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Abstract. A new formulation is presented for the perturbed Lambert problem. The formulation employs
the variation-of-parameters method in the KS transformed state space to determine perturbations of a
Keplerian Lambert solution. The approach is universal (in that its validity is not restricted to a particular
energy domain). For the case of the second zonal harmonic (oblateness) perturbation, first order
perturbations are carried out entirely analytically; non-iterative corrections are determined through
solution of a pair of algebraic equations. For more general perturbations, numerical quadratures are
required.

1. Introduction

The classical two-point-boundary-value-problem of celestial mechanics (Keplerian
motion, for given initial and final position coordinates and for given time of flight,
determine the initial velocity coordinates) is widely known as the ‘Lambert’s
Problem’. This problem and its variations play a fundamental role in many naviga-
tion and guidance procedures. Recent papers by Sun (1979) and Battin (1970) have
re-solved Winter’s (1917) classical integral equation
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in terms of hypergeometric functions. Sun’s developments established the
equivalence between solutions of (1) and solutions of the nonautonomous linear
differential equation

2
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where a = semi major axis; r = distance from occupied focus; u = gravitational mass
constant; ¢ =|r,—r;|=chord length from r, to ry; m=ri+r+c; n=r+r—c;
E=mfda; a’=n/m; 7= 4At(u/m3)‘1/2. Sun’s theoretical developments and
parametric studies brings the Keplerian Lambert problem to a rather complete state.

Recent papers by Jezewski (1976) and Andrus (1977) have addressed two new
issues

(i) Formulation of two-point-boundary-value-problems in the state space resul-
ting from the KS transformation, as developed in Stiefel and Scheifele (1971).

(ii) Perturbation of the Keplerian Lambert solution to account for oblateness of
the central body.
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The present paper extends the work of Jezewski and Andrus, and makes use of a
KS-variation-of-parameters formulation developed by Bond (1976). An especially
attractive, non-iterative perturbation of the Keplerian Lambert solution is
developed, to first order in J,.

2. Kustaanheimo-Stiefel (KS) Transformation

Let us consider the classical non-dimensional equations of motion of the perturbed
two-body problem in rectangular coordinates, as given by

dr 1 F1%
AT r= 4P, 3)

where r represents the position vector, r the radial distance, V' the perturbing
potential and P the remaining perturbing force.
Introducing the fictitious time s, defined by

dt=rds, 4)
and the KS transformation
r=L(u)u, (3)
where
Uy —Uz —Uz Ug
L= U, U1 —Us —Us ©6)
Us  Us UL U

Us —U3 U, —Up

we obtain the universal set of differential equations

ii+arn=0Q, (7
with
ar=—G-aTa)—L, ®)
r 2
__19 r.r
Q= 4au(rV)+2L P, )
r=u’u, (10)
=4
( )=ds( ). (11)

The quantity ar represents half of the negative non-dimensionalized total energy.
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3. The Universal Keplerian Lambert Problem
With P=0 and V =0, Equation (7) becomes
ita Tu= 0 5 (12)

where
1
ar= 7(%—&%) ) (13)

The universal solution of Equation (12) is given by
u=u(0)co+u(0)scy, (14)
in which the Stumpff functions (Stiefel and Scheifele, 1971; Bond, 1974) are

abbreviated as
co=colars®y, ci=cilars?), (15)

and u(0), a(0) are initial conditions.
Furthermore, using Equations (10) and (4) together with Equation (14) we can
write

r=r(0)é+ #(0)sé; + 56>, (16)

t = 1(0)+r(0)séy +F(0)s°2+ 55, (17)
with

#(0)=2u" (0)a(0), (18)

ée=cpldars?), n=0,1,.... (19)

Because a(0) is not known, we must eliminate /(0) from Equations (16) and (17).
Using Equation (14) we have

u” (0)ucy = r(0)cs+u” (0)Ya(0)sé, , (20)
from which it follows that

#(0)sé1 =2u" (O)uco—2r(0)cj, (21)
and

u” (0)a(0)sc; =u” (0)u—r(0)co, (22)

where we made use of the identity
sC1=15C1Co . (23)
Using Equations (21-22) together with Equations (16-17) we obtain
r=—r(0)+2u" (0O)uco+52¢,, (24)

t=1(0)+u” (O)usc, +5°¢;, (25)
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where we used the identities
fo—2ck=-1, (26)
c1=2¢,. (27

Equations (24-25) can now be solved for ar and s; given r(0), r(f), w(0),* u(¢) and
t(f)—t(0), where s; is the ‘final’ value of s.
Indeed, using Newton’s method, we can iterate according to

(k+1) W) ) 1 (k) gy (k)
5 o B I ] [ o @
with
D= (F, 9, - F,%. )", 29
F=r(f)+r0)—s2&(H)— 20" Ou(feolf) (30)
G=1(f)—1(0) = s3&5() —u" Ou(Hsrea(f) , (3D
F, = s;er(N2aru” Ou() - co( NI, (32)
G, =—sié(f)—u" Ou(fleo( ), (33)
Fi_=sHu Ou(fei(f) - 252 28N~ &PT, (34)
G, =~s{257[385(f) — Ea(H1+ 2T Ou(Hles(f)— (AT, (35)
with

Cn(f)=cn(aTs?) .

In order to obtain the derivatives (32-35) we used

aCO
— =—arscy,
65 ™01
3o _ 452
aaT 2 1s
d(scy)
Y e o,
as 0
a(scy)
—1=%53( 3_C2) ’
aaT
s’c) .
=5C1,
a8
a(s%é .
( 2)=2s4(SC4—63) ,
aar

* For brevity, we denote initially and finally evaluated functions by Z(s =0)= #(0) and ¢£(s = sp= 2.
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3s’E) _ 5,
A )

aS Ca,

a(s3¢

AS7C) _5e538,—2y) . (36)
Bar

Numerical experiments with this algorithm indicate that, even with starting estimates
off by 25%, it will converge in 3 to 6 iterations. It contains implicit singularities, of
course, for 0° and 180° transfers (in which case the orbit plane is undefined).

Once ar and sy are determined we find the initial velocity @(0) from Equation (14)
with s = 57 as

1
u(0) = [u(f) —u(O)co(N)]. (37
sreilf)
The velocity in rectangular coordinates follows from
1(0) = Bu(0), (38)

where

u1(0) —u2(0) —u3(0)  uq(0)
B=% u>(0) u1(0) —ua(0) —us(0) | (39)
u3(0)  us(0)  ui(0)  ux(0)

Also, note that the final position vector u( f) must be calculated from r(f) as indicated
in Appendix A.

4. KS Variation of Parameters

A variation of parameters formulation for P = 0 is given by Bond (1974), leading to
the following solution form

u=—aco+Bscy, (40)

= aarsc;+PBeo, 41)

t=r1+aséi+bs’é+5%E5, (42)
with

ar = l-a @01 -5, @3)
and the differential equations for the slowly varying elements

a=Qscy, (44)

B=Qco, (45)

d=-Gséy, (46)
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b=Gé, (47)
i=Gs’G, (48)
Q=—% ~(V), (49)
G=-rv+24'Q, (50)
also, note that
r=aco+bsé,+s%E,, (51)
a=a’a, (52)
b=—2a"B. (53)

This set of equations is used below as the basis of a new solution for the perturbed
Lambert problem.

5. The Perturbed Universal Lambert Problem

We wish to follow an approach similar to that of the unperturbed motion. Therefore,
it is helpful to eliminate w(0) from Equations (42) and (51). We start by multiplying
Equation (40) by a” and using Equations (52-53), to obtain

a’u=—aco—3bsc; . (54)
Using this result we can transform Equations (42) and (51) into
r=—a-2aluco+s%,, (55)
=r—alusci+5°8;. (56)
Let us write these equations for s = s¢
r(f)=—a(f)=2a" (Hu(fco(f) +s7éx(f) (57)
) =r(H—a" (Nu(Nsici(f) +s7E(f), (58)

and assume that the potential V is a function of u only and is proportional to a small
parameter &

V=¢Viu). (59)
Because of Equation (59) we can write
u(s) = uo(s) + euy(s) +0(e%), (60)
with
uo(s) = u(0)colars®) +(0)sci(ars’) . ‘ " (61)

Next, let us consider an unperturbed Lambert problem with r(0), r(f) and
t(f)—t(0) given, and solve for s and aro. Then, from Equations (37), (41), and (36)
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it follows that
. 1
,(0) =

—_——2‘[“0(Sf0) ““(O)Co(arosﬁo)] . (62)
Sfocl(aToSfo )

Note that u(0)=u(0) and uo(sso) are constructed from r(0) and r(f) as shown in
Equations (A12-A13) of Appendix A.
Because of Equations (59) we can also write

8¢ = S0+ £S71 (63)
ar =aro+eary, (64)
u(f) = ug(spo) + ey, (65)
a(f)=ao(sp)+eai, (66)
oa(f) = ao(sro) +eay , (67)
B(f)=Bo(sro) +£PB1, (68)
7(f) = To(Sp0) + €71 . (69)

Using Equations (63-69) in Equations (57-58), and discarding terms in ¢ 2 we obtain
r(f)=—ao(sp0) + 5252|0 - 2ag(sf0)“0(sf0)co|0 +
¥(s%¢2) a(s%é)
arTy

as o dar

+ 6{ —ai+ Sf1
]

— 2[ (aoT(sfo)ul + a{llo(sfo)) X

3C0
+ a&ar1——
0 dar

aCo
X colo+ ag(sfo)uo(sfo)(5f1 o

)

1]

f(f) = T()(Sfo) + S3€310— ag(s;o)ug(s;o)scllo+

3(s>E3) 3(s>é3)
ar

0 dar

+8[7"’1+Sf1 :
0

- [(ag(sfo)lll + alTuo(Sfo))S‘~'1|o +

+adlsoo(s) s et ana;%‘) )]} : (71)
where, using Equations (44)—(50).
ao(ss) =r(0), (72)
7o(s50) = ¢(0) , (73)
ao(sr0) = —u(0), (74)

Bo(sro) =0(0), (75)
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o = I lecl(amsz) ds, (76)
0
Bi= | Queolaresd s, a7
0
a1=—'J' Glsfl(arosz) dS, (78)
0
Ty = J. Glszgz(aToSZ) dS . (79)
0
1
Qa--g[=ew]| . (80)
Gl =[_rV1+2“TQl]|u=u0, (81)
uo = u(0)co(arros®) +ito(0)sc1(aros’) , (82)
1
0(0) = ——2[“0(Sf0) - “(O)Co(arosﬁo)] ’ (83)
Sfocl(aTOSfo)

in which u(sso) is known.
Furthermore, because s;, and aro are solutions of the unperturbed Lambert
problem, it follows from Equations (24-25) that

r(f)=—aolsw) + 5252|0 - 2ag(sf0)“0(sf0)60|0 s (84)
t(f) = 7o(ss0) + S353|0 - (!g(sfo)llo(sfo)scllo , (85)
so that, Equations (70-71) reduce to
a(s*¢ ac
[M + 2UT(0)“0(Sf0)_0 ]Sﬂ +
S 0 as 0
a(s’e )
+[M +2[]1‘(0)“()(570)ﬂ ]an =
dar lo darlg
=a;+ 2[011Tllo(5fo) - “T(O)“l]colo ) (86)
a(s>¢ d(sc
[M T u” (0)o(sy0) 52 ]sﬂ +
as 0 as g
a(s>¢ d(sc
2 " gt 22| Jar =
ar lo dar lo

=—711+[a]ue(sy) —u" (0)myIscyo . (87)
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Equations (86-87) represent a set of two simultaneous algebraic equations in the
unknowns s;; and ary. Therefore, no iteration is necessary to solve for sy and ar;.
The actual initial velocity u(0) is now obtained from Equation (40),

1
u(0)= m[u(/‘) +ea(f)colars?)]—eBy . (88)

6. Computational Summary

In this paper, the authors derived an algorithm to solve the perturbed universal
Lambert problem. The procedure works as follows:

(1) Given: r(0), r(f), t(f)—¢(0).

(2) Construct u(0) from Equations (A2-A3) and uy(sse) from Equations (A12-
A13).

(3) Solve the unperturbed universal Lambert problem using Equations (28-37)
with u(f) = wo(sfo), yielding aro, sro and 0y(0). This involves an iterative process.

(4) 0(0) in Equation (82) is now known and ug can be evaluated as a function of s.

(5) It is now possible to determine a; and B, from Equations (76-77). These
integrals can be computed in closed form as shown in Appendix B or by any suitable
numerical quadrature scheme.

(6) Evaluate g, from Equation (A17) and determine u; from Equation (A21).

(7) Determine a; and 7, from Equations (79-80) and s;; and a1, from Equations
(86-87).

(8) Find 4(0) from Equation (88).
Note that there is no need for iteration to obtain the corrections ar; and sr1 which
account for the effect of perturbations; these are found by simply solving a set of two
simultaneous algebraic equations. It is also clear that the solution is universal, i.e. it
applies to all possible energies (ar arbitrary), excluding the 0° and 180° transfers
(which are, as usual, singular due to the nonuniqueness of the orbit plane).

7. Numerical Results

The algorithm as discussed in the previous section has been programmed on
FORTRAN H on the Virginia Tech IBM 370/158 computer.
We consider here three test cases all with the same initial position vector

x(0)=6478 km
y(0)=0km
z2(0)=0km

and time of flight

t(f)—¢(0) =1800.0009 g sec
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and we adopt the physical constants
R=6378.135km
p =398 600.8 km®/s”

J,=0.0010826157.

The final position vectors were chosen in such a way as to produce a positive
negative and zero value for the total energy constant ar, corresponding to elliptic,
parabolic, and hyperbolic transfer orbits, respectively.

Case1: x(f)=10970.928 km
y(f)=1435480km
z(f)=4304.951 km

Total Energy = —32.063 76 kNkm.

Case2: x(f)=12534.300km
y(f) =4 654.640 km
z(f)=12518.690 km

Total Energy = 0 kNkm.

Case 3: x(f)=24689.469 km
y(f)=4986.430 km

z(f)=3324.004 km
Total Energy =29.436 30 kNkm.

The following converged solutions results for the initial velocity vector were
obtained

Case 1: d—’;(t9= 7.000 00 kms™

dy(0 B}
—flit—)= 1.000 00 km's™*

dz(0)
de

dx(0)
dr

d—% =3.00000kms”

dz(0)

=3.000 00 kms™"

Case 2: =7.000 00 kms™"

1

1

=8.070161 kms™
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dx(0)

Case 3: — —=13.00000km s
9O _ 300000 kms™
dt
dz(0)

=2.00000kms .
dt

The above initial conditions were also used as initial conditions for conventional
Cowell integrations of the equations of motion (3), to provide a basis for discussion of
errors.

It should be noted that the program is capable of producing variable accuracy in
the initial velocity vector. However, the object is to generate just enough precise
digits in the initial velocity vector so as to guarantee an acceptable final position
vector. In the present examples, the initial velocities are correct in the fifth decimal.
This produces final impact position vector components errors of less than 10 m.
These errors are well within the tolerance that should be enforced for J,-approxima-
tion of the gravity field.

8. Concluding Remarks

The above results provide significant extensions of the central two-point boundary
value problem of celestial mechanics. Advantage has been taken of certain proper-
ties of the KS transformation and associated variation-of-parameter formulations to
obtain a reasonably compact and efficient perturbation of the Keplerian Lambert
problem. Given a preliminary solution of the Keplerian Lambert problem, the
present developments provide algebraic, non-iterative corrections to account for the
J, perturbation. These corrections’ precision has been found entirely satisfactory
(10 m or less terminal errors) for ballistic trajectories. The analytical results are
general, however, and apply to all species of elliptic, parabolic, and hyperbolic orbits,
except for the cases involving a non-unique orbit plane (180° transfers, 0° transfers,
and rectilinear transfers); for all of these cases, appropriate modifications are
necessary to obtain a unique solution. Comparisons with other approaches are made
by Junkins et al. (1971).

Appendix A
The initial position vector u(0) can be constructed from Equation (5)
r(0) = L(u(0))u(0), (A1)

which leads to the following solution

u3(0)=3(r(0) +x(0)) ,
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_ y(0)uy(0)
0= 20
©)1(0) if x(0)=0
_ z Uy
(0= 0
us(0)=0 (chosen) (A2)
or
u3(0) =3(r(0)—x(0)),
y(0)u2(0)
uy(0)=———
~10)—x(0
r(0)-x(0) if x(0)<0
u3(0)=0 (chosen),
_ z(0)u2(0)
“O= 00

Equations (A2-A3) completely determine u(0).
Next, let us derive some useful relationships. Given two vectors v(vq, va, V3, 04)
and w(wi, wa, wiz, wy) we define the following bilinear relationship

I(V, W)EU4W1—U3W2+U2W3—01W4. (A4)

From Equation (A4) it follows immediately that

[(u(0), u(0))=0. (AS)
It can also be shown (Stiefel and Scheiffle, 1971) that
I(u(0), u(0))=0. (A6)

From Equation (14) it follows that
[(u(0), u) = I(u(0), u(0)co+a(0)sc,) =
= [(u(0), u(0))co+ I (u(0), w(0))sc; , (A7)
so that, because of Equations (A5-A6) we obtain
[{(u(0),w)=0, forall s. (A8)
In particular, for s = s;, Equation (A8) becomes
[(u(0), u(f)=0. (A9)

Note that Equation (A9) holds rigorously for Keplerian motion, but must be relaxed
correctly in the presence of perturbations.

Next, let us derive the vector u(f) which is needed to solve for w(0) in Equation
(35). Writing Equation (5) for s = s; yields

r(f)=L(u(f)u(f). (A10)
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Because the fourth component of this relation is an identity, namely /(u(f), u(f))=0
we only have three equations for four unknowns. An extra condition is necessary.
This condition is given by Equation (A9). The set of simultaneous equations to
determine the four components of u(f) can be written in matrix form as follows

(N [wmH) —ulf) —us(H  w(H) (wilf)
YO _|u)  wl) —ualf) —us(f)| Jua(f)

2N |ushH  wa)  wH w(H| |us(H| (ALD
0 us(0y ~us(0)  uz(0) —us(0) us(f)
A convenient way to solve Equations (A11) is given in Jezewski (1976).
For x(f)=0
2 )+ x(f)
“lN =20 py
u4(f) =Pu1(f) s
ur(f) =Ly (Hur(H)+z(Hua(HY/r(H+x(H],
us(f) =[z(Nur(H) =y (Hua(HYr(H+x(H],
_ waO)r(f)+x(N]+u20)z(f) —us(0)y(f)
P O (A x (M w0y (P ux0)z(f) (A12)
or, for x(f)<0
2 o ()= x(f)
HN= 51105
uz(f) = Qus(f) ,
ul(f) =[z(Hus(H +y(NuANr(H—x(H],
us(f)=z(Hu ) =y (Hus(H[r(H—x(H],
o = 2O () = x(N]+m Oy () + us(0)z(f) (A13)

us(O)r(f) = x(H]+ u1(0)z(f) — ua(0)y (f)

These equations can be used to evaluate u(f) in the case no perturbation is present.
In particular the vector uo(so) in Equation (62) can be evaluated from Equations
(A12-A13).

Finally, let us derive the vector u;. Again, we write Equation (5) as

r(f)=Lu(fHu(f), (A14)

and again it is seen that an extra boundary condition is needed.
Let us write Equation (40) for s = s; and form bilinear terms with u(0),

1(w(0), u(F)) = —1(w(0), a(N)colars?) + 1(w(0), B(sscilars?).  (A1S)
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From Equations (67-68) it then follows that
1(u(0), a(f)) = —I(u(0), u(0)) + el(u(0), 1) , (A16)
[(u(0), B(f)) = [(w(0), 4(0)) + £l(u(0), B) , (A17)
and, because of Equations (A5-A6), we can write Equation (A15) as
£q1=1(u(0), u(f)) = el(u(0), —rcolarosto) + Bispoci(arosso)),  (AlB)

which constitutes the new missing boundary condition. Therefore, we can write

x(f)] juilf) —uAf) —us(H)  walH]| fudh)
YOU_ w2 ) —ualf) —us(H)|  Jua(f)

= , (A19
d)[ T |us) wl) wlp wlp| Jus(h) )
£€q1 us(0) —us(0) u2(0)  —u,(0) us(f)
or using Equation (65) together with Equation (A11) for u(f) = uo(ss0),
0 uo1(Sfo) —uoz(Sfo) —uo3(Sfo) u04(sf0) Un
0 _ Uo2(10) Uon(sro) —uoalsr0) —uo3(ss0) Uz
0 u03(5f0) u04(Sfo) uOl(SfO) uoz(Sfo) Uiz
q1 u4(0) —u3(0) u>(0) —u1(0) Uis
which can be inverted to obtain the vector u;.
A convenient way to solve Equations (A20) is
os = 2%(“31 +u(2,4)u04
i1 P ’
—Up1
U4 = Ui,
Uoa
S e
B TP R AR
Uiz = ————l———[zu — yu14)
13_2(u(2,1+u(2)4) 11— YUi4],
p= 2(“%1 + u34)(u4(0)u04 +u1(0)uor) +
+ y(ua(0)uor — us(0)uos) + z (u2(0)uos + us(0uoy) , (A21)
where
X Ex(f)’ etc., Upi = uOi(st) (l = 1’ 2a 39 4) s (A22)

using the fact that

ug(sfo)ul =0.
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Appendix B

The solution of the perturbed universal Lambert problem necessitates the evaluation
of integrals of Equations (76—~80). In the case of the J, oblateness perturbation, it is
possible to resolve these integrals in closed form. The perturbing potential V; is

given by
1732277
ey
) r
and
Ql = _%[Ku]lu=uo
with

1
K =F[3rzM—(6zz—r2)1]

0010 1000
00 0 1 0100
M“1000’1’0010
0100 00 0 1

It can be shown that
Gl = [r‘/l]lu=n0 or Gl = [“TQl]lu=u0 .
Using the following substitution

SC1 2
w="—, se=scilers),  co=colars’),
0

it is easy to show that

2
2= 1 s2c2= w
0= =—7,

1+(1TW2’ ! 1+(1TW2
sere w . l—arw2
1600=T"3 =
14+ amw?’ 1+amw
dw
ds=———
1+C{TW

and
, £ Bl+B2W+B3W2
=———, Zo=
T 1+ amw? 0 1+amw? ’

E=A+Aw+Asw?,
Ai=r(0), A;=F#0), As;=ua"(0)00),
Bi=u"(0)Mu(0), B,=2u”(0)Mu(0),

(B1)

(B2)

(B3)

(B4)

(BS)

(B6)

(B7)

(B8)

(B9)

(B10)
Bs=u" (0)Mu(0).
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Next, let us write integrals of Equations (76-80) as follows

—3(T1u(0)+ T>a(0)),

B1= ~3(T>u(0) + T1@(0))

a= ’_‘%T‘t ’
T1= %Ts s
with
S0
T,= I K (ug)scicods,
0
Sr0
T.= I K (up)s’c3 ds,
0
Sfo
Ty~ | Kwocsds,
0
S0
Ty= j g1(uwo)scico ds,
0
S0
1 2 2
Ts :E I g1(wo)s“cids,
0
322,
&1 = I

2
ci=cilaros”),

6= 5i(aT0S2) .

(B11)
(B12)

(B13)
(B14)

(B15)

(B16)

First, let us compute integrals T, T, and T3. Using Equations (B8-B10) it can be

shown that
6 6
T, = 3( Y Cili+l)M_< )
i=0 i=0
6 6
ri=3(§ ety (£
6 6
T3=3(Z CtIl>M_(Z
i=0 i=0

(B17)
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where
Spo(w)
wl
Ii= J’ ?dw (l‘=‘0,1,.-.,3), (B18)
0
and
co=bo, c1=by, ¢2=ba+arobo, ¢3=bs+arob,
ca=bat+areh,, C§=aT0b3, ¢ =aroba,

bo=A1B1, by =A1B;+A,B;, b,=A1B3+A,B,+A3B;,

bs=A:B3+A3B,, bs= AsBs3,

do=eyp, di=ey, dy=ex+aroly, dy=estarls,

di=es+arges, ds=arges, de= aroes,

eo=6Bi—A, e1=12B1B,—2AA;,

e2=6B3—A5+12B[B;-2A,A;,

e3=12B,B3—2A A3,  es=6B3—Aj, (B19)
where all constants are independent of s.

Integrals (B18) may be computed as indicated below.
The discriminant of the quadratic form ¢ is

AZ—4A,A;5 = 4[u” (00a(0)] - [u” 0)u(0)][u” (0)a(0)], (B20)

which is always smaller or equal to zero because of Schwartz Inequality. Therefore,
in all cases we can write the following partial fractions expansion

w15 KP K
v_21 B21
fs Afjgl(W—Wl)] (w—wy)’ ( )
with
~A,+i(4AAs—ADY? VT

- , =v-1, B22
wq 24, i ( )

s 1 d w' j=0,1,2,3,4
K(;l~=_ (___—) { 3 Ly Ly sy

T irdw \(w—wy)® i=0,1,...,8 (B23)

M’=’M’1

and I?}i) is the complex conjugate of Kf-i).
A useful recurrence relation is

K§i+1) =K§i-)1 +w1K§i)’ l=0(l:192,3’4)’
i=1(=1,2,3,4), etc (B24)
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with
1 SK(O)
K(O) = , K(O) — 5
> (wi—w)’ o (wi—)
Kg()) _ 3Kf10) K(20) _ —z Kgo)
(wi—wy)’ 3 (wi—wy)’
Y e
i — S (B25)
(wi—wy)
and
KP=wik®, i=1,2,...,8. (B26)
From Equation (B21) we have
Sro(w) o
1 5 K¢
apPRe L | oy (B27)
0

where Re means ‘real part’ and we assume that w takes on real values only. Finally,

5 K;'i) w=(scy/cq)

1 )
I=—=2ReK In(w—w)— ¥ — — B28
A 2R I =) = L G — o o (B28)
i=0,1,...,8
w real.
The integrals T, and T's can be evaluated in a similar manner
4 —
Ty= 2:0 fiIx‘+1 ’
1 4 T
Ts=1 % filio, (B29)
with
spo(w)
- w' .
;= J‘ ?dw, i=0,1,...,6, (B30)
Q
and

fo=3B1—A}, fi=6B,B,—2A:A,,
f,=3B5—A}+6BB;—2AA;,
f3=6B>B;—2A,A;, fa=3B3- A3, (B31)
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so that
I= Xl‘lﬂReIZ(f) In (w—wy) —é‘z G- 1)(155}_) w) :=:CI/CO) (B32)
i=0,1,...,8
w real
with
RV =R, 4w, BY (B33)
for
i=0(=1,2,3), i=1(0=1,2,3),...
and
go- 1 go__ 4K |
(wy— W) Wi— Wy
RO =_§L~go)_, KD .—_——ﬁi,
2 wi—w, Wi—w,
RO =wik®, i=1,2,...,6. (B34)

It should also be noted that integrals (76—-80) may also be evaluated by any suitable
numerical method (e.g. the trapezoidal rule in connection with Romberg’s principle).
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