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Abstract. The main result of this paper is a theorem on the trajectory equivalence Of phase flows on 
isoenergetic surfaces with a positive energy level in the Kepler problem and perturbed Kepler 
problem. The following two facts are crucial for proving it: firstly, an isomorphism of the phase 
flow on an isoenergetic surface in the Kepler problem and the geodesic flow in a constant curvature 
space. The isomorphism is studied in detail. In particular, all the integrals of the Kepler problem are 
obtained proceeding from the group-theory considerations. The second fgct is a generalization o f  the 
theorem on structural stability of Anosov flows onto non-compact manifolds. 

It is well-known that velocity hodographs of a mass point moving under the influence 
of Newton gravltation of a fixed centre are circles and straight lines (or tkeir segments). 
It is readily seen that in a planar case the requirement of constancy of the power of the 
point 0 (in the elementary geometrical sense) with respect to the circles marks out 
hodographs of isoenergetic orbits. In turn, the geodesics of standard constant curvature 

metrics on a plane are also circles and straight lines (or their segments), the power of 
the point 0 with respect to the circles being constant. This isespecially evident in the 
case of Lobachevskian space (in Poincar6's interpretation): with respect to circles 
orthogonal to the absolute (i.e. geodesics), the power of,the point 0, being equal to the 
squared tangent, equals the squared radius of the absolute, i.e. a constant. 

Such a coincidence makes us feel there is a certain connection between both the 
objects. In fact it does exist and was investigated by Jfirgen Moser [7] in the case of 
negative energies*; the formulation of the corresponding result for a general case is 
given in [3] (details are given in [1]). The author hopes that the manner of reporting this 
connection in Section 1 of the present paper is the best one to fit the core of the problem. 

The connection mentioned above consists in the fact that the change of time scale 
dt/r transforms the phase flow on an isoenergetic surface with energy level h into the 
geodesic flow on a manifold of constant curvature - 2 h  (though the latter flow acts not 
in a tangent bundle, but in a cotangent one). The manifolds in question are isometric 
to a sphere punctured at one point when h < 0, to Euclidian space punctured at one 
point when h = 0 and to Lobachevskian space punctured at one point when h > 0. 

Being completed, these spaces become homogeneous. This makes it possible to 
build a complete system of first integrals (angular momentum and Laplace vector) 

* And earlier by G y 0 r g y i [ t l ]  in the same case. 
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proceeding from the Noether theorem. According to Smale, the first integral corres- 
ponding to the Lie group of symmetries takes values in the Lie co-algebra of the group. 
In connection with this we had to include here the calculation of the Lie algebras for 
the groups of motions of constant curvature spaces. 

Geometrical objects used in the paper make it possible to give a geometrical inter- 
pretation to the eccentric anomaly and its analogue in a hyperbolic case. 

Besides the problem of an attracting centre, the paper also deals with that of a 
repelling centre. 

The geodesic flow in Lobachevskian space, being an Anosov flow, though a non- 
compact one, is structurally stable [4]. This, by virtue of all that has been said above, 
involves (see Theorem 2, Section 2) trajectory equivalence of phase flows on regularized 
isoenergetic surfaces (h > 0) of the Kepler problem and perturbed Kepler problem in 
a certain class of perturbations. A typical example of an admissible perturbation is that 
caused, e.g. by an oblateness of a planet which is the gravitation centre. A local version 
of a simple generalization to Theorem 2 seems to allow the study of the neighbourhood 
of second species periodic solution in a restricted problem of three bodies. 

The author would like to thank V. M. Alekseev for highly stimulating discussions of 
the problems studied in the present paper and A. V. Jarkho for translating it. 

1. The Kepler Problem and Geodes ic  Flows 

Consider the Hamiltonian 

no( r ,  x) = I rl - 
2 -IX~]' X, YeR" 

with a non-zero p. When/~ > 0 this is a Hamiltonian of a mechanical problem with a 
single attracting centre, where gravitation changes according to the inverse square 
law; when p < 0 this is a Hamiltonian of a problem with a repelling centre, repulsion 
changing according to the same law. 

The isoenergetic surface 

H 0 -- I YI2 '/'/ = h (I) 
2 Ixl 

is projected, in accordance with various values 
of impulse space 

> 2h} 

< 2h} 

, . / ~ +  __ ~ n  12 --2h - -  { Y.~ :1 Y 

"~----2h = { Y~ [~n: i r[2 

Further we shall sometimes use notations z - 

reservations. 

of p and h, into the following regions 

if # > 0  

if p < O , h > O  

if p <O,h_<O 

- 2h, a = __. without making special 

We turn the regions J/t'" -2h into configuration space, changing the roles of co- 
ordinates and impulses by means of the canonical transformation i 
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P = Y ,  
Q = - X .  

(P is coordinate, Q is impulse). 
On the isoenergetic surface H o = h we make a common change 

d r ' =  (1/[ Q[)dt using Poincar6's trick. Consider the new Hamiltonian 

(2) 

of time scale 

F'=IQ I (no(P, Q)-h)= 101(I/7 z 1~ # h)--lQl( Ielz-2h),~ -/~. 

Its peculiarity is that on the surface Ho = h in which we are interested, the corresponding 
vector field differs from the initial one by the multiplier QI- Rejecting the inessential 
constant in F' ,  we obtain the Hamiltonian 

F" = ]:' + p = [Q[([P[2 - 2h) 

called parametric [10], i.e. the first-power homogeneous with respect to impulses Q. 
J 

The common procedure of transforming a parametric Hamiltonian into a 'convex' 
one with respect to impulses, to which Legendre transformation~can be applied, 
consists of passing to 

F'"= �89 (F") 2 

(see ibid.). The passage on an isoenergetic surface F" = # or, on a Ho = h, which is the 
same, from the Hamiltonian vector field with a Hamiltonian F" to the field with a 
Hamiltonian F'" is accompanied by multiplying the field (aF"/aQ, -(t~F"/SP)) by p, 
i.e. with a new change of time scale dz - (1/#) dt'. Applying Legendre transformation 
to the Hamiltonian 

we obtain the Lagrangian 

L = �89 ([p[2 2 )2 
- 2 t /  �9 

Vectors Q and 8 are connected by the relation 

_ l e l  

Let us introduce on ~/[2h metric gij -- [45~j/(IPI 2 - 
curvature . .Now we may rewrite the Lagrangian L in the form 

L(P, 8) = �89  8). 

(3) 

2h) 2] which is a metric of constant 

The corresponding Lagrangian vector field is called a spray associated with the metric 
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g [6]. The flow on a tangent bundle determined by it is a geodesic flow. Legendre trans- 

formation transfers our isoenergetic surface F " =  �89 fi2 (in other words, F " =  # or 

H0 = h) onto the fibre bundle SI, I (JC/~Zh) of vectors tangent to Jr -2h, whose length in 

metric g is [p[. 
The manifolds ~ are geodesically incomplete: the geodesic can for finite time run 

to infinity. In particular, for this reason J//{~, though a space of constant curvature, 

does not admit  a transitive group of motions. In order to remove the singularity in the 

infinity, Levi-Civita (see, e.g. [9]) suggested subjecting the space of impulses to in- 

version and then completing it with zero. 

Consider the manifolds 

I II J/g+ = ,  p 6 JR": [pl 2 < if • < 0, 

~ +  = JR" if g>_O, 

A I 1} M/Z 2 = ,  p e R n : [ p [ 2 >  - i f  g < 0  

provided with metrics O ij 

Poincar6's). 

= [46ifl(1 + •[p]2)2] (when z < 0 this metric is called 

PROPOSITION.  Mapping of the inversion 

I~: ~tg'~\ {0 } , ~ \ { 0 } ,  
P 

[el 2 

realizes isometry between its source (with the metric g) and target (with the metric ~). 
Proof Let E e T e ~ .  Using an obvious formula for the differential of the inversion 

,~ p 

(I~),: ~ ~ ipi--- ~ - 2 ip[,  (P, E) (4) 

one can easily see that the proposit ion is true: 

gi<e)(I,~, I ,~ )  gp (I, v ^ = ^ .., ~ , ~ )  = 

(1 
4 

+ x ]p [2)2 ( I ,Z ,  I , Z )  = 

+ I: 1: 
( 1 ),.,,,. 

1 + ~ ip[--- 5 

41: 1' 
= gAZ, z).  

Consider a commutative diagram 

o6 
r*(:Z~\{0}) 

( I * ) - '  
r*(:Y~\ {0}) , 

a~ 

T ( ~ \ { 0 ) )  

T (~ \{0 ) ) .  
(5) 
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The Legendre transformation mentioned above is actually a mapping of identification 

o f  * ~' T ~/~ with Td/~, determined by the metric g, (g~ in the diagram). This and the iso- 
metricity of I implies that the composition I.og~ transfers the phase flow of the 
Hamiltonian F"' on the surface F " ' =  1 p2 into the geodesic flow acting on Slul(3ff~). 

In Section 2 we shall need to pass from the Hamiltonian vector fields on T* Jr to the 
vector fields on T(Jff~+\{0}). To do this, we shall use the second branch of the diagram 

exploiting the canonicity of (I*)-  1. Formulas for I* and 0 ~ that would be necessary in 

Section 2 are almost self-evident: 

I * : ( p , q ) ,  , (P ,  Q ) = ( [ ~  ) 2, [Pl2q - 2 ( p , q ) p  ; (6) 

p(1  + [p12) z ) 
Oh: (P'q)  ' ~ ' 4 q . (7) 

(Mapping i -  1 
regularization [9].) 

Note that, having applied an 
manifolds d/~ + with x < 0 (this 
introduced new singularities into the rest. 
of constant curvature spaces*; namely, 

~ together with the change of time scale (1 / IXI)d t  is called Levi-Civita 

inversion, we have regularized, i.e. completed, only 
will be exploited in Section 2 ) a n d  simultaneously 

For this reason we consider another model 
consider in R "+ 1 _ { ( _ ((1, ~ 0 ) :  ~ 1 1~ Rn, 

~o e R} the family of second-order surfaces 

;) = + = 1. 

When z > 0, this is an ellipsoid; we shall denote it by , f '+ .  When z < 0, this is a hyper- 
boloid of two sheets; the upper sheet will be denoted by X~-, the lower o n e -  by ~C + " 

When z -- 0, this is a pair of parallel hyperplanes; the upper one will be excluded from 
considerations while the lower one will be denoted by Y~-. Figure 1 gives you an idea 

of the way these surfaces are situated when n - 1. 
Consider two metrics on each of the surfaces ~4/'~. The first one 

f f l  = = + (d~0)21 

is, as a matter of fact, induced by the same quadratic form which determines the surface 

itself. (When z - -0 ,  degeneration takes place" gl identically equals zero.) The second 
metric which, when z -% 0, is defined as 

1 
g,, = (d~l) 2 + - (d(o) 2 

and when x - 0 as 

fill  - -  ( d ~ l )  2 

* Added in proof:  Recently this model in the same context was used also by Belbruno [12]  
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~0  

+ 

. ~ 0  + 

4" 

Fig. 1. 

is positively defined 
the surface X~:: 

on each surface. Evidently, the following relation takes place on 

g~ = [xlg~. 

The metric g~ is, of course, also induced by a quadratic form 
Consider the mapping 

R~ l in [R "+ 1. 

~ :  R"~  ,/ff~,, ,/V'~\{(O, 1)} c ~"+~ 

inverse to the stereographic projection from the north pole (0, 
Mappings ~ -1 ,  ~ are described with the formulas 

1) to the space ~o=0. 

~o =P '  ~'~ (P) - ~o 

r (r 2 
P - i  - ~o' ~o - 1  + ~lpt ~  lpl 2 - 1 

2 
(8) 

PROPOSITION. Mappin 9 ~ realizes isometry between ~ and ~g'~\ {(0, 1) } considered 
respectively with metrices ~ and 911. 

Proof Differentiating (8), we obtain for ~ ~ Tp~gg~ 
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4 

r = (1 + Ip]Z) z \ r / (9) 

and, consequently, for x 4:0 

(glI)~(p)(~, r ~ , ~ )  
1 

[ ( E , ~ ) I ]  2 --[- - - [ ( E , ~ ) 0 ]  2 --- 

[ 4 z 
= (1 +x]p]2)  z 4 

1~[2 + z2 [p[Z(p, ~)2 

, ) 
- g(P '  ~)2(1 + ziP[Z) + -z zZ(P' ~)z = ( 1 +  - [Pl2)z 9.(~, O. 

For x = 0 the proposition is obvious. 
Remark. With respect to the metric g~ on JV'~ diffeomorphism ~ is, in terms of [5], 

homothety with coefficient x/]-~ = x/12h ]. 
The manifolds ~F~ are complete. The geodesic flows on the manifolds SI,I(JV" ~) may 

thus be regarded as regularized phase flows on the isoenergetic surfaces H0( Y, X) = h. 
If there exists a Lie group of symmetries (which, for the geodesic flow on X~,  is a 

transitive group of motions of JV~), the Noether theorem allows us to construct the 
first integrals. We shall use this theorem in Smale's interpretation [8], for which we shall 
need to calculate the Lie algebras of groups of motions and their action in ~/'~. The 
group of motions of the manifold ~ with respect to the metric gl~ may be described 
quite eas i ly-  it may be presented as a subgroup of GL(n + 1, JR). The transformation 
B ~ GL (n + 1, JR) determines the motion of the manifold jV'~, if, for one thing, it transfers 

JV~ into itself, i.e. preserves the form R~ 

�9 I l ( I 0 )  B R~ B = R,~ 

and, when x < 0, does not exchange JV + and jff~- 
the form R II 

X 

, and if, for another thing, it preserves 

�9 ii R~l B R~ B = (1 i)  

and in this way the metric gil- The group described exhausts the whole group of motions 
of JV~, which is easily seen, e.g., from Theorem 6.7.9 of [5]. Requirements (10) and (11) 
are evident to be equivalent if z -r 0. For • = 0 we may, in turn, obtain from (10) and 
(11) a more explicit description of the group of motions. Transformation B should 
merely be of the form 

B' b) 
B =  

0 1 
(12) 

where B' is an orthogonal matrix n x n. 
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Now it is easy to find the Lie algebra of the group of motions. Let Bt be a one-para- 

meter subgroup. Differentiating the relation B*R,B t l  = R,~I (see (10)) we obtain, if 
I I t = O, A R,~ + R~A = 0, where A ( d B t / d t ) t =  o. If A is presented as 

and 

A 

a 

c d 

b) 

id 0)i 
then from the relation obtained it follows that 

+ = 

xb*  d c d 

O, 

which is equivalent to za* = - ha, c = - xb*, d = 0. 
In this fashion, the Lie algebra J ~  of the group of motions, when x -r 0, consists of 

the matrices (a b) 
- x b *  0 

where a is skew-symmetric. From representation (12) for the group of motions of,4/'~ 

it is readily seen that such a representation for Lie algebra is also true if z = 0. 

An action of the Lie algebra J .  on ~ is a mapping 

which puts into correspondence to A ~ J .  the vector field on JV'~ generated by a one- 

parameter group of transformations corresponding to the element A of the Lie algebra. 

For any point ~ ~.4r~ 

means the mapping which puts into correspondence to the element A the value of the 

vector field c~ (A) at the point ~. An explicit expression for ~ is (a b) 
= 

- x b *  0 ~o 

# o" ~ o" According to [8], composition J of the mappings g l I  : TJV. ~ T Y ~  and 

J l :  T*W~ , J *  
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the latter being dual to a~ on every fibre of T~ ~4 r, is the first integral of the geodesic flow. 
Mapping J may be set by giving the value Jr/for each r/e T~JV on the elements A e J~.  
In our case 

(Jr/,A) - -  g i i ( r / ,  (z~(A)) --  (r/l, a(1 + (ob) - r/o((1, b) = 

= (r/1,a(1) + (~or/1 -- r/o~l,b ). (13) 

It is clear that the composition of the through mapping 

i O [~ I *  Z*  

U: ( Y, X) > (P, Q) ~ (P, z) > (p, ~) > ((, r/) (14) 

and the first integral J of the geodesic flow on JV~ is the first integral of the Kepler 
problem. Formulas setting the mapping U may be obtained from (14) by means of 
fairly simple calculations, using (2), (3), (4) and (9) 

2 2 I r l ~ + 2 h  
r = I r l  - 2h r ,  r = - I r l - 2h 2 

,7, = < r ,  x 5  - I r[~ - 2h 2 X, r/o = - 2 h (  L X). 

Substituting U( Y, X) for r/in (13) we get, after some transformations, 

( r / 1 , a ( 1 )  + ( (or /1  ( Y, X)  ( Y, a(Y)) - (X, a(Y)) + 

+ <l r [ ~ x -  < r, x5 Y -  
[ y [ 2  _ 2h  

2 
X,b) . 

The fact that a is skew-symmetric implies ( Y, a(Y)) 
integral (1) follows 

- 0; from the expression of energy 

[ y ] 2  _ 2h  # 

2 lxl 

Therefore 

(jo U( Y, X),A> = 
X 

( X , a ( r ) )  + (I r[ 2 X -  ( Y, X )  Y -  [LI]x [ ,b). 

This expression has an especially simple form in a three-dimensional case 

- ( X , a ( Y ) )  + ([Y, [X, Y ] ] -  pXo, b). 

It is well-known (see, e.g. [2]) that for a three-dimensional skew-symmetric matrix a 
there exists a vector co such that for all Y the equality a(Y) = [co, Y] takes place. In 
accordance with this - (X, a(Y)) = (co, [X, Y]). 
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The pair of vectors c , f e  R 3 may be identified with an element of the 
J *  defining the action (c, f )  on 4 x 4-matrices (a 

,4= e J .  
- x b *  0 

(a is skew-symmetric) in the following manner 

Lie co-algebra 

<(c,f),A> = (c, o9> + <f, b>, 

where vector co is constructed in a standard way proceeding from matrix a. 
As we have just seen above, Smale's interpretation of the Noether theorem implies 

that the pair consisting of the angular momentum vector [X, Y] and the Laplace 
vector [ Y, [X, Y]] - pX o and identified with an element of J~* is the first integral of the 
Kepler problem. 

It should be noted that the pair 
different (Y, X) belongs, in general, to 
co-algebra J *  

of vectors ([X, Y], [Y,[X, Y]]-pXo)  with 
different Lie co-algebras J * .  Belonging to 

2h is determined, Of course, by the value of the energy constant 

h = l Y !  2 P 
2 IX[" 

Using manifolds X ~  with the metric g~ allows us to give a simple geometric inter- 
pretation to the eccentric anomalies E and H. Namely, the following proposition is true: 
PROPOSITION. Geodesic parameter l on the manifold JV+-2h with the metric g~ in case 
of  h < 0 coincides with the eccentric anomaly E, and in case h > 0 with its analogue H. 

Proof On the surface SIu I (J_g~) let us choose an arbitrary point s moved by the 
geodesic flow r  The speed magnitude of motion of its projection n(s) in ~r is 

d~z(q~'(s)) 

dr" 
0 

I.I. 

The speed magnitude of motion of the image of n(s) under isometry I and homothety 
is 

d[(~ ~ I~ ~z) (q~*(s))] 

dr, J01 = 4 1 2 h i  

Hence, keeping in mind that the time r" is related to physical time t as 

1 1 
dr" = dt = dt 

"IQi /~r 

we obtain the relation between the time t and geodesic parameter l on ./V~ in the metric 

gl 

x/12h[ 
dl = sign # dt.  

r 
(15) 
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From the Kepler equations relating time with eccentric anomaly E in the elliptic 
case and its analogue H in the hyperbolic one 

and also 

x/!~ ( t -  T) ~/[P[' ( t -  T), e sh H -  H = [a-~- 7- E -  e sin E = 1a13/2 

r r 

la [ 1 cos E, la I = e ch H 1, a 
/z 

2h 

it follows that 

(1 - e cos E) 

and, therefore, 

dE x/]p I 

dt lal (e c h H -  1) 
d H  ~/IPl 
dt [al 3/2 

Thus 

r dE 41.1 r d H  ~/[Pl 

lal dt = la l  ~ '  lal dt = lal ~/~" 

d E -  x/[2h] dt, d H =  x/i2h[ dt. (16) 
r r 

Comparing (15) and (16) we see that the proposition is true. 

2. Structural Stability of Hyperbolic Keplerian Motions 

In Section 1 we have proved that the phase flow of the Kepler problem on an iso- 
energetic surface with h > 0 is trajectorily equivalent to the geodesic flow in Loba- 
chevskian space. The same turns out to be true in case of a perturbed Kepler problem 
with a Hamiltonian 

t / ( y ,  x )  = I 
= Ixl 

+ K ( Y , X ) ,  

where perturbation K decreases at infinity rapidly enough. The crucial fact here is that 
the geodesic flow in Lobachevskian space is an Anosov flow and, therefore, it is struc- 
turally stable. A suitable version of the theorem on structural stability is proved in [4]. 
Before formulating it, we shall' provide the phase space S = $1 (.//[+) of the geodesic 
flow with Riemannian structure. 

Let us introduce the metric G on T~? +, assuming vertical and horizontal subspaces 
[5] in TTJ/~ + orthogonal and inducing into them the metric from metric 0, respectively, 
by inclusion and projection. The metric on S - a  natural metric of the submanifold 
of the T J/{ + will be denoted by G also. 
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By V we denote restriction to S of the spray associated with metric ~, i.e. the vector 
field which determines the geodesic flow. 

THEOREM 1. Let ~,-1(2) (S) be the space of  C2-smooth vector fields Won S, boundedin 
the metric G and also having bounded covariant differentials V W and V 2 Wo Let 

]] Wl], = sup {I W(s)]6, I(VW)(s)IG} 
seS  

be the norm in X a(2). Then the vector field V is structurally stable in the class wa(2), i.e. 
for any W~X a(2), ca-close to V, there exists a homeomorphism u: S ~ S C~ 
identity and transferring the trajectories of  vector field V into the trajectories of  W. 

In Section 1 we have seen that in order to regularize a phase flow of the Hamiltonian 
Ho on an isoenergetic surface Ho = h > 0 it suffices to pass to the coordinates p, q and 
to the Hamiltonian 

l *  i -  ' ~r  o 

Fo: (p,q) ~--~ (P, Q) ~--~ (Y, X ) - ~  R, 

where/4o = I([XI(Ho - h) + 1) 2. From (6) it follows that [XI 2 = IP141q12 and, therefore, 

1 ( 1 - 2 h i p [ 2 )  2 
Fo(p,q ) = -2 [q[Z -2 

To regularize a perturbed phase flow the same procedure 
substituting H for Ho, which will result in 

F(p,q) = ~ Iql ! - I z 
2 

( 2 h  1 -  [p[2 ( p  ,P, ) )z .  • 1 + [p l2g  , : iz,  2 ( p , q ) p -  [pl2q 

(17) 

should be undertaken, 

Hence it is clear that a perturbed phase flow can be regularized if the function 

P k(p,q) 
\ 

2(p,q)p  - [ p l  q) 
neighbourhood of a completed extends up to a smooth one onto 

F(p, q) = �89 If, say, K has a form 

a 

(18) 

hypersurface 

K ( r ,  X) = 
IX I , (19) 

where ~b is a function smooth in the whole E", then k(p,q), being equal to 

k(p,q) Ip[2 ~(2(p ,  q} - 
[p[Z [q[ 

q) ( b ( 2 ( p , q ) p  - Ip] 2 q) 

Iql 
can be extended up to the smooth one, if ~b is sufficiently small, since, as can be easily 
demonstrated, the value Iql is, in this case, separated from zero on the surface F = �89 
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THEOREM 2. Let h > 0 and let K have the f o rm  (I9). I f  the function ~ e  C 3 ( ~ ' ) f o r  a 

certain a which, in general, depends on h satisfies the inequalities 

[~[ < e, < • m i n  IX[ 1 

(93(/) 

OX 3 
{' } < const min ]X]3, 1 

c~z~ 
' 0X 2 

{' } < e m i n  I X[--- 5 , 1 , (20) 

then phase f lows on regularized isoenergetic surfaces which correspond to Ho = h and 

H -- h are trajectorily equivalent. 

The trajectories connected by conjugative homeomorphism have the same impulses Y 

at + c~. 

Proo f  In T*~+Zh\{zero_ section} consider two Hamiltonian vector fields" an 

unperturbed one, with a Hamiltonian Fo, and a perturbed one, with a Hamiltonian F. 

Each of them interests us for the most part on the level surface of its Hamiltonian with 

the value �89 i.e. respectively on F0 = ~.' Our aim is to find the mapping of the unperturbed 

surface onto the perturbed one, which transfers trajectories of one Hamiltonian field 

into those of the other one. Here it seems pertinent to make use of the theorem on 

structural stability of a geodesic flow (Theorem 1), and to this effect we map onto S both 

surfaces with vector fields defined on them. First let us map {F = �89 onto {Fo = 1} by 

means of 

2 )) 
H:(p ,q)~  , , (1 + 1 - 2h [p[ 2k (p 'q )  q " 

(The form of this mapping suggests itself when comparing (17) and (18).) Further let 

us map onto S by means of (7) the surface F0 = �89 with two vector fields already defined 

on it. Then, because of diagram (5) being commutative, from the unperturbed 

Hamiltonian vector field we obtain on S the field V determining the geodesic flow. Let 

us denote by W the field on S obtained from the perturbed Hamiltonian field. The 

difference W -  V will be denoted by A. In this way, 

= gb, r l ,  

ar  1 
~q 

OF 

and i aF\ 
c3q 

\ 

v) 
@ /n(p,q) / 

(21) 

(p is a coordinate and q is an impulse). The fact that V and W are actually defined not 

only on the surface S but also in its neighbourhood can significantly simplify veri- 

fication of Theorem 1 conditions if the following lemma is used. 
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LEMMA 1. Let V be a covariant differential in the manifold T, ff + defined by the metric 
G, V' - a covariant differential in S defined by the metric GIs; then for any smooth vector 

field W defined in the neohbourhood of  S and tangential to S 

IIV'WIIc ~ IIVWIl~, IIV'ZWIl~ ~ IlVZWIl~ + IIVWIIc + II WIl~. 

The proof is sketched in [4]. 
Estimates, entering the conditions of Theorem 

and A, internal with respect to S, due to lemma, 
estimates for covariant differentials, external with respect to 
with the estimate of C~ of the field A, are 

1, for covariant differentials of W 
may be replaced by corresponding 

S. These latter, together 

sup{[a(e,~)lG: (p,~) ~S} < C1 e, 

sup{l(vA).,,e)(z)[~: (p, r  ~ r (~ ,e)T~+; IZ[~  = 1 }  < C l e ,  

sup{[(V 2 W)(p,r U)IG: (p, ~) ~ S ;Z ,  U ~ T(p,~)T~//2 + ; 

Izlo- l vio-- < 
(estimate of VW follows from estimate of VA and from V~rl(2)). Here 

((VA) (Z)) m OAmzj -Jr- Z I"U" A izJ 
= ~.~ ~x ) ~,j ' 

(22) 

((v 2 w ) ( z ,  u))" 
~2 W m m 

= ~ ZJUi + ~ arit 
i . j  OX i OX j , l ~ X  j" �9 . j ~  

w I z J  u i .JI - 

OW t aW s 
m ~ z j u  i + + ~ r~, ~ z J v '  + Z rjs ax' 

i , j  l OX j i , j ,s  

+ Z r;%r ,w'zJu'- X 
i , j  ,s,l i ,j  .s 

O W  m 
F~ Ox ~ ZJU i 

- ~ F~.i F~ml W ' Z  JU i (23) 
i , j , s , l  

(by x j we mean pj whenj  _< n and ~j_, when j > n). 
/ / l  Estimates relating to the metric tensor G and coefficients Fij are given by a lemma 

whose proof is omitted. 
Formulating the lemma and further on we use the notation ~0 = ~0(p) = (1 + zip[2)/2. 

LEMMA 2. The metric tensor G of  the manifold T/ i f  + at the points of  S obeys the 
estimate 

C-  C+ ]2 Izl  < G(z,z) < Iz �9 q) 

On S Christoffel's symbols of  the Riemannian connection 
their derivatives have asymptotics 

(24) 

V of the manifold TJ/~ + and 
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F~ = O , Ox---- 7 = O (25) 

when Ipl tends to 1 / 4 -  ~. 
In this fashion, it only remains to estimate the magnitude of coordinates of W and A 

and their derivatives with respect to coordinates p, ~ of the manifold T J//+ a t  the points 
of S. With this end in view, we estimate derivatives with respect to coordinates p, q 
and use the formulas for the change of coordinates for derivatives to estimate (p, ~)- 
derivatives. Let us write out explicit formulas for (p, ~)-coordinates of the fields W 
and A as functions of coordinates p, q. 

For brevity we also denote 

2 k 
= ~(p,q)= l + I + z,p,211 k(p ,q)= I + qg--" 

In these notations 

Fo = �89 [q[2 ~o 2, F = �89 [q[ '-, 

17 :(p, q) ~ (p, aq), ~ :  (p, q)~ ~ (p, q92q). 

And, as one can easily see, 

[ cOFo\ / q~2~q \ 
0q 

N (p ,q ) 

Oq 

OF 

m 

1 7 I ,  - -  

m m  
u 

\ -  xlql 
/ r 

\ -  ~lq[ 2 0~2qgP --[q[' 

/id 0 '~ /id 0 \ 
,q, 
9,  = 

aoc a~ 
q |  ~id + q |  ap ~ q  \2zqgq | p ~p2 id/ �9 

(26) 

These formulas combined with (21) testify to the fact that (p, ~)-coordinates of the 
vector fields W and A are polynomial (in a generalized sense) combinations of values 

q~, ~, _ ,  m ,  p, q. (27) 
cop aq 

The following lemma is useful for estimating them. 
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LEMMA 3. For the function k(p,  q) and its derivatives on the surface F = -} the following 

asymptotics take place 

cgi+J k c3i+J k 
_ eO(tpj+ 1), (i + j _< 2); 

8piSq J 8piSq j = O(q) j+  ~) ( i  + j  = 3). 

The proof of the lemma is based upon the estimates (20) and the inequality 

1 1 1 
< Iql < 2 - ,  2q0 q) 

(p,q) ~ {F = -} } 

a n d  is o f  n o  s p e c i a l  i n t e r e s t .  

The values (27) have the asymptotics 

go - -  O ( g o ) ,  ~x - -  0 ( 1 ) ,  
@ 

= ~ 0  ' 8q = ~ 0 ( ( o ) ,  p = 0 ( 1 ) ,  q 0 . ( 2 8 )  

It is not difficult to see (using, in particular, Lemma 3) that the following remark is true 

for the values (27). 
Remark .  Differentiating with respect to p decreases the order of the value with respect 

to q9 by no more than 1, and differentiating with respect to q increases it by no less than 1. 
This is equally true of (p, ~)-coordinates of the fields W and A as polynomial com- 

binations of the values (27). 
From (26) and (28) it is easy to obtain 

w = o(~p),  A = ~o(q , )  (29) 

and, according to the remark 

8A 8A 
= e O ( 1 ) ,  = eO(qoZ), ( 3 0 )  

c3p 8q 

OW OW 
= O ( 1 ) ,  = O(q02), 

ap Op 

c3p2 = 0 , c3pc3q O(q)), 8q 2 
= O(q~3). (31) 

Let us introduce the notations f = O ~  o/7, e = f - 1 .  The derivatives with 
p, ~ in which we are interested are expressed by the formulas 

respect to 

OA OA 8e 8 W , O W 8e 

8(p, ~) = b(p,q) a(p, ~)' O(p, ~) O(p, q) O(p, ~) (32)  

( '  ) oG, o ' - 

- a (p ,q ) '0 (p ,  ~)J{8(p,q) 2 8(p, ~) 
~e  

' a(p, ~) )} (33) 

(the derivatives with respect to p, ~ are taken at the points of S). 
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It is not difficult to write out component-wise asymptotic for f ,  and e,: 

f ,  = y .  or/ ,  = 

fid 0 

0(1) O(go z) 

id o 1 

o(1) 

id 0 

O(1) O(go z) 

~, = n ; ' o # ~ ,  = 

[id 0 I id 0 

m 

lid 0 1 

m 

(34) 

(35) 

From the asymptotics (30) and (35) and the formula (32), asymptotics for 8A/8(p, ~) 
follow immediately: 

8A 8A 8e 
8(p, ~) 8(p, q) 8(p, ~) 

and, in a similar manner, 

/eO(1) 

i 

eO(1) ~0(~o 21 

id 0 ! 

= eO(1) 

(36) 

8W 8W ge 
= �9 "=  0 (1 )  (37) 

8(p, ~) 8(p,q) 8(p, ~) 

From the component-wise asymptotics (34) and the remark we get estimates analogous 
to (311: 

3, 
Op2 = 0 ' 8 7 ~  8-~ = O(qo (38t 

(the estimates are weakened here and there). The similarity of (31) and (38) implies 
that of estimates for the expressions in curly brackets entering (33). Due to a special 
form of e, estimation of these expressions becomes a bit easier: 

a(F,q) ~ ~(~,o  ' 8 ~ , o  - 

@2 + 2  a~f 
8paq (11 -&-p I] 8eq +-i-( ])+11~ aeq 2 

which, with regard to (35) and (38), allows us to write out the asymptotics of the left 
hand side of this inequality 
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a2f ( d e ' d e  " ) = 0 ( ~ ) .  

As a matter of fact, estimating of (~2 W/a(p, ~)2 is over: 

= o . (39) 

[(VA)(Z)I ~ and [(VzW)(Z,U)IG. From the condition We still have to estimate 
Izlo - I ulo - 1 a n d  t h e  first inequality of (24) follows Izl, I u !  < Taking this into 
account, as well as (25), (29), (36), (37), and (39) we infer from (22) and (23) the 
asymptotics 

(VA) (Z) = ~0(~o), 

(V 2 W)(Z, U ) =  0(~o). 

Adding here (29) and using the second inequality of (24), we obtain 

= 

[(vA) (z)[~ = ~o(1), 

[(V 2 W) (Z, U)[G = 0(1). 

Thus, we have verified the fulfilment of Theorem 1 conditions. 
/ / - l o  ~ o  u o ~ :  {Fo = �89 ) {Fo = �89 transfers trajectories of the 
(OFo/c3q, -(c3Fo/c3p) into those of the field (c3F/Oq, 

Homeomorphism 
Hamiltonian field 

-(gF/9p). Theorem 2 is proved. 
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