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Abstract. Let N ~ _ 2 mass points (primaries) move on a collinear solution of relative equilibrium of 
the N-body problem; i.e. suitably fixed on a uniformly rotating straight line. Consider the motion 
of a massless particle in the gravitational field of these primaries with arbitrarily given masses. An 
existence proof for periodic solutions (i.e. closed trajectories in a rotating coordinate system) will be 
given, in which the particle performs nearly keplerian elliptic motions about (and close to) any one 
of the primaries. 

I. Introduction 

We consider the planar N-body problem for N > 2 mass points with given masses 

m, > 0 and inertial position vectors qk, (k = 1, . . . ,  N). We identify the plane of motion 

with the ordinary complex plane. Let the real numbers el, . . . ,  eN denote the positions 

of a collinear central configuration belonging to the given masses; i.e. (el, . . . ,  eN) is 

a solution of the system of equations 

N 

~ *  m,F(en - ek) = --ek (real), (k = 1, 
/1--1 

. . . ,  N); F(z)  - z[z1-3.  (1) 

(A star on a summation sign means that an undefined term; i.e. here the one for n = k, 

is to be deleted.) One can show (Moulton (1910), whose derivation however is not quite 

rigorous; or Smale (1970)) that the number of solutions of (1) is positive and finite for 

any choice of the masses; in particular, this number is N!, if ml, . . - ,  mN have different 

values. We take from the keplerian motions q = q(t) with 0 = - F ( q )  the circular one 

to form a collinear homographic solution 

qk = ekq(t), (k = 1 , . . . ,  N) ,  q(t)  = e i' (2) 

of the N-body problem 

N 

iJ, = ~'.* m , F ( q ,  --qk), (k = 1, . . . ,  N), (" = O/dt). 
n = l  

(3) 

Let p denote the inertial position vector of a particle of mass zero, which moves in the 
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gravitational field of the N primaries, without disturbing their motion given by (2). 
equation of motion for this (N + 1)th body is 

The 

N 

= ~. mkF(qk  - P), 
k = l  

(N > 2) (4) 

and we call (4) the 'circular collinear restricted n-body problem', n = N + 1. 
If p is near qN, say, its motion can be approximated by a Kepler-problem, and the 

possibility of periodic motions might be expected. If one is not content with nearly 
circular motions, but wants motions which are close to elliptic orbits with prescribed 
eccentricity, then the standard symmetry of the solution with respect to the rotating 
straight line carrying the N primaries, is the characteristic property to look for. This is 
familiar from the restricted 3-body problem, which is the special case of (4) with 
N = 2 .  

The goal of this paper is to prove the actual existence of such 'relative periodic' 
solutions of e l l ip t i c  type of (4), which close in a rotating coordinate system after many 
revolutions of p about qN and have periods close to 2 n m ,  where m is any prescribed 
natural number. We remark that the masses of the primaries are given in advance and 
that, for instance, ms might be much smaller than the masses of the other bodies acting 
on p. Thus, even when N = 2, the existence of our solutionscannot be argued simply by 
invoking the implicit-function theorem with a 'sufficiently small' mass parameter. 
Our result includes (for N = 2) the long-periodic solutions of Conley (1963); and the 
ones derived in Arenstorf (1966), but now with a nicer proof. 

The existence of nearly c i rcu lar  motions ofp about qN has been established by Perron 
(1937), though not for (4) but even for the corresponding (N + 1)-body problem where 
p has a positive mass. His method (which uses the period, or equivalently, the radius 
of the orbit as a small parameter) is not capable of giving elliptic solutions also (whose 
period cannot be small). 

2. Transformation of the Equations of Motion 

We introduce a scaled relative position vector x in a rotating coordinate system by 

x = f l (p  - q N ) e -  ~', fl = m S  1/3 > O. 

Since we chose not to order the e, of (1) in any particular way, qN here can indicate any 
one of the collinear primaries. Then, by (2), (3) and (4) 

/~ + 2 i ~ -  x =  
N - 1  

- F ( x )  + 18 ~ mk[F(ek  -- ely -- f l - l x )  -- F(ek  -- eN)]. 
k = l  

(5) 

Using (1) this is equivalent to the Hamiltonian system 

xi = Gyj, .~j = -Gxj, (j = 1, 2); x = x l + i x z ,  y = Y l + iYz;  

a = �89 [yl2 + x 2 Y l  - xaY2  - I x l - 1  _ u - G(x ,  y) ,  

(6) 

(6a) 
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N - 1  

U= fleNxl + f12 
k = l  

mk(leN--e +B- xl 

The constant terms in (6b) have been added so that U = 
then in second order, since also grad U = 0 at x = 0, by (1) 

- - 

U(x) vanishes at x 
. Hence 

(6b) 

= 0, and 

Iv(x)l <_ lxl 2 for Ixl < co, (7) 

where Co and cl are suitable constants depending only on the given central configuration. 
To treat elliptic motion o f p  about  qN; i,e. 

(mod2n)  and 131,132 instead of x and y by 
formation 

of x, introduce Delaunay variables ul, u2 
the (time-independent) canonical trans- 

X = 131[Vl(COS 1: - -  8) + iv 2 sin z]e i"~, y 

~-  i13 2 C O S  "c]e iu~, 
= r - l [  - v l  s i n  v + 

(8a) 

e = (1 - v-(Zv2) 1/2 > 0, r = v2(1 - e c o s  v), 

, - e s i n  z = u l ,  (8b) 

where the last (Kepler's) equation is to be solved for z = z(ul, 
substituted into the other equations. (8) is generated by 

e) and the solution to be 

Ixl 

Y j = Wxj, uj = Wvj; W = v2 arc x + f [ ( r -  r l ) ( rz  

rl,2 = 13~(1 -T- e); '1 

_ 

d r  

1)1 r 

and implies, in particular, 

2 Ixl- lyl - -  v vz, x2Yl 
r 

- -  x l Y  2 - -  I m  xy = u 132 �9 

Thus (8) transforms (6) into 

fij = Ho,, bj = - H . , ,  ( j =  1, 2); H =  - � 8 9  -2 - Vz - U, (9) 

where U is given in (6b), but with x = x(u, v) substituted from (8). 
Since (9), being autonomous,  conserves energy, we can eliminate time t; for instance, 

by introducing the (fast) angle ul as new independent variable along the solutions to be 

considered. On the latter Ix I is small;i .e. 131 is small and thus fi 1 > 0 by (9). We rename 

�9 ' d / d s .  U 1 - -  S~ U 2 "-- U ,  132 ~ 13, "-" (10)  

Then 

U p _--- g v  ' 131 . _  - K . ;  vl = - K ,  t = f  H ~  1 ds 

8O 

( l l a )  
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is equivalent to (9), where K is to be determined by solving for - v 

n ( u l , u 2 ,  vl, v2) = hec'vx = - K ( u l ,  u2, v2;h ) ( l i b )  

with a large negative constant h, and substituting from (10). 

3. Periodicity Conditions for Elliptic Motions 

We consider the equations of motion in the form (6). As in the restricted three-body 
problem, the symmetry conditions 

x ( t )  = x ( t ) ,  y ( t )  = - y ( t )  at t = 0 and t = tx > 0 (12) 

imply that the solution z( t)  = (x(t), y( t ) )  is a periodic function of t with period T = 2t~ ; 

(the bar means complex conjugation). For, ( x ( T  - t), - y ( T  - t)) is a solution of(6) also, 

which agrees with z( t )  at t = tl, by (12), hence for all t, which implies z (T )  = z(0), again 

by(12),  and thus the statement. By (8) the conditions (12) translate into 

U 1 ~-~ U 2 ~ 0 m o d  7r a t  t = 0 and t = tl (13) 

for solutions of (9), since Kepler's equation in (8b) yields z 

If  one replaces U in (6) and in (9) by zero, one obtains 

about  qN) in a rotating coordinate system; i.e. 

= u l, if u l = kn (k integer). 
the Kepler-problem (for p 

/~ 1 "-" I ) 1 3 ,  /~2 = - -  1, ~31 - 0, v2 - 0 .  (14) 

This has the particular solutions uj = u*(t),  v j =  v*(t) given by 

ul' = a-3/2 t, u~ = - t ,  v* = a 1/2 > 0, v~ = b*; 

with 

(15a) 

a = a* = Im,l c,I b* = (m*lk*)  '/3 (1 - /3 .2) , /2 ,  0 </3* < 1, (15b) 

where m* > 0 a n d  k* ~ 0 are relatively prime integers and sng b* = sng k*. The con- 
stants a*,b* have been chosen so that x = x*( t ; /3* ,k* ,m*)  given by 

x * =  a*(cos z - / 3 *  __ ix/1 - -  /3 * 2  sin z)e-it,  t = 
m *  

I I 'k*' ('c - /3* sin'r) (16a) 

according to (8), ( +  = sgn k*) describes a rotating elliptic motion of semi-major axis 

a = a* and eccentricity/3", closing after k* - m* revolutions about  x = 0 as focus, with 
period T* = 2rim* (in t). 

In order that we can use this motion as an approximat ion to analogous solutions of 

(6) and (9), we require that x = x* satisfies (7) for all t. Therefore we choose [lc* I 
sufficiently large compared to m*. Then 

T* = 2rcm*, h* - 
- 1  

2a* 
b* ,,~ 0; (16b) 
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i.e. the period can be chosen arbitrarily large, while the 'energy' H = h* must be chosen 
sufficiently large negative. Now, the functions u*(t) in (15a) satisfy the periodicity 
conditions (13) with tl = �89 T*. Therefore we require that the analogous solution of (9), 
to be derived in the following, satisfies the specific periodicity conditions 

Ul = u2 = 0 at  t = 0;  ux = ~ [k*[, Uz = - ~ z m *  at t = tl. (17) 

Here tl and the initial values ofv~ and v2 are to be determined so as to satisfy the second 
half of these equations. Finally, let 

u(s ; h), v(s ; h) with u(0; h) = 0, v(0; h) = b* (18) 

denote the solution of (11) with the indicated initial values, where b* is from (15b). 
Since (11) and (9) are equivalent, (17) after fixing v2 initially at b* becomes equivalent to 

.Ik*l 

u0z [k'l; h) = -nm*,  t a - f  H~I  ds 

0 

(19) 

using the notation from (10). The first equation here is to be solved for h near h*; the 
second then yields the half-period. 

4.  M e t h o d  for  S o l v i n g  the P e r i o d i c i t y  C o n d i t i o n  

We want to show that the first equation in (19) can be satisfied by proper choice of h. 
By (1 lb) this is equivalent to determining the initial value of va, since the initial values 
of ul, u2 and v2 are already given. The apparent loss of a parameter when fixing v2 
initially at b* is unessential, since e* in (15b) can be considered as a free parameter. 

We observe that the equation to be solved for h in (19) does not depend on any 
parameter (besides h), so that the customary method of solution by the ordinary 
implicit-function theorem (which requires knowledge of a solution for a special value 
of that parameter already ancl non-vanishing of a determinant at that solution) is not 
now applicable. Instead, we shall guarantee the existence of a solution by applying the 
following special case of a general theorem first stated and proved in Arenstorf (1968). 

T H E O R E M  : Let f (h)  and g(h) be real-valued differentiable function o f  the real variable 
h in [h-h*[ < p, andf '(h*) # 0 for some real h*, (where the prime now denotes the deriva- 
tive with respect to h). Let 9 be 'close' to f ;  i.e. 

I#(h*) - f ( h * ) [  < ?p [if(h*)], (0 < ? < �89 p > O) (20a) 

and 

[#'(h) - i f (h*)[  < ? [if(h*)[ for [h - h*[ < p. 

Then there exists a solution h =  hoo o f  g(h) = f(h*) with [hoo - h*[ < p .  

(20b) 
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Proof .  Define recursively for n = 1, 2, . . . .  

h l = h*, h,,+ 1 = S(h,,) with S(h)  = h - [g(h) - f ( h * ) ] / f ' ( h * ) .  (21) 

Then, by the mean-value theorem and (20b) 

Is(x) - S(y)[ < e I x - y] for I x --h*[ < p, ] y -  h*] < p; 

i.e. S is a local contraction. Hence by (21), as seen by induction over n, 

l b . -  h* I < p, Ih.+~ - h. I < p~", (n > 1) 

using (20a) for the start. This yields 

n + k - 1  

[h.+~ - h.[ < ~] [hj+~ - hi[ < 2p?",  (k,  n > 1). 
j = n  

Thus lim hk = h oo exists (in the stated domain) and h oo = S(h oo) by continuity of S. This 
implies the statement of the theorem. We observe that this existence proof is construc- 
tive. 

r ' .  

In order to apply this theorem with g(h)  = u(n Ik*l;h) to the first equation in (19) 
we have to find another functionf(h) and suitable values h*, ~ and p so that g is close to 
f in the above sense. Therefore we return to the equations of motion (11), which 
together with (18) determine the function g(h).  Motivated by the approximations leading 
to (16), we replace H in (11 b) and K in (11) by 

H ~ = - �89 v7 2 - v2 and K ~ = - [ -  2(v + h)] - 1 / 2  = K ~  (22) 

where h is a large negative parameter, and we introduce the solutions of the Hamiltonian 
system 

u' = K ~ v' = - K ~  (u, v) = (~,  r/) at  s = 0; (23a) 

i .e .  

U --  ~ - -  S [ - -  2(/7 + h)]  - 3 / 2  = ~ ( s ;  ~, r/; h), v = r/. 

For later application we remark that the transformation (~,r/) 
canonical. Now we define 

(23b) 

, (u,v) given by (23b) is 

f ( h )  = ~b(Tr [k*l; 0, b*; h), g(h) = u(rc Ik*l; h) 

having chosen the initial values for (23) as in (18), Then, 
(16b) and (15b) we havef(h*) = 
rewritten with (24) as 

(24) 

by (23b), and with h* from 

-nm*.  Thus, the periodicity condition in (19) can be 

To guarantee the existence of a solution h of this equation, it remains to verify that the 

g(h)  = f(h*). (25) 
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functions f and 9 of (24) satisfy the assumptions (20a, b) of the existence theorem with 
suitable y and p. To begin with we have by (24), (23b), (16b) and (15b) 

and 

if 

f ' ( h )  = - 3re ]k*l [ -  2(b* + h)] -s/z, i f ( h * )  = - 3ream* r O, (26) 

[f'(h) - f ' ( h * ) [  < 15rt Ik*l P[ a - ~  - 2p]- 7/2 < 180rcm,a 2 p,  

In order to estimate g(h)  

(27) 

I h - h*[ < p and 0 < ap < � 8 8  = (28) 

- f(h) and its derivative by h we need more precise information 
about the solutions of (11 a, b), which we shall now derive. 

We define 

5. Estimates for Solutions of the Restricted n-Body Problem 

R = K(s ,  dp, r/;h) - K~ h) = R(s ,  ~, r/;h) (29) 

with K from (11 b) and K ~ from (22), having substituted ~b 
u and r /for  v. The  canonical transformation given in (23b) transforms the canonical 
equations of the restricted (N + 1)-body problem in (11 a) to 

--- ~ - -  S [ - -  2(/'/ -1- h ) ] - 3 / 2  q_ 

r 1 6 2  at s = 0 .  

By (24) and (23b) we are interested in the difference 

Z = u ( s ;h )  - tk(s; 0, b*;h) 

+ s [ -  2(b* + h)]-3/2, 

= ~(s;h), r /=  r/(s;h) with ~(0;h) = 0, r/(0;h) = b* 

where 

= ~b(s;~,r/;h) from (23b) for 

Differentiating in (30) by h, we obtain, with (31 b) 

~'h = ~hR,tr q- rlhRnn -I- Rnh;  ~h(0; h) = 0, 

rl~ --  - - ~ h R s  --  rihRr --  Rch;  r/h(0; h ) -- 0 ,  

where 

Z h ( s ; h )  = ~h -- 3S[-- 2(r /+ h ) ] - s / 2 ( q h +  1) + 3S[-- 2(b*+ h)] -5/2 . (32)  

(31a) 

(31b) 

in (18). In 

= rc Ik*l, 

(33) ~ 

' - d /ds ,  and a variable as index denotes the corresponding partial derivative. 

denotes the solution of (30) with the indicated initial values, as required 
particular, we need Z = Z ( s ; h )  and its partial derivative Zh(S; h) (by h) at s 
for verification of (20a, b). By (31) 

(30) 
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Thus we have to integrate (30) and (33) over a long interval, 0 < s < rt Ik*l, since [k*[ 
must be sufficiently large to keep the perturbations small, as we already remarked for 

(16b). 
We need estimates for the partial derivatives of R occurring in (30) and (33). Since 

only the magnitude, measured in powers of the small parameter 6 = a 1/2 > 0 matters, 
we will use the familiar 0-symbol: 

f = 0 ( 6 " )  means [f]<_cS" with = Im,/ ,l < 1 

for any function f, where c is a constant which may depe, nd on m* but not on k*, and 
may change from one application to another. We now restrict the variables occuring in 
R to be real and to satisfy 

0 s I *l, In - b*[ < 6~, [h - h*[ < p;46(p + ~2)  < l (34) 

thus assuring (28), and we observe that ~ like u 

(16b) and (22) 
= u2 is an angular variable. Then, with 

O ( l  - - ~ )  ~ - K~ -- [ - 2 ( h  ..~-r])] -1 /2  ~ O ( 1 - . [ - - ~ ) .  (35) 

By (11 b) and (9), and using the notation of (10), we can determine 

K =  K(s,u,v;h) = -vx  from v 1 = [ -  2(h + v + U)]-1/2 > 0 (36) 

with U = U(x) of (6b) and x = x(ul, u2, vl, v2) of (8), by iteration. Here 

[U(x)[ < 4cxv 4 for Ix[ < < Co (37) 

by (7); hence (36) with v = r/, and (35) yield vl < 26, and more precisely 

K(s, u, r/; h) = K~ h) [1 - 2OK~ - 1/2 __ KO(r/; h) + 0(67), (38) 

if 6 is sufficiently small (which is to mean that 6 is smaller than some constructable 
constant, which only for brevity we do not exhibit). Also, by the foregoing and (15b) 
and then by (8b), since vl = - K  and v2 = v = q, 

[V 1 __ ~[ < ~ 2  0201  1 ._ _[.. (1 - 8*2) 1/2 -[- 0(r 0 < 81 < 8 < 82 < 1, (39) 

where el and 8 2 depend only on 8*; if 6 is sufficiently small. Now, by (29) and (38) 

R __. 

U 

- -  [-- 

0 

2(h + q + z)] -3 /2  dz, 

= X 1 -JI- ix  2 . 

u = U ( x ) ,  x = x ( s ,  cb, - K ,  ~) = 

(40) 

By (6b) and (37) U has a convergent power series expansion beginning with second 
order terms in xl and x2, and by (8) and (39) xl and x2 are real-analytic functions of 
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Ul, U2, 1)1, I)2 there. By (36) then K is real-analytic in its four variables, and with ~b from 
(23b) the same holds for R, on the domain described by (34). Thus all partial derivatives 
of R are finite there, and can be calculated from (40). By (8) and (39) 

"17~ - -  
sin z 

- -  8 COS "17 
= 0(1),  8o, = e -~  v-i 3 v~ = 0 (5 -~) ,  

~ = _ ~ -  1 v-iZ v2 = 0 ( 6 - ~ ) ,  

thus 

x,  x . . ,  x . ,  x .  = 0(62);  x . , ,  x . .  = 0(6). (41) 

Similarly one recognizes that another partial differentiation in (41) by v 1 or v2 decreases 
the order (in 6) by one, while differentiation by u2 does not change the order. Also, by 
(23b), (34) and (35) 

q~r = 1, qS. = q~h = 0(62), q~hh = 0(64); Kh ~ = 0(6z), KOnh = 0(6S) �9 (42) 

In (40) we can replace K by K ~ + R according to (29), thus obtaining an implicit 
equation for R (which again can be solved by iteration). Differentiating this equation 
by ~,r/or h we get, by (36) with (23b) 

U 

R e = K a u ' x e ,  Re = -3f t- 2(h + r /+  Z)] -5/2 dz + K3U ' xr 

( ( = r /  or h), o (43a) 

x e = x . . -  xvt Re, xr = xu2 ~bh-- xv, (K ~ + R;) + xv2 q;; U' = grad U. (43b) 

Solving for the 

u ' -  0(Ixl) 
derivatives 

Re = 0(67),  R .  = 

of R we get with (36), (37), (39), (41), (42) and since 

0(t~ 9) ~t. 0 (~5)0( t~  4 .~. t~ 4 .11_ t~) --" 0 ( ~ 6 ) ,  R h - "  0(t~9) .  (44) 

Differentiating partially in (43a) we get 

Rr = 3K2K~U'xr + K3x~U"xr + KaU'xr (~ = ~,r I or h), (45a) 

U 

= - 15f t -  2(h + r /+  z)]-7/2 dz + 3K 5 

0 

+ Kax~U"x. +. K3U'xqo ( (  = r/ or 

U'X~ + 3K2K~U'x~ + 

(45b) 

where the second partial derivatives of x = x(s, dp , -K  ~  R, q) can be derived from 
(43b) and will contain the first and second partial derivatives of R. Solving for the latter, 
and using (44), U" = 0(1), (35), the estimates in (37) to (42), and our remark concerning 
the second derivatives of x after (41), we obtain from (45a) 
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R~.  -- 0(~ 2 + 7 + 2 + 2) .at_ 0(63 + 2 + 0 + 2) _[_ 0(~3 + 2 + 2) 

R ~ / - - 0 ( ~  2 + 3 + 2 + 2 )  -11- 0 ( 6 3 + 1 + 0 + 2  ) --[- 0(r 3 + 2 + 1 )  

R~h = 0(~ 2 + 3 + 2 + 2 )  -Jr" 0 ( 6 3 + 4 + 0 + 2 )  -3 I- 0(63+2+4")  

= 0(6~), 
= 0(66) ,  

- -  0 ( 6 9 ) ,  (46a) 

and from (45b) 

Rrp / --0(r 11) -4- 20(65+2+1 ) _[.. 0(~ 3+1+0+1) _[_ 0(~ 3+2+0) .--0(65), 

R~lh __ 0(611) _}_ 0(~5+ 2+4.) _[_ 0(~2+ 3+ 2 + 1) ~_ 0(r +4.+ 1) _[_ 

+ 0(~ 3 + ~ + ~) = o(~s) .  (46b) 

The estimates (44) and (46a, b) hold on the domain described by (34), and R is a real- 
analytic function there (with no restriction on ~ other than being real; and p > 0 an as 
yet unspecified parameter and 6 sufficiently small). 

We can now integrate (30) to obtain the functions in (31b). Applying the method of 
successive approximations on 0 < s < s* = rc [k*[ = 0(6- 3), it follows by (44) that e'gery 
iterate (~., r/.) satisfies 

ICn(s)[ < c2 fi3, [ r /n(s)-  b* I < c~ ~" 

and thus (34); hence the solution of (30)exists on 0 < s < s* and satisfies 

~(S; h) = 0(~3),  lr/(S; h) = b* + 0(64), (on (34)). (47) 

Thus all the foregoing estimations hold along this entire solution curve also, and we 
can integrate (33) on this curve using (46). Again applying successive approximations 
we obtain, if 6 is sufficiently small, 

~h(S; h) = 0(65), qh(s; h) = 0 ( 6 6 ) ,  (on (34)). (48) 

6. Proof of the Main Result and Conclusions 

We can now show that (25) has a solution. Namely, by (24), (31), (35) and (47) 

g(h*) - f ( h * )  = Z(s* ;h*) = 0(63) + s*O(6 s+r = 0(63), 
! 

since s* = zr Ik*l - ~zm*fi- 3; and by (32) and (48), for [h - h*[ < p 

g'(h) - f ' ( h )  = Zh(s*;h) = 0(65) + s*0(65+6 + ~7+4) = 0(~5). 

By (26) and (49), since a = 62, 

[g(h*) f (h*)l . l f ' (h*)i  -~ < c,O = ?p for 7 = 6, p = c,, 

where c4 is a constant. And by (50) and (27) 

[g'(h) - f ' ( h * ) [ . [ f ' ( h * ) [  -~  < c5 ~3 + 6052p < 5 = 

= ?, for ]h - h*] < p = c , .  

(49) 

(50) 

(51) 

(52) 
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Clearly, with this choice of y and p we have now satisfied the conditions in (20a, b) and 
the last condition in (34), if ~5 is sufficiently small. Hence the existence theorem in 
Section 4 implies the above statement on solvability of the periodicity condition (25). 

We have thus proven the following result for the circular collinear restricted (N + 1)- 
body problem with arbitrarily given masses of the primaries: 

The equations of motion (in the form (5) say) admit infinitely many l-parameter 
families of periodic solutions with periods T = T(e*, k*, m*) close to 2rcm* for every 
positive integer m*. Each such solution describes motion (of the particle of zero mass) 
close to a rotating keplerian elliptic orbit (the 'generating orbit') about any one of the 
primaries, closing after k*-m* revolutions in a coordinate system rotating uniformly 
with the N primaries. The approximating elliptic generating orbits described in (16a) 
can be chosen in advance. So 5" in (0, 1) becomes the continuous family parameter, and 
the different families of periodic motions correspond to the rational numbers m*/k*, 
which determine period and winding number of the closed generating orbits in the 
rotating coordinate system (k* negative for inertially retrograde, positive for direct 
orbits). The associated periodic solutions x = x(t; e*,k*,m*) of (5) exist, if only 

where C is 

Ik*[ > C = c(5", m*), (0 < 5" < 1, m* > 0), 
7 

a constructable function of the indicated 

(53) 

parameters. Thus the 'Jacobi 
integral' G(x,y)= h with G from (6) has on these solutions large negative values 
h = h(e*, k*, m*), and the instantaneous major axis are always small. The trajectories 
are symmetric to the line carrying the primaries in the rotating coordinate system. 

We remark finally that it is possible to derive nearly circular periodic solutions of 
(5) with small period by similar means as applied in this paper. In that case the variables 
of Poincar6 instead of Delaunay are to be used; and the verification of the assumptions 
of the existence theorem in Section 4 becomes much easier than in the present case. 

Periodic motions similar to the ones described in this paper, but for the (unrestricted) 
n-body problem, will be considered in another paper. 
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