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Abstract. On the basis of expressions derived by Kozai, and new ones developed here, a detailed, 
semianalytic algorithm is presented for calculating radiation-pressure perturbations in the Keplerian 
dements. Through some simple modifications, the algorithm is also made to hold when e = 0  and/or 
i=0 .  The perturbations are obtained by summing over the sunlit segment of the satellite's orbit during 
each revolution or part thereof. The end points of this segment are evaluated numerically once per 
revolution. The effect of the inherent uncertainties in the boundaries of the Earth's shadow is dis- 
cussed. The algorithm is tested by means of numerical integration of the equations of motion and 
through comparisons with observations of the balloon satellite 1963 301:) during a 200-day interval. 

1. Introduction 

The effects of solar-radiation pressure on the motion of a spherical Earth satellite 
have been treated by a number of authors. Musen (1960), Parkinson et al. (1960), 
Kozai (1961), Cook (1962), and others concerned themselves only with long-period 
perturbations, which are obtained by averaging over the sunlit portion of the satellite's 
orbit. During this short interval, the perturbing force is assumed to be constant and 
directed away from the Sun. Musen did not take into account the Earth's shadow at 
all, while in the other treatments, the points of intersection of this shadow with the 
orbit of the satellite have been evaluated numerically. Ferraz Mello (1963), Lfila 
and Sehnal (1969), and L/da (1970), on the other hand, approximated the discon- 
tinuous shadow equation by a continuous expansion in terms of Tchebychev series or 
Fourier series. Such expansions are capable of simulating the changing force due to 
radiation pressure during several revolutions of a satellite, as well as during the tran- 
sition through the penumbral shadow. It is doubtful, however, whether this will lead 
to much of an improvement if the effect of the Earth's atmosphere on the shadow is 
not also considered, and this somewhat erratic effect probably cannot be modeled well by 
expansions covering several revolutions. The resulting theories include short-period as 
well as long-period terms. In spite of the formal elegance of these theories, for prac- 
tical applications it appears more expedient and potentially more accurate to retain 
the shadow function in its original unexpanded form and to calculate the perturbations 
on a revolution-by-revolution basis. This approach is adopted in the present treatment, 
in which we extend Kozai's work through a detailed investigation of the short-period 
as well as the long-period perturbations. Though usually small, the former pertur- 
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bations for many satellites will considerably exceed the errors of today's high-pre- 
cision satellite tracking. It is even possible that the neglect of the short-period per- 
turbations due to radiation pressure may have caused some systematic errors in earlier 
air-drag analyses that were based on moderately accurate observations of balloon 
satellites. 

2. The Equations of Motion 

In terms of the Keplerian elements, Lagrange's variational equations take the form 

d a  

dt 2na3(1 e2)-a/2FIeS(v ) sin v +  T(v) P ] ,  

( [ 1 ( a ) ] )  de = n a 2 (  1 _ e2)1/2 F S(v) sin v + T(v) cos v + - 1 
d t  e 

di 
dt = na2(1 eZ)- l /2FW r - COS U ,  

a 

sin i dO 
dt 

= naZ(1 __ e Z ) _  1/2F W r sin u, 
a 

(1) 

dco dr2 
- -  - -  COS i 

dt dt 

(1- -e2)1/2  [ 
+ na 2 F - 

e 
S(v) c o s y +  T(v)(1 + p ) s i n  v] 

dM r 
dt = n - 2na2FS(v) a 2 1/2 

( l - e )  ('dt t- cos/d_~) .  

Here, p = a(1 - e2), v is the true anomaly, u = v + co, and/zF (/z = n2a 3 = gravitational 
constant times the Earth's mass) denotes the magnitude of the radiation-pressure force 
per unit satellite mass. This force is assumed to be acting along the Sun-Earth line, 
which is taken to be parallel to the Sun-satellite line. We are thus neglecting any force 
component normal to this line that results from an aspherical shape of the satellite or 
a nonuniformly reflecting surface. Nor is reradiation from the Earth and its atmos- 
phere taken into account. Under these assumptions, we can write 

/iF = s P , (2) 
r n  

where A/m is the cross-sectional area-to-mass ratio of the satellite, P (~4.65 x 10 -5 
dyn cm-2) is the force per unit area exerted at the Earth by the Sun when its geocentric 
distance ro is equal to its mean distance ao, and s is a constant whose value lies be- 
tween 0 and 2, depending on the reflection characteristics of the satellite's surface. 
Furthermore, S(v), T(v), and W are the direction cosines of the force/ iF  along the 
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satellite's radius vector r, perpendicular to r in the orbital plane, and along the orbit 
normal,  respectively (Kozai, 1961): 

T(v)J = - c ~  2 c~ 2. sin (20 - u - ~ )  

i eICOS ) 
- -  sin2 2 sinZ 2. sin (2o - -  

- -  �89 sin i sin e sin 2o -- 

i e ~cos~(  
-- sin2 2 c~ 2 I, s l n )  --~,o 

i e (cos3  
- cosa ~ sin2 ~ l s i n ~ ( - 2  o 

W = Sin i cos 2 } sin (2o - t ? ) -  

u + O ) -  

( c o s ' ~  

u) - l s i n ~ ( - 2 e  

- u + f 2 ) -  

- u -  t 2 ) ,  

- u)] - 

(3) 

- sin i sin 2 ~ sin (2o + s - cos i sin e sin 2o, 

where e denotes the obliquity of the ecliptic, and 2o, the ecliptic longitude of the Sun. 
The quantities e, 2o, and ao/ro can be computed with sufficient accuracy from the 
expressions (see Explanatory Supplement to the Astronomical Ephemeris 1961, p. 98) 

d = MJD - 15 019.5, 

e = 23?44, 

Mo = 358?48 + 0?985 600 27 d, 

2o = 279?70 + 0?985 647 34 d + 1792 sin Mo, 

ao 1 + 0.016 72 cos (Mo + 1792 sin Mo) 
ro 0.999 72 

(4) 

where MJD is the Modified Julian Day. 

3 .  E x p r e s s i o n s  f o r  t h e  P e r t u r b a t i o n s  

Equations (1) can be integrated if all the variables on the right-hand side, except those 
depending explicitly on v, are held constant.* Kozai (1961) obtained the following 
expressions (we take the opportunity here to correct three misprints that occurred in 

* In spite of this approximation, tests show that the accuracy of Equations (5a) is improved by evaluat- 
ing the secularly changing quantities S, T, W, and co at the times t(E1) and t(E2), rather than by hold- 
ing them constant during this interval. 
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them) for the perturbat ions suffered by a satellite that  moves in sunlight f rom eccentric 

anomaly  E1 to E2 (add 2n to E2 below if E2 < El):  

da = 2aaF[S cos E + T(1 - e2) 1/z sin Elg~, 

1 e2)1/2 de - a2F(1 - e2) 1/2 ~ S(1 - cos 2E + 

+ T E - 2e sin E + ~ sin 2 E  , 
E1 

di = aZFW(1 - e 2)- 1/2 [3  e ] 
--~ eE + (1 + e 2) sin E - ~ sin 2 E  

e ) [ E2 
cos 2 E  sin co , 

El 
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+ (1 - e2) 1/z (cos E 

sin i fir2 = a2FW(1 - e 2 )  - ~/2 x 

113 e ] x - ~  eE + (1 + e 2) sin E - ~ sin 2 E  sin co - 

( ,~e ) r~ 
- (1 - e2) 1/2 cos E -~ cos 2E cos co , 

E1 
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do9 = --cos i dr2 + e S - ~  E + e sin E + ~ sin 2E) + 

( )i" + T(1 - e2) - 1/2 e cos E ; cos 2E , 
E1 

/~M = - ( 1  - e2)1/2(~o9 + c o s  i ~ 2 )  - -  

3 2 e 2El  - 3 a 2 F ] S [ - ~ 2 e E + ( ~ + 3 e 2 )  sinE 52 sin a - 

- T ( 1 - e 2 ) l / 2 ( ~ c o s E  52 e cos 2E ) - 

E2 
9 

E1 
-- [S cos E1 + T(1 - e2) 1/2 sin E1](E - e sin E)  

(5a) 

where S = S(0), T =  T(0), and W are given by Equations (3) with v = 0. The expression 

for ~M differs f rom Kozai 's  in that  we have performed the integration --} f (~a/a) dM. 
Note  that  this integral will also contribute a term d M = - 3 ( d ~ / a )  AM, where ~ is 

the change in a per revolution, when the satellite moves through an arc AM in the 
Earth 's  shadow. The other elements then remain constant. 

/ 

The expressions for do9 and dM are singular for e = 0 ,  al though the sum dog+dM 
remains well-defined , since its e divisor can be removed simply by expanding the factor 
1 - ( 1 - e 2 ) l / 2 = - } e 2 + O ( e 4 ) .  This difficulty can be overcome by c o m p u t i n g t h e  per- 
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turbations directly in the radius vector 

eccentricity gets below, say, aV'~': 

and in the argument of latitude when the 

6 a  
~ r  --" r 

a a cos v 6e + a(1 - e2)-1/2 sin v e 6 M ,  

a 2 

Ou -- 609 q- ~ (1 - eZ) ~/2 6 M  + (2 + e cos v) sin v c~e(1 - e2) -1 (5b) 

= 609 + 6 M  + [~e + (2 + 3e 2) cos v + e cos2v + O(ea)]e ~M + 

+ (2 + e cos v) sin v (1 - e 2 )  - 1 6e. 

A similar problem with c~g2 and 609 for very small inclinations can be avoided by 

using the following for the perturbations in latitude 0 and longitude ~b if sin i < a~/F:  

cos 0 60 = sin u cos i 6i + cos u sin i 8u, 

+ cos i 6u[1 -~- sin 2 i sin 2 u + O(sin 4 i)] -- 

sin i tan u 
- -  6 i  

1 + cos 2 i tan z u ' 

(5c) 

in which the appropriate expression above for flu should be substituted. It follows that 

6s and 609 will appear only in the combinations fiI2 +cos  i 609 and sin i fie), both of 

which are nonsingular at i = 0  and can easily be computed with the aid of Equations 

(Sa). 

From these equations, we can obtain both the long-period terms summed over com- 

plete revolutions and the short-period terms during part  of a revolution in sunlight 

between arbitrary limits E~ and E2. During one revolution, measured from one shadow 

exit to the next, the net changes in the orbital elements are given by 

tier = fia(E1, E2), 

~ = Oe(E~, E2), 

6i = fii(Ea, Ez) ,  

= + 

=  oJ(E , ED + 3co,  

3 ~ 
6 M  -- dM(E ~ ,  E2) 

2 a  
(E - e sin E)  

E 1 

E2 

+AM, 

(6) 

where E1 and E2 (add 2n to Ez if Ez < El)  here denote the eccentric anomalies at 

shadow exit and shadow entry, respectively, and As Ado, and Ah)/are the accumulated 

changes in the gravitational rates (rad/rev) l), 69, and h) /due to the interaction of 
radiation pressure and the Earth's attraction: 

AO = 3re ~ J2 ~-7 cos i a - 2 1 - e z ~ + �89 sin i 6 , 
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Acb = arc Z J2 ~'~ (1 - 5 COS 2 i) 86a 
e ) 

1 - e 2 8 ~ 7 '  - -  

5 ] 
- ~  cos i sin i Oi , (7) 

A) f /=  3zc Z J2 ~-  (1 - e2) ~/2 (1 - 3 cos z i) 8~ 3 e 
a 4 1 - - e  26 - -  

3 ] 
cos i sin i 8i 

In the above, R is the equatorial radius and J2 is the dynamical oblateness of the Earth. 
Only the first-order oblateness terms have been included, but they ought to be sufficient 
for the present purpose. The summation is extended over the number of revolutions 
since the initial epoch to which the perturbations are referred. 

Care must be exercised in evaluating the eccentric anomalies E1 and E2 of shadow 
exit and entry. The maximum error AE tolerated in these quantities can best be 
judged by studying, over many revolutions, the behavior of the semimajor axis, which 
is of crucial importance because of its accumulative effect on the mean anomaly. 
Since the expression (5a) for 8a does not contain a secular term proportional to E, the 
net change 88 in a after one revolution will usually be a small difference between two 
much larger numbers representing the short-period perturbations at the shadow 
boundaries; yet the maximum error in &i will be essentially proportional to AE 
times the amplitude of the short-period oscillation in a. If we, in turn, multiply by the 
number of revolutions in the interval considered, we arrive at an estimate for the 
maximum error in a at the end of the interval. To illustrate this, let us anticipate 
some results from Section 5: For the balloon satellite 1963 30D (Dash 2), we find an 
average 84 = -  1.5 m rev-1 over a period of 200 days (~  1715 rev), while the average 
amplitude of the short-period oscillations in a is roughly 150 m. To maintain an 
accuracy of, say, 50 m, we then obtain AE=50/150/1715 rad=0?01. 

The smallness of this tolerance in E1 and E2, as well as the discontinuity in the 
radiation-pressure force at these points in the orbit, probably explains why several 
investigators have experienced difficulties in maintaining accuracy when calculating 
the perturbations due to this force by means of numerical integration. The discon, 
tinuity problem can be overcome by letting the force vary from zero at the inner edge 
of the penumbra to a maximum at the outer edge. As for the theory, if this force 
variation is assumed to be linear, the penumbra is automatically accounted for by 
referring the umbral limits E1 and Ez to the center of the Sun. Apart from any residual 
effect of the penumbra, refraction and clouds in the Earth's atmosphere will have an 

l 

appreciable influence on the size and shape of the shadow. While these effects are 
difficult to model, that of the Earth's flattening can easily be accounted for. Unless all 
these effects are incorporated, the inherent uncertainties in the calculated values of E1 
and Ez are likely to be much larger than 0701. It would seem well worth the effort to 
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establish these uncertainties, and to try to improve on the calculation of E1 and E2 

accordingly, by means of visual timings or photometric observations of a satellite's 

entry into and exit from the Earth's shadow. 

The angles El and E2 can be determined explicitly by solving a quartic in sin E or 
cos E, provided the orbit of the satellite is kept fixed during the interval t (E2) -  t ( E O  

and the Earth's shadow is assumed to have a cylindrical shape. These restrictions can 
be removed if the shadow boundaries are instead determined by a step-by-step search 
along the orbit. Besides giving more precise values for E~ and E2, this method can 

probably also be made more efficient than the explicit one. 

The satellite will be in shadow if 

S ( v )  > 0 and P ( E )  - R e -  r V ' l  - SZ(v) > O, (8) 

where S ( v ) - S  cos v + T sin v and R e denotes the radius of the shadow ellipse in the 
plane containing the Sun and the radius vector r of the satellite. The radius Re depends 

on the Earth's equatorial radius R and flattening f, and on the declinations do and d of 
the Sun and the satellite, as follows: 

where 

Re = R[1 f(sind+S(v)sind~ 
- 1 - SZ(v)  ' (9) 

sin d = sin i sin u, 

sin rio = sin e sin 2o. 

Passage into or out of the shadow will be accompanied by a change of sign of the 
function P ( E ) ,  whose two real roots (provided the entire orbit is not in sunlight) E1 

and E2 can be determined conveniently by the so-called regula f a l s i  method. In order 
to eliminate a needless search, we can use the fact that the satellite will be sunlit 

throughout its orbit if (but not only if) a(1 - e)> Re/[ W]. Once the shadow boun- 

daries have been found for one revolution, they can be determined for subsequent 
revolutions in just a few iterations. 

4. How to Apply the Theory 

Let us assume that a set of mean elements a, e, i, f2, co, M and the rates ~ ,  cb,/9/are 

given for an initial epoch to and we wish to compute the perturbations for a later or 
earlier time t. These rates should approximate as closely as possible the actual mean 

rates during the interval t - t o ,  excluding the effects of radiation pressure. The exact 

definition of the elements is otherwise essentially an external problem since the first- 
order perturbations calculated from Equations (5) to (7) are not sensitive to small 

changes in the elements. 

The application of the theory can be conveniently broken down into the following 
steps: 
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(1) By means of Equations (5), the perturbations in the elements are computed for 
the interval between to and the time of the nearest shadow exit. 

(2) From Equations (6), with the aid of Equations (5) and (7), the long-period 
perturbations are computed and added up over as many complete revolutions through 
consecutive shadow exits as required to reach the final time t. The elements should be 
updated after each revolution. 

(3) A final application of Equations (5) will yield the short-period perturbations for 
any remaining fraction of a revolution. 

(4) Summing the perturbations computed in the preceding three steps will give the 
total perturbations in the elements due to radiation pressure during the interval 

t -  to. 
These steps have been programed in FORTRAN for an electronic computer. The 

program RADPR, which requires about 3000 octal computer words on a CDC 6400 
machine, is available from the author upon request. 

5. Tests of the Theory 

With a view to practical applications, the following questions naturally arise: (a) To 
what accuracy do the preceding formulas represent a true solution of the equations of 
motion (1)? (b) How well can the solution be expected to account for the observed 
motions of actual, 'nonideal '  satellites under the influence of radiation pressure ? 
(c) What kind of improvements or extensions of the theory may be possible ? 

The first question can be answered with a fair degree of certainty through compari- 
sons with numerically integrated solutions of Equations (1). For a direct comparison 
with the theory, such integrations must be performed with the secular rates due to J2 
(Brouwer, 1959) added onto expressions (1) for df2/dt, dco/dt, and dM/dt. For this 
comparison, we have chosen the balloon satellite 1963 30D (Dash 2), whose well- 
observed motion can also provide an answer to the second question raised above. 
The initial conditions have been adopted from an analysis by Slowey (1974): 

epoch = MJD 38 400.0, 

a = 10.085 44 Mm, 

e = 0.025 422, 

i = 88~ 

M = 0.956 23 + 8.572 99(t - 38 400)(rev), 

co = 2270.493 - 00.983 08(t - 38 400), 

f2 = 450.381 24 - 00.056 38(t - 38 400), 

s = 1.105, 

A/m = 37.9 cm z g-1. 

The perturbations in the six orbital elements, according to both the theory and the 
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Fig. 1. Perturbations in a, e, and i due to direct solar radiation during one revolution of  1963 30D 
measured from MJD 38400 and MJD 38520. The continuous curves represent the theory, and the 

squares, the numerical integration. 
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integration, are plotted vs time in Figures 1 and 2 for one revolution of the satellite 
(168 min) for MJD 38 400 and MJD 38 520. At the earlier date, the satellite did not 

enter  the Earth's shadow, so there was no net change in a, in accord with Equation 
(5a) for fa. During the first 12 min and the last 30 min of the revolution starting at 
MJD 38 520, the satellite was immersed in the Earth's shadow, as can be inferred from 
the corresponding horizontal portions of the curves in Figures 1 and 2. In the cases 
considered here, and for a variety of other orbits we have investigated, the theory and 
numerical integration were found to agree to within a fraction of a percent during one 
revolution. 

With a maximum amplitude of about 175 m, the short-period oscillations of 1963 
30D might be detectable in the precisely reduced Baker-Nunn observations of this 
satellite. Comparisons with observations of the computed short-period perturbations 
would require the elimination of a number of other perturbations from the observed 
positions. In an air-drag analysis from 1963 30D, Slowey (1974) has made a very 
satisfactory comparison of this kind for the long-period perturbations due to radiation 
pressure. However, in view of the above results, it is conceivable that the neglect of the 
short-period effects of radiation pressure might have introduced some small systematic 
errors in the derived mean elements. Only if the observations are distributed randomly 
over the o rb i t -  which was probably not the case-  would these errors tend to cancel. 
The short-period perturbations due to radiation pressure, though relatively unimpor- 
tant in the case of 1963 30D, have an amplitude of about 600 m for the balloon satellite 
1966 56A (Pageos) and, as such, are far from negligible. 

Figures 3 and 4 show the agreement between theory and integration for 1963 30D 
for a 200-day interval. In Figure 3, we also plot the perturbations in a, e, and i due to 
direct solar radiation, as deduced by Slowey from the available observations. The cor- 
responding perturbations in the elements M, co, and (2 are not readily available, 
because of the difficulty of separating out the secular changes that result in these 
elements from disturbing forces other than radiation pressure and its interaction with 
the Earth's oblateness. The three different curves for fie are in nearly perfect agreement, 
while the observational curve for fi deviates slightly from the two nearly coincident 
curves representing the theory and the integration. The rather pronounced deviation 
of the observational curve for ~a indicates the presence of some small secular variations 
in a not due to radiation pressure. This is particularly evident for the portions of the 
curve covering the first 76 and the last 44 days. During these intervals, the satellite 
was continuously in sunlight, and there should be no net change in a, in accordance 
with the integrated and theoretical curves for fla. The agreement between theory and 
integration is again quite satisfactory. The corresponding curves for fia both show 
some fairly regular and closely matched 16-day oscillations (the theoretical curve con- 
nects points 4 days apart by straight lines). These are the short-period perturbations 
of Figure 1, which, by coincidence, are sampled in such a way that they exhibit a 'beat '  
period of 15.98 days (137 rev). In view of the fact that the satellite made 1715 revolu- 
tions during the 200-day interval, it is remarkable that the theory preserves both the 
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phase and the amplitude of the short-period oscillations so well. Of course, the indi- 
cated precision of about 25 m in a at the end of this interval cannot be attained in 
practice unless the actual locations of the shadow boundaries are evaluated to a very 
high degree of accuracy, taking into account the various anomalous effects discussed 
in Section 3. 

Figures 5 and 6 plot the differences (Aa, Ae, Ai, AM, Ao9, and At2) between the 
theoretical and the integrated perturbations of Figures 3 and 4. Not surprisingly, the 
curves on Figure 6 for do9 and AD, and especially for AM, show secular trends caused 

by minute differences in the rates 3)/, 69, and D. This is to be expected in an initial-value 
problem involving so many satellite revolutions. About two-thirds of the perturbation 
in M at the end of the 200-day interval reflects changes in a (cf. Equations (7)). Al- 
though the discrepancies in a amount to a maximum of 25 m, and most of the time 
are considerably smaller, they nevertheless cause a gradual buildup of almost 1 ~ in M. 
In many applications, the mean rates of the angles M, o9, and D are to be determined 
from observations. The secular parts of AM, Aog, and Af2, as represented by the 

regression lines labeled AM, A~, and AD on Figure 6, would in such a case 
be absorbed; the maximum discrepancies in M and D are thereby reduced by more 
than 50~.  

In summary, it appears that the theory, insofar as the simplifying conditions on 
which it is based are fulfilled, is capable of an accuracy of 1 ~ or better. In spite of 
the need to evaluate the expressions for the perturbations once per revolution, the 
theory affords a tremendous savings of computer time over a straight numerical inte- 
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gration. For the example just considered (1715 rev), the calculations took 70 min 
(~  200 000 steps) for the integration but only 20 s for the theory, on a CDC 6400 com- 
puter. Turning now to the third question raised above, we shall briefly investigate to 
what extent the simplifying conditions may not be met for typical satellites. 

Analyses by Fea and Smith (1970) and Slowey (1974) have shown that the motion 
of 1963 30D is noticeably perturbed by radiation reflected from the Earth and by 
transverse forces arising from the slightly aspherical shape of the satellite. The 
asphericity appears to be even more pronounced for 1966 56A (Smith and Kissell, 
1971). Although the resulting perturbations of 1963 30D amount to only a few percent 
of those plotted on Figures 3 and 4 (direct radiation pressure only), Slowey found 
their inclusion necessary in order to satisfy the observations. While Slowey used a 
fully numerical method to account for perturbations due to reradiation from the 
Earth, Lautman (1974) has constructed a semianalytic theory for computing them 
under somewhat simplifying conditions. Lucas (1974) has derived exact expressions for 
forces arising from radiation both incident on and reflected from a prolate spheroid. 
It might be possible to introduce those expressions into Equations (1) and then per- 
form an approximate integration to obtain semianalytic expressions for the pertur- 
bations in the elements. 
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