case  3: x ( f )  = 24 689 .469  k m  

y ( f )  = 4 986 .430  km 

z(f) = 3 324 .004  k m  

To ta l  E n e r g y  = 29 .436  30 k N k m .  

The  fo l lowing  conve rged  so lu t ions  resul ts  for  the  init ial  ve loc i ty  vec to r  were  

o b t a i n e d  

Case 1: 

Case  2: 

dx(0)  = 7 .000 00 k m  s -1 
d t  

d y  (0___~) = 1.000 00 k m  s -1 
d t  

dz  (0) _ 3 .000 00 k m  s -1 
d t  

dx(0)  = 7 .000 00 k m  s -1 
d t  

dy(0 )  = 3 .000 00 k m  s -1 
d t  

dz(0) 
= 8.070 161 k m  s -1 

d t  
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dx(0) -1 
Case 3: = 13.000 O0 km s 

dt 

dy (0_____~)= 3.000 00 km s -1 
dt 

dz(O) 
= 2.000 O0 km s -~ . 

dt 

The above initial conditions were also used as initial conditions for conventional 
Cowell integrations of the equations of motion (3), to provide a basis for discussion of 
errors. 

It should be noted that the program is capable of producing variable accuracy in 
the initial velocity vector. However,  the object is to generate just enough precise 
digits in the initial velocity vector so as to guarantee an acceptable final position 
vector. In the present examples, the initial velocities are correct in the fifth decimal. 
This produces final impact position vector components errors of less than 10 m. 
These errors are well within the tolerance that should be enforced for J2-approxima- 
tion of the gravity field. 

8. Concluding Remarks 

The above results provide significant extensions of the central two-point boundary 
value problem of celestial mechanics. Advantage has been taken of certain proper-  
ties of the KS transformation and associated variat ion-of-parameter formulations to 
obtain a reasonably compact and efficient perturbation of the Keplerian Lambert  
problem. Given a preliminary solution of the Keplerian Lambert  problem, the 
present developments provide algebraic, non-iterative corrections to account for the 
J2 perturbation. These corrections' precision has been found entirely satisfactory 
(10 m or less terminal errors) for ballistic trajectories. The analytical results are 
general, however, and apply to all species of elliptic, parabolic, and hyperbolic orbits, 
except for the cases involving a non-unique orbit plane (180 ~ transfers, 0 ~ transfers, 
and rectilinear transfers); for all of these cases, appropriate modifications are 
necessary to obtain a unique solution. Comparisons with other  approaches are made 
by Junkins et al. (1971). 

Appendix A 

The initial position vector u(0) can be constructed from Equation (5) 

r(O) = L(u(O))u(O), 

which leads to the following solution 

u2(0) = ~(r(O) + x(O)), 

(A1) 
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y(0)Ul(0) 
u2(O)= 

r(O)+x(O) 

Z ( 0 ) U l ( 0 )  
u3(0)= 

r(0)+x(0)' 

if x(O)/>O 

U4(0  ) = 0 (chosen) (A2) 

o r  

2 u2(0) = ~(r(0) - x (0)), 

y(0)u2(O) 
u~(0) 

r(0)-x(0) 

u3(0)--0 (chosen), 

z(O)u2(0) 
u4(O) r(O)-x(0)" 

if x (0 )<0  

Equations (A2-A3) completely determine u(0). 
Next, let us derive some useful relationships. Given two vectors v(vl, rE, v3, v4) 

and w(wt, WE, W3, W4) we define the following bilinear relationship 

l(v, w) ~ v 4 w l  - U 3 W 2  n t - / ) 2 W 3  - -  IA1 W4 . (A4) 

From Equation (A4) it follows immediately that 

t(u(O), u(O)) = o .  

It can also be shown (Stiefel and Scheiffle, 1971) that 

/(u(O),/~(0)) -- O. 

(A5) 

(A6) 

From Equation (14) it follows that 

/(u(O), u ) = / ( u ( O ) ,  u(O)co + fl(O)scO = 

= / ( U ( 0 ) ,  U ( 0 ) ) C 0  + / ( U ( 0 ) ,  I I ( 0 ) ) S C l  , ( A 7 )  

so that, because of Equations (A5-A6) we obtain 

/(u(0), u) =0 ,  for all s. (A8) 

In particular, for s -- s r, Equation (A8) becomes 

/ (u(0) ,  u ( f ) )  = 0 .  (A9)  

Note that Equation (A9) holds rigorously for Keplerian motion, but must be relaxed 
correctly in the presence of perturbations. 

Next, let us derive the vector u(f) which is needed to solve for/!(0) in Equation 
(35). Writing Equation (5) for s = sf yields 

r(f) = L(u(f))u(f). (AI0) 
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Because the fourth component  of this relation is an identity, namely/ (u(f ) ,  u(f))  = 0 
we only have three equations for four unknowns. An extra condition is necessary. 
This condition is given by Equation (A9). The set of simultaneous equations to 
determine the four components of u(f) can be written in matrix form as follows 

x(:)] F" ' ( : ) - " ' ( : ) - " ' ( : )  "'(:)l 
y( :) = l u ' ( : )  . ,  (f)  -,,4(:) -"'(:)/ 
'| /" '") 
OJ Lu4(O) -u~(O) u~(O) -ui(O)J 

u~(f) t u2ff) 
u3(f) " 
u4(f) 

( A l l )  

A convenient way to solve Equations ( A l l )  is given in Jezewski (1976). 
For x (f)/> 0 

u~(f)  - r ( f )  + x ( f )  
2(1 + p2) , 

u4(f) = P u l ( f ) ,  

u2(f) = [ y ( f ) u i ( f )  + z ( f ) u 4 ( f ) ] / [ t ( f )  + x ( f ) ] ,  

u3(f) = [z ( f )  u x ( f ) -  y ( f )  u4( f ) ] / [ r ( f )  + x ( f ) ] ,  

u,(O)[r(f)  + x ( f ) ]  + u z ( O ) z ( f ) -  u3(O)y(f) 

ut(O)[r(f)  + x (f)] + u2(O)y (f) + u3(O)z ( f ) '  
p ~  

or, for x (f) < 0 

u~(f) = r(d)- x(f) 
2(I + Q2) , 

Uz(f) = O u 3 ( f ) ,  

u,( f )  = [ z ( f ) u3 ( f )  + y ( f ) u z ( f ) ] / [ r ( f ) -  x ( f )  ] , 

u4(f) = [ z ( f ) u 2 ( f ) -  y ( f ) u 3 ( f ) ] / [ r ( f ) -  x ( f ) ]  , 

O _ u2(O)[r(f) - x (f)] + u x(O)y (f) + u4(O)z (f) 

u3(O)[r ( f ) -  x(f)]  + u ~ ( O ) z ( f ) -  u4(0)y(f)" 

(A12) 

(A13) 

These equations can be used to evaluate u(f)  in the case no perturbation is present. 
In particular the vector u0(sr0) in Equation (62) can be evaluated from Equations 
(A12-A13).  

Finally, let us derive the vector u~. Again, we write Equation (5) as 

r(/) = L(u(f))u(f), (A14) 

and again it is seen that an extra boundary condition is needed. 
Let  us write Equation (40) for s = s r and form bilinear terms with u(0), 

t(u(O), u(:)) = -l(u(O), o~(f))co(o~:~)+ t(u(O), ~(f))s:c~(o~:~). (A15) 
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From Equations (67-68) it then follows that 

l(u(O), ot(f)) = - /(u(O),  u(O)) + el(u(O), otO, 

t(u(O), 13(f)) = t(u(O), ~i(O)) + et(u(O), p l ) ,  

(A16) 

(A17) 

and, because of Equations (A5-A6), we can write Equation (A15) as 

eq~ -=/(u(0), u(/3) = d(u(0), 2 2 - ~  a Co( a roS fo ) + [~i SfoC l ( a roS fo ) ) , (A18) 

which constitutes the new missing boundary condition. Therefore, we can write 

x(f)] F ~ l ( f ) - ~ ( f ) - u ~ ( f )  U4(f) 1 [ul(f) 1 
y(n~ H:(n l,/l(] g) --u4(f)-.~(n / ~.:(f)~ 
z(f)/=/.~(f) u4(f) ul(f) ":(f)/ P~(")|' 
e q l  ) ku,(0) -u3(0) uz(0) -u l (0) ]  [u4(f)J  

(A19) 

or using Equation (65) together with Equation (A11) for u(f) = u0(sfo), 

0 t FU01(S/0) --Uo2(Sfo) --U03(S/0) U04(S/0) 7 I b/ll/ 
00 = //~/02(Sf0) b/01(Sf0) --Uo4(Sfo) -Uo3%o)1 ,~u,2~, 

/uo~(s,~o) uo.(s,~o) .o~(s,~o) "~176 / " ' /  
ql Lu4(O) -u3(O) u2(O) -Ul(O) .J CU14) 

(A20) 

which can be inverted to obtain the vector ul. 
A convenient way to solve Equations (A20) is 

2 q l ( u 2 1  2 +/g 04) U04 
Ul 1 -- 

P 

--/'/01 
U14 = /'/11 

/'/04 

1 
U12 = 2(U21 + U24) [yb/ll + ZL/14] , 

1 
u13 - 2(u21 + b/24) [Zb/ll -- yU14] , 

p = 2(uo21 + U24)(b/4(0)U04 + Ul(0)U01) + 

+ y (U2(0)U01 -- U3(0)U04 ) + Z (U2(0)U04 + U3(0)U01) , (A21) 

where 

x = - x ( f ) ,  etc., Uoi=-Uoi(Sfo) 

using the fact that 

( i=  1,2, 3 ,4) ,  (A22) 

T 
Uo(Sfo)U~ = O. 



A G R A V I T Y - P E R T U R B E D  L A M B E R T  PROBLEM: A KS V A R I A T I O N  OF P A R A M E T E R S  17 

Appendix B 

The solution of the perturbed universal Lambert  problem necessitates the evaluation 
of integrals of Equations (76-80). In the case of the J2 oblateness perturbation, it is 
possible to resolve these integrals in closed form. The perturbing potential V1 is 
given by 

1 (3z2--r2"~ 
V I  = ~ \ ~ ]  ( a l )  

and 

with 

QI = - } [ K u ] l . = %  (B2) 

K = l [ 3 r z M -  (6z 2 -  r2)l] 

[100 1 M =  0 0 0 1 =  0 1 0 
0 0 ' 0 0 1 " 

1 0 0 0 0 

It can be shown that 

G 1  = [rV~]l.=% T 
o r  G 1  = I n  Q 1 ] [ u = u  ~ . 

Using the following substitution 

(B3) 

(B4) 

(B5) 

SC 1 2 
w = - - ,  sc~- -SCx(ars  ) ,  

CO 
co =- Co(ars2) , 

it is easy to show that 

2 
2 1 2 2 W 

C O - - I + O t T W 2 ,  S C l = I + c e T W 2 ,  

2 
w 1 - aTW 

SClCo = 2 ~ gO = 2 , 
1 + a r w  1 + o~rw 

d w  
ds -- 2 

1 + aTW 

and 

B1  + B z w  + B 3 w  2 

r o - l + a r W 2 ,  Zo = 1 +  O t r W 2  , 

= A I + A 2 w  + A 3 w  2 , 

A x = r(0) ,  A2 = i (0) ,  A3 = ,~T(0)"(0), 

BI = u r ( 0 ) Mu(0 ) ,  BE = 2nr (0)M/ , (0) ,  

(B6) 

(B7) 

(B8) 

(B9) 

(B10) 
B3 = h r (0 )Mh(0 ) .  
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Next, let us write integrals of Equations (76-80) as follows 

oq = - �89 + T21i(0)), 

0 1  = --  I ( T 3 u ( 0 )  + T i l l ( 0 ) ) ,  

al  = - �89 

71 =�89 

with 

Sfo 

T1 = f K(uo)sclcods, 
0 

Sfo 

T2= I K(u~ ds' 
0 

sro 

T3  = ; K(uo)co 2 d s ,  

0 

Sfo 

7"4 = I gl(uo)sclco ds, 
0 

( B l l )  

(B12) 

(B13) 

(B14) 

First, let us compute integrals T1, 7"2 and T3. Using Equations (B8-B10) it can be 
shown that 

6 6 

6 6 

15 6 
(B17) 

Sfo 

1 I T5 = ~ gl(uo)s2c~ ds, (B15) 

0 

3zZ-r 2 
g l  = 4 , 

r 

Ci ~ Ci(O~roS2), Ci ~ ~i(OLToS2). ( B 1 6 )  



where  

and 
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S f o ( W )  

I w' Ii = ~ dw (i - 0, 1 . . . . .  3) ,  (B18) 

0 

Co = bo,  Cl = b l ,  c2 = b2 + a r o b o ,  C3 = b3 + a T o b l ,  

c4 = b4 + o~Tob2 , c5 = aTob3 , C6 = aTob4 , 

b o = A 1 B 1 ,  bl = A 1 B 2 + A 2 B 1 ,  b 2 = A 1 B a + A 2 B E + A a B 1 ,  

b3 = A 2 B 3 + A 3 B 2  , b 4 = A 3 B 3 ,  

do = eo ,  d l =  ea ,  d2 = e2 + a r o l o ,  d3  = e3 + c tTol l  , 

d4 = e4 + olToe2 , d5 = olToe3 , d6 = aToe4 , 

eo = 6 B ~ - A ~ ,  el = 1 2 B 1 B 2 -  2 A I A 2 ,  

e 2  = 6B2 2 - A 2  2 + 1 2 B 1 B 3 -  2 A 1 A 3 ,  

2 2 
e3 = 12B2B3 - 2A2A3 , e4 = 6B3 - A 3 ,  (B19) 

where  all constants  are independen t  of s. 

Integrals  (B18) may  be compu ted  as indicated below. 

The  discriminant of the quadrat ic  form f is 

A E - 4 A I A 3  = 4[ur(0)/ t(0)]2--  [uT(0)U(0)][/~T(0)/I(0)], (B20) 

which is always smaller or  equal  to zero because of Schwartz Inequali ty.  Therefore ,  

in all cases we can write the following partial fractions expansion 

- (i) ~'7 (i) 
w / 1 K i  t- /~J 
- ~ - A ~ i = ,  ( W - W l )  i ( w - f f q )  i '  (B21) 

with 

- A 2  + i (4A 1A 3 - A~)  1/2 
W 1  = 

2Aa 

= t  d ~ /  w ~ 
K~i)-, ], d w , \ ( w _ w t ) , ) l w = w  1 

; 7  ( i )  T ( i )  
a n d / ~ i  is the complex conjugate  of ~ i  �9 

A useful recurrence  relat ion is 

K l i + l ~  _ , . - . ~  + wlKl  '~ -- i~i+ 1 

i = , / -~- ,  (B22) 

0, 1 , . . . ,  8 (B23) 

i = 0  ( I =  1 , 2 , 3 , 4 ) ,  

i = 1 ( / = 1 , 2 , 3 , 4 ) ,  etc. (B24) 
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with 

K~O~ = 1 K~4o~ = - S K ~  ~ 
(W1 -- 1~1) 5 '  ( W 1 - -  I 'V1) '  

K(3O)=-3K(4  ~ K(2O) = 7 K(3 ~ 
(W 1 --  1~1) '  3 (W 1 --  1~1) '  

K]O) -2K(2 ~ = (B25) 
(W1 --  W 1 ) '  

and 

, K ~  ~ = w[K~ ~ , i =  1, 2 , . . . ,  8 .  (B26) 

F r o m  Equa t ion  (B21) we have  

Sto(W) 

L = 2Re ~ ( w _ - - ~ ) f  d w ,  (B27) 
j = l  

0 

where  Re  means  ' real  par t '  and we assume that  w takes  on real  values  only. Finally, 

W~(SCl/r O) 
Ii = ~ 2ReK~ '~ In ( w -  w t ) -  i=2 ( j  - 1)(w - wl) i-1 w =o (B28) 

i = 0 , 1  . . . . .  8 

w real. 

T h e  integrals  T4 and 7"5 can be eva lua ted  in a similar m a n n e r  

4 

7"4= 2 f,~+~, 
i=0  

4 

7"5 = �89 Y. f~L+2, (B29) 
i=0  

with 

and 

Sro(W) 

I wl i~ = ~-x d w ,  i = 0, 1 . . . . .  6 ,  (B30) 

0 

fo = 3 B ~ - A ~ ,  fa = 6 B 1 B 2 - 2 A 1 A 2 ,  

f2 = 3 B ~ -  A 2 + 6B1B3 - 2 A  1A3, 

f3 = 6 B 2 B 3 -  2 A 2 A 3 ,  f4 = 3 B ~ -  A ~ ,  (B31) 
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so tha t  

wi th  

for  

and  

~4 wl )_ ,~  2 --. (,> [ w=(sc,/Co> i i  = 2 R e I ( ~  i) In (w - / ~  
�9 = ( j -  1 ) ( w -  wl) j-1 w=O 

i = 0 , 1  . . . . .  8 

w rea l  

(B32) 

/ ~  I i+1)  ~ ( i )  -~- (i) 
= / ~ / + 1  "{- W l l ( ' x  l , (B33) 

i = 0 ( l =  1 , 2 , 3 ) ,  i = 1  ( l = 1 , 2 , 3 )  . . . .  

/~(40) _ 1 /~(3o) = 4/((4 ~ 
( W l  - -  I~V1) 4 '  W I - - W  1 ' 

2 w l -  #1 w1 - -  W 1  

I~(4 i) = w~K(4 ~ , i = 1, 2 . . . . .  6 .  (B34) 

It  shou ld  also be  n o t e d  tha t  in tegra ls  (76-80)  m a y  also be  eva lua t ed  by  any su i tab le  

numer i ca l  m e t h o d  (e.g. the  t r a p e z o i d a l  rule  in connec t ion  with R o m b e r g ' s  pr inc ip le) .  

A c k n o w l e d g e m e n t s  

T h e  au thors  are  p l ea sed  to a c k n o w l e d g e  tha t  this work  was s u p p o r t e d  by  the  U.S.  

N a v y  u n d e r  con t rac t  N 6 0 9 2 1 - 7 8 - C - A 2 1 4 .  The  mos t  cons t ruc t ive  in te rac t ion  with  R. 

D e w i t t  and  D.  O w e n  of  the  U.S.  Nava l  Surface  W e a p o n s  Cen t re  is a c know le dge d .  

R e f e r e n c e s  

Andrus, J. F.: 1977, Celes. Mech. 15, 217. 
Battin, R. H.: 1970, 'A New Solution for Lambert's Problem', Proceedings of the 19th International 

Astronomical Congress, Vol. II, p. 131-150, Pergamon Press, New York. 
Bond, V. R.: 1974, Celes. Mech. 10, 303. 
Jezewski, D. J.: 1976, Celes. Mech. 14, 105. 
Junkins, J. L., Kraige, L. G., Engels, R. C. and Ziems, L.: 1979, 'Regularized Integration of Gravity 

Perturbed Trajectories', Virginia Polytechnic Institute Report #N60921-78-78-C-A214, Blacksburg, 
Virginia. 

Stiefel, E. L. and Scheifele, G.: 1971, Linear and Regular Celestial Mechanics, Springer-Verlag, New 
York. 

Sun, F. T.: 1979, 'A New Treatment of Lambertian Mechanics', International Astronautics Federation 
Preprint #IAF-79-F-182. Presented to the 30th IAF Congress, Munich F.R.G. 

Winter, A.: 1917, The Analytical Foundations of Celestial Mechanics, Princeton Univ. Press, Princeton, 
New York, 182. 


