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Abstract. The restricted problem of the motion of a point of negligible mass ('asteroid') in an N- 
planetary system is considered. It is assumed that all the planets move about the central body (' Sun') 
along circular orbits in the same plane and the mean motions of the asteroid and the planets are in- 
commensurable. The asteroid orbit evolution is described as a first approximation by secular equa- 
tions with the perturbing function averaged by the mean longitudes of the asteroid and the planets. 
For small values of the asteroid orbit eccentricity an expression for the secular part of the perturbing 
function has been obtained. This expression holds for the arbitrary values of the asteroid orbit semi- 
axis which are different from those of the planet orbit radii. The stability of the asteroid circular orbits 
in a linear approximation with respect to the eccentricity is studied. The critical inclinations for a 
Solar system model are calculated. 

1. Problem Formulation 

Let us consider the motion of a point of zero mass attracted by a system of (N+ 1) 

material points. Assume that N points of masses m~ ( j =  1, 2, ..., N) move uniformly 

along circular coplanar orbits about the central point of mass mo>> mieo. Such a scheme 
can simulate as a first approximation the motion of an asteroid in a planetary system, 

hence below the point mo will be referred to as the Sun, m~-  as planets and the point 
of zero m a s s -  as an asteroid. 

Assume that the mean motions of the planets and the asteroid are incommensurable. 
Then the evolution of the asteroid orbit elements in a first approximation with respect 

to the perturbing masses of the planets is described by secular equations with the 

perturbing function averaged independently over mean longitudes of the planets 2 i 
and the asteroid 2. Such a formulation for the restricted nonresonance problem was 
described in Krasinsky (1973). 

The secular part of the perturbing function can be written as 

2~ 1j 
W = 2~z V d2, (1) 

0 

where 

N 

V =  f ~ m j  
2re j=~ 

27g 

f d21, 
A~ 

0 (2) 

2 _ 2raj cos H~ A~ = r 2 + aj 
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f is the gravitational constant; r, rj are the heliocentric radii-vectors of the asteroid 
and the planets, respectively; r=[r] ,  a j= [ r j [=cons t ;  H: is the angle between the 
vectors r and rj. Lagrange equations with the function W 

da de C' l  - e 2 0 W  

d'-'[ = O, dt  na2e ~co 

di ctg i 0 W dO 
dt  na2 ~/1 - e 2 &o dt  

cosec i 
na2 a/1 _ e 2 

OW 

Oi 
(3) 

do) ~/1 - -  e 2 8 W ctg i 
dt na2e Oe na2 ~/1 - e 2 

OW 

Oi 

have the three first integrals in involution 

W = const, a = const, (1 - e 2 )  COS 2 i = const; 

(a, n, e, i,/2, co are the semi-major axis of the asteroid orbit, the mean motion, the 
eccentricity, the inclination to the planet motion plane, the ascending node longitude 

and the argument of perihelion latitude, respectively). 
Therefore the problem under consideration is integrable as well as the circular 

twice-averaged restricted three-body one (N= 1) (Moiseev, 1945). 
For  the case N =  1 in Lidov (1961, 1962) Hill's approximation of the problem 

( r ~ a t )  was analysed; in Kozai (1962), Aksenov (1967) various expressions for the 

function W were obtained and the secular equations for the inner case of the problem 
(r < at) were studied; in Lidov and Ziglin (1974) the case of uniformly close-by orbits 

( r ~ a t ,  e~O,  sin i~0)  was considered. 

2. Perturbing Function Transformation 

Let us discuss the calculation of the function V and W. Usually in analytical investiga- 
tions the expansion of the function 1/A~ in a series over powers of ratios r/aj when 
r < a i or aj/r when r > aj is used. However these expansions, each separately, turn out 
to be inapplicable if during the motion r can be both smaller and greater than aj. 

In Boda (1931), Petrovskaya (1970, 1972) for the 

problem the presentation of the function A t as 

At = (r + rt)(1 - et) t/2 

restricted elliptical three-body 

(4) 

was used, where rl is the distance from the planet to the attraction center and the para- 

meter 

2rrt(1 + cos Ht) 
= ( 5 )  

(r + r t) z 

remains less than unit for all the values of r , / /1  apart from the point r - r  t,/-/1 =0.  
The introduction of such a parameter allows to obtain a united analytical expression 
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for the function 1/A~ in the form of a series over powers e~ converging everywhere 
�9 except the points of the asteroid-planet collision. 

It can be readily seen that A~ along with (4) allows the following presentation 

A1 = (r 2 + r2)a/2(1 - ~)1/2, (6) 

where the parameter 

2rrl cos H1 
fil = r2 + r2 (7)  

has the same properties as e~ (fi~= + 1 at r=r~,//1=0, n). 
Though the introduction of fil preserves the irrational factor (r 2 + r2i) ~/2 in (6), from 

our point of view using this parameter simplifies the process of obtaining the secular 
part of the perturbing function. 

In the case being considered r ~ = a j = c o n s t  ( j =  1, 2, ..., N). Using the presentation 

A j C' @ + r 2 (1 2air cos Hf~ 1/2 

= - a j - ~ + r  2 ] (8) 

and integrating over 2~ in (2) we can find 

V = 2f ~ rn i K(zi) 

where 

J 2~ 2af cos ~o 
z j - -  1 -Jr" ~ j  ' ~ J  = 2 r 2 ' a~ + 

(9) 

(p is the latitude of the asteroid with respect to the planet motion plane; K(nj) is the 
complete elliptical integral of the first kind with the modulus nj. 

Note that (9) can be obtained by the simple transformation of the expression for the 
force function of a system of Gauss circular rings. Such a system was used by Duboshin 
(1945) for describing the mutual perturbations of Saturn's satellites. 

Since ~j~< 1 ( j =  1, 2,.. . ,  N) the function V can be written as a sum of N power 
series with respect to ~ uniformly converging everywhere except the circumferences 
r=aj, ~0=0. Using the expansions of the functions K(zj) and (1 + ~j)-1/2 in a series 
over the powers ~j we find 

N mj 
V = f j = l  ~ ~/a 2 + r 2 3 .  1 ; ~2), (10) F(�88 4, 

3 2 oo 2k where F(4-}, -4; 1; ~ j )=  Zk-o Bk~j is a hypergeometric function; 

(4k)! 3 B2 1 o 5 
ak = 26k(k  l)2(2k) !' Bo = 1, B~ - ~ 6, - ~ 0 2 4, .... (11) 

As k increases the coefficients Bk slowly decrease and with k ~- oo, 
function W can be expressed 

Bk ~ 1/kn C2. The 



316 M.A. VASHKOVJAK 

where 

2~ 

W = m j  ~ Bk(2aj) zk rZ)Zk+l/2 
j=~ k=O (a~ + 

O 

a(1 - e 2) 

1 + e cos (U - co) 

cos 2 ~o = 1 - sin z i sin z U, 

/ .2  

d2  = d U ,  
aZ~/1 - e 2 

d2, (12) 

U is the a r g u m e n t  o f  the asteroid  lat i tude.  

The subintegral expression in (12) is sufficiently complicated. We have succeded in 

calculating the function W analytically only in several cases by means of the series 

expansion over powers e and sin i. Besides, the closed expression for W can be 

obtained in the extreme cases when the condition 

2air 
2 r2<~ 1 aj + 

is satisfied for all j .  All these cases were discussed in Vashkovjak (1975). The present 

paper  deals only with the analysis of near-circular orbits of  the asteroid. 

3. N e a r -  Circular Orbits  

Assume that  the asteroid orbit eccentricity is sufficiently small. Let us expand the inte- 

grand of (12) in a series over the powers e and truncate the terms of the order e 4 and 

up. All the required calculations carried out, the following expression for the function 

W can be obtained 

Here 

N oo 

w = E E  
j = l  k=O 

M~J){Rk(i) + eZ[S~J)(i) + T~J)(i)cos 2co]}. 

Rk(i )  = F ( - k ,  �89 1; sin 2 i),  

S~J)(i) = �88 + 1)[(4k + 3)ej - 3 ] F ( - k ,  �89 1; sin 2 i) + 

k 
1 + ~ [3 - 2ej(4k + 1) - sin 2 i IF(1 - k, ~; 1; sin 2 i) + 

(13) 

(14) 

k 
+ ~ sin z i[~j(4k + 1) - �89 - 3 . 2 ;  sin 2 i) + k,  2, 

M 1 + k ( k  - 1) F(2 k, z ;  1 ; s in  z i) - 

3 ] - sin z i 1 ~ F(2 - k, ~; 2; sin 2 i) (15) 
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Z(kJ)(i)  --" �88 + 1)[(4k + 3)cx: - 

3 
- F ( - k ,  ~-; 2; sin 2 i)] + 

3 ] [F ( -k ,  �89 1; sin 2 i) 

k 
+ ~ - [ 3  -- 2ej(4k + 1) + sin z i]F(1 - k, �89 1;sin z i) + 

+ k 
~- [2o~j(4k + 1) - 

+ k(k - 1) [F(2 

3j(1 sin22 i )F(1 - 

k, z; 1; s in 2 i) - 

( sin z )2 
- 1 i F ( 2  - 

2 

i j) fmjB  
= ~Ij , 

a/'a~ + a 2 

3 ] k, ~-; 2; s in  2 i)  

2aja a 2 

1 7 J - -  2 a2 <~ 1, o~j = 2 a2 <~ 1. aj + aj + 

k, 3; 2; sin 2 i) + 

(16) 

(17) 

Set of the secular Equation (3) at small e has the form 

da 
= 0  

dt 

di 
dt 

2 ctg i. e2 sin 209 A(i) 
n a  2 

dO 
dt 

m 

COS i n 
3 . 2 ;  sin 2 i) Z M~J>kF( 1 - k , z ,  

n a 2  J= l k=o 

d e  2 e  s in  2co 
= A ( i ) ,  dt na z 

(18) 

where 

dfo 
dt 

2 
na 2 [B(i) + A(i) cos 2co], 

A(i) = 
N oo 

i=1 k=o (19) 
N [ k 

B(i) = ~ k~o M~J) S~J)(i) + -2 
j=  

COS 2 i F(1 - k, 3 ;2 ;  sin 2 i ) ] .  

Set (18) evidently describes the real evolution of the asteroid orbit elements only in the 
case when the eccentricity remains small throughout the considered time interval. 
Hence it is interesting to find out under what conditions the particular solution of the 
set e - 0  turns out to be stable with respect to eccentricity. 
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When e = 0, i -  io = const, 

s163  
N oo 

~ _  3 cos io (t - to) ~ ~ M(j)kF(1 -- k, ~-; 2; sin 2 io), 
n a 2  j = l  k=o  

where f2o is the value of D at the initial moment  of time to and the dependence co(t) 

can be found from the last expression of (18). 

An a linear approximat ion with respect to the eccentricity for the elements l =  

= e  cos co, h = e  sin co the set of linear differential equations with constant coefficients 

is obtained 

dl 2 dh ," 2 
dt = n a  2 [A(io) - B(io)]h, dt - -  n a  2 [A(io) + B(io)]l. (20) 

t .  

If  the condition 

AZ(io) - B2(io) < 0 (21) 

is satisfied the trivial solution of linear set (20) is stable and the dependences l(t) and 

h(t) are defined by the following formulas 

l = lo cos z + ho 
A - B  

"X/'B 2 _ _  A 2 
sin z, 

where 

h = ho cos v + lo 
A + B  

~/B 2 -- A 2 

2 
z = x/B 2 - A 2 (t - to) /,/a2 

sin z, (22) 

lo, ho are the initial values of l and h for t = to. 
The equation 

A2(i *) - B2(i *) -- 0 (23) 

is used for determining the so-called critical inclinations (Krasinsky, 1972). When 

io = i*, dco/dt =0.  If  A + B = 0 ,  co=0, n and if A -  B=0,-co = +_ g/2. 

4. Calculation of the Critical Inclinations 

Let us first consider the case N -  1. It is known (Lidov, 1961, 1962) that with a --> 0 the 
critical value sin 2 i* >-}. With a > oe s in  2 i* > 4. These limiting values can be 

obtained by solving Equat ion (23). Confining ourselves in formulas (19) to the items 
for which k = 0 ,  1 we obtain 

A ( i * ) = C  ( 1 -  4)  sin2 i*,  
(24) 

B ( i * )  = C ( - }  - sin 2 i*), 
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where 

i s  frnla~ az 
C - 6 + 5 /2 '  

x = cq(11 - 7el), ~1  --" 

a 2 

a 2 + a 2 

In this case the solution of (23) takes the form 

sin 2 i* 4 1 - %/1 - z 
- , ( 2 5 1  

z ,  

where 

With 

z = ~ -  1 

With 

a--+ O, cz l -+ O, z--+ O, sina i * > ~. 

a--+oo, 0q > 1, z - +  1, sin2i * ~4_ 
�9 , -  5 o  

There is a qualitative difference between these cases. If  with a > 0 the circular orbits 

are stable in a linear approximation with respect to e at s in  2 io < 2 and unstable at 

s in  e io > ~ then with a > oe linear stability is preserved at any value of s in  2 io 7 ~ 4. If  in 

formulas (19) the items with k = 2 are taken into account then for determining the critical 

inclinations we shall have the following asymptotic formulas 

sin2i* 2 2o )2 - s - 1-o-o- (a  ~ a l )  ( 2 6 )  

2 
(a >> al). (27) 

In the case a>>al linear stability takes place if sin 2 io < sin e i* o r  s in 2 io > sin e i* .  If  

sin e i* < sin e io < sin e i *  then instability appears. Note that the taking into considera- 

tion of the additional items in formulas (19) with k = 2 is qualitatively equivalent to 

that of the fourth zonal harmonic (as well as of the second one) in the problem of the 

evolution of near-circular satellite orbits in the non-central gravitational field of a 

planet (Kugaenko and Elyasberg, 1968). 

For  a < a l  the critical inclination values were calculated by Kozai (1962) and for 

arbitrary a C a ~  by Krasinsky (1972, 1973, 1974). It should be noted that with a > al 

the results obtained by Kozai and Krasinsky differ. It is likely to be explained by the 
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difficulties in the calculation of the critical inclinations in the region a ~  a~. In Krasin- 

sky (1972) and later in Lidov and Ziglin (1974) the asymptotic formula was obtained 

which defines the critical inclinations for the inner case of the problem with a > al 

cos i* = 1 a) 
4 

Numerical solution of (23) which has been obtained for N =  1 gives the critical 

inclination dependence on a, coinciding with the results of Krasinsky (1973, 1974). It 

is interesting to note that the dependence of i* on a in the region O<~a<<.a~ can be 

approximated with sufficient accuracy by the empirical formula 

s i n  2 i *  - -  2 - -  -5- C O S  

; g a  

�9 ( 2 9 )  
2al 

The absolute approximation error does not exceed 0.01 in the region 0.1al < a <  

<0.9a~ and 0.001 in the region a<0.1a~ and a>0.9a~.  With a > a~ from formula (29) 

it follows that 

cos i* = 1 
10 

At great values of a formulas (27) can be used for the calculation of the critical 

inclinations. At a~a~ in formulas (19) a great number of terms should be taken into 

account. 

Thus for a true determination of i* with a =  1.03a~ it turned out necessary to take 

into consideration the items with the numbers k ~< 5500 in the sums by 'k ' .  
To get an idea of the critical inclinations in the N-planetary problem we shall con- 

sider the case N =  2 that allows to reveal the main qualitative peculiarities. 

Let first a,~a2. For the values of a meeting the condition a ~ a ~ a 2  the critical 
inclinations can be obtained by using formula (25) in which 

2 m ~ a ~ ( l l  - 7 ~ )  

(a~ + a2) 5/2 
. / = 1  

x = 2 2 " (31) 
mjaa2)5/2 Z (a~ + 

j = l  

Taking into account of the ratios alia, a/a2 being small and introducing the dimen- 
sionless parameter a characterizing the relation of disturbing accelerations from the 

first and the second body by the formula 

2 3 m~ala2 
maa s 

we obtain 

X ---~ 
40 

o + 1  
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In so doing the critical inclinations are defined by the formulas 

s in  2 i *  4 a + 1 = _} a + 1 
- s ~r ~ 2 '  s in  z i *  cr (32) 

If sin 2 io < sin 2 i* or sin 2 io > sin 2 i* then the solution of linear system (20) is stable. 
If sin 2 i* < sin 2 io < sin 2 i* then instability takes place. Note that Formulas (32) are 

similar to those defining the critical inclinations in a single particular case of the twice- 
averaged Hill's problem with the central planet oblateness when its equatorial plane 
coincides with the outer body orbit plane taken into account (Vashkovjak, 1974). The 

calculations carried out for m2 =m~, a2 = 50a~ showed (Vashkovjak, 1975) that within 
the range 6a~ < a < 9al solution (32) practically coincides with the numerical solution 
of Equation (23). 

In the same paper in the plane of the parameters a, s in  2 io the regions of instability 
of the asteroid circular orbits for different values of m~, m 2 ,  a a ,  a 2  were plotted. Here 
we give just the calculation results for the two typical cases a2=2a~, mz=50m~ 
(Figure 1), m 2 - -  0.2ml (Figure 2). 

Si~2io 

I 
f 

o z 2 3 4 q 

Fig .  1. N =  2, m2 -= 50,  ml  = 1, a 2 - - 2 ,  a l  = 1. 

In the first case the boundaries of the shaded instability regions, except the a,~al 
region, are located so as they would be in the absence of the mass ml. For the second 
case the availability of the linear stability region (a> a~, sin z io> ~) is typical. With 

a > a~ and a > az some calculation difficulties in equation (23) arise associated with a 
very slow convergence (19). 

In addition to the examples described above, calculations of the critical inclinations 
in the nine-planetary system simulating the solar one have been carried out. The 
following values of a~ and mj have been taken. 
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5 / , n  ~ " 

% 

a/s 

O l 2. 3' z/ 
Fig. 2. N = 2 ,  m2=0.2, m r =  1, az=2 ,  a t =  1. 

j 1 2 3 4 5 6 7 8 9 

aj 0.387 0.723 1.0 1.52 5.20 9.58 19.1 30.2 39.8 

mj 0.055 0.805 1.0 0.106 314.0 94.0 14.4 17.0 0.110 

The results of the numerical solving of Equation (23) for the ease being considered are 
presented in Figure 3. Figure 4 gives the region O<~a<<.a5 larger scaled. From these 
figures one can see that the structure of the shaded instability regions qualitatively 
coincides with that of the regions in the two-planetary system (Figures 1-2). In the 

~na~o 

!Venus 

z V 

LO 20 

f f q �9 - . �9 

.30 

Fig. 3. N=9, 1<~j<~9. 

L 

4O 
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/ / /  
/ / /  
/ / /  
, / /  

/ 
/ / /  
/ /  / / 

U 

I I 
o t a 5 4 

Fig. 4. N=9,  1<~j~5. 

s cz) ) 

region 0 4 a ~< al and al < a < a2 Venus has the main influence on the value of the critical 

inclination, and in the region aa < a < a4 and ar < a < a5 - Jupiter does, the influence of 

Mercury and Mars being inconsiderable. In addition the main Earth's effect, Venus 

and Jupiter also have a pronounced effect influence 

az < a < a3. In the region a > as the critical inclinations 

effect of the major planets Jupiter, Saturn, Uranus and 

being negligible. 

Note that the critical values of sin 2 i* at a < a5 do not exceed 

on the intermediate region 

are determined by the joint 

Neptune, the effect of Pluto 

,~5.'~ ~ At a >  a8 the 
instability region is rather narrow. It is of interest to note that in the region a5 < a < a8 

the criterion of linear stability of the asteroid circular orbits is valid for large inclina- 

tions to the planet motion plane, in particular for io = 90 ~ 
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