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Abstract. A short derivation is given of the regularized equtions of motion for the perturbed two-body 
problem. This method is then applied to the slightly modified time transformation dt/ds= r/co. 

As is well known, the equations of motion for the perturbed two-body problem can be 
written in the form 
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In the unperturbed case, the integrals of Equation (1) are 
angular momentum: 
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Laplace or eccentricity vector: 
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In the perturbed case, respectively, 
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By using Equations (2) through (7) and the time transformation dt/ds= r, Equation 
(1) can be transformed into a (perturbed) harmonic oscillator. (See, for example, 
Burdet, 1968). A new short derivation is presented here. 

* This work was done while the author was a 1973-74 Summer Faculty Research Fellow at the 
Johnson Space Center. 
t Dots indicate differentiation with respect to physical time t, primes with respect to s. 
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Multiply the Laplace vector [Equation (4)] by r and introduce 

defined by 

the fictitious time 

d 1 d 

dt r ds 
(8) 

to obtain 

rA = x(K 2 -- r0) 2) -- r ' x ' .  

Differentiate this equation once with respect to s and rearrange. This yields 

r '(x" + 0)2x + A - r2p) + x'(r" + 0)2r - K 2 - r P . x )  = 0. 

It is now shown that both quantities in parentheses vanish. Because 

(9) 

(10) 

x x (x" + 0)2x + A - -  r 2 p ) - -  
d 

ds ( r C )  - r 'C  - r2x x P = 0, 

the vector 

X" -1- 0)2X -t- A - r 2 p  

is collinear with x; by Equation (10), this vector is collinear with x'. Thus, 

x" + 0)2x + A - r2p = 0. (11)* 

From Equation (10), it follows immediately that 

r" + c 0 2 r -  K 2 = r P . x .  (12) 

If, instead of Equation (8), the transformation 

dt r 

ds  co 
(13) 

is used, Equations (6) and (7) become 

do) 1 
- -  - - - - -  P . x '  

d s  0) 
(14) 

d A  

ds 
- 2xP-x '  - -  x ' P  - X - -  r r ' P ,  (15) 

respectively. Proceeding as before, it follows that 

A 1 (r2p + P .x ' x ' )  (16) 
X tt -a t- X -~ 0)2 - -  0)2 

K z 1 (rP.  x + r 'P-  x') (17) 
r "  --F- r 0)2 ~--- 0)2 �9 

* In the special case where ~ and x are collinear, Equat ion  (11) reduces to Equat ion  (12), which is 
obtained by introducing Equat ion  (8) into Equat ion  (3) and differentiating. 
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The motion is completely determined by the set of Equations (13)-(16), which is of 
order 11. This system however, is not stable in Liapuniov's sense if the perturbing 
forces are set equal to zero because Equation (13) is non-linear. In this case, Equation 
(17) has to be added raising the order of the system to 13 while making r a new depen- 
dent variable. 

Note that Equations (11) and (12) are uniform, but that Equations (16) and (17) are 
not; that is, Equations (16) and (17) fail when 09=0 (a parabola). Finally, the time 
transformation (13) leading to the special form of the oscillator Equations (16) and 
(17) was first given in Stiefel and Scheifele (1971), for use in K/S theory. It is shown in 
the above reference that this time transformation leads to better numerical behavior in 
conservative cases, because the oscillator frequency in (16) and (17) is constant. 
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