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Abstract. The behaviour of three gravitationally interacting particles in a plane, which approach each 
other almost on a central configuration, is studied. Linearization near a Lagrangean solution and 
matching methods lead to the following results: (i) After a close triple encounter in the planar problem 
of three bodies, one particle generally escapes with an arbitrarily large asymptotic velocity. (ii) Par- 
ticular cases of actual triple collisions may be extended by the method of Easton. 

1. Introduction 

Triple collision is one of the crucial processes in the evolution of systems of gravi- 
tationally interacting particles. It is intimately connected with escape in the problem of 
three bodies; in systems with four and more interacting particles triple collision is 
essential for the existence of 'exotic'  types of motion like infinite expansion in finite 
time (Mather and McGehee, 1975). 

In general, a triple collision solution terminates (or originates) at the singularity, 
i.e., no real-analytic continuation exists past the singularity. This is a consequence of 
Siegel's (1941) representation of triple collision solutions by convergent power series. 
It is in agreement with our main result (Waldvogel, 1975) that, generally after a 
sufficiently close triple encounter, one particle escapes with an asymptotic velocity as 
high as desired. The same result, together with a complete description of the triple 
collision manifold, was obtained for the one-dimensional three-body problem by 
McGehee (1974, 1975). 

In contrast, no such behaviour is present in collisions of only two point masses. It 
is well known that the solutions can always be analytically continued past a singularity 
due to a binary collision. Furthermore, this continuation agrees with Easton's 
extension, which is always possible. 

In the following we restrict ourselves to the planar problems of three bodies. This 
problem is governed by the differential equations 

d2xj _ c3 U, U = ~ mjmk , (1) 
mj dt 2 - ~xj j<k Ixj - Xkl 

where m j, xj are the mass and position vector (with respect to the center of 
the j th  particle ( j =  1, 2, 3); thus we have 

mass) of 

3 

mjxj = O. (2) 
j = l  

First of all, the family of solutions which are in some sense close to a fixed Lagrangean 
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solution will be investigated by means of linearization. Then the behaviour near an 
almost-collision will be deduced using singular perturbation techniques (see Cole, 

1968). 
The main tool for applying these methods is the simple idea of scaling (Waldvogel, 

1975). Let ~j, [be new coordinates and time, related to the old ones by the homothetic 

transformation 

x i = 62'~, t = OaT, (3) 

where 6 is a scaling factor. If 6<< 1, the transformation (3) ' blows up '  coordinates and 
time. The velocities zt~, the total energy h and the total angular momentum C are 

transformed as 

h = 6-2h, C = 6C, (4) 

whereas the equations of motion (1) remain invariant, which follows from the homo- 

geneity relation 

= V(x)  (5) 

of the force function U. Hence a given close triple encounter without actual collisions 
can always be transformed into a three-body motion where the smallest distance 

between two bodies is 1, provided the original minimum distance is known. However, 
if the three bodies approach approximately on a central configuration, this minimum 
distance is not known a priori, but depends on how far the considered solution is 

from a triple collision solution. 

2. Linearized Theory of the Close Triple Encounter 

The simplest explicit solutions of Equation (1) are the homothetic solutions with 

zero total energy (h=0) :  

Xj --  C~j t  2/3. (6) 

Here c is the constant 

i f 9  
c = ~ m, m = m l + m2 + rna, (7)  

and :~ are constant vectors satisfying certain algebraic conditions which are obtained 
by inserting (6) into (1). A set of vectors ~j satisfying these conditions is called a 

central configuration (see Wintner, 1941). In the problem of three bodies two types 
exist: the equilateral triangle configuration (Lagrange) and the mass-dependent 

collinear configurations (Euler). 
For  simplicity, relative coordinates 

Yl = x l -  x3, Y2 = x2 - x3 (8) 
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are now introduced; after elimination of the center-of-mass integrals the equations of 
motion (1) may be written as 

where 

d 
Y = f(Y)' ( ' )  = d~' (9) 

are 4-vectors with 

Yl Y2 Yl -- Y2 
t"1 = - ( m l  + m 3 ) i  r-~ m2 r23 m2 r32 ' rs = [Ysl (10) 

and 

Y2 Yl Y2 -- Yl 
fz = - ( m 2  -Jr ma) ~r~ ml r~ ml r~z , = l Y x -  Yel 

f(2y) = 2-2f(y). (11) 

The solutions (6) are particular triple collision solutions with a collision at 
they are now denoted by 

t = 0 ;  

, y =  , (12)  
\ X  2 - -  X 3 ]  

and they will be used as a reference in order to investigate nearby solutions 

y ( t )  = yo(t)  + r/(t). (13) 

In a linear approximation, the perturbation r/(t) satisfies the variational equation 

/~ = Jr/, (14)  

where J is the Jacobi matrix of the vector function (10) at the reference solution (12). 
By (11) and (12) J may be written as 

J = t - 2 . J o  (15) 

with a constant matrix Jo. This implies that (14) has solutions of the form 

r / =  7k" t"~, (16) 

where ~'k is an eigenvector of Jo and/zk satisfies the quadratic equation 
.? 

# 2  _ & _ 2k = 0,  ( 17 )  

2k being the eigenvalue corresponding to 7k. Analyzing the eigenvalue problem 

JoT = 27 (18) 

shows that for both types of central configurations and for all possible masses m a the 
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matrix Jo has 4 linearly independent eigenvectors 71, 72,  73,  74 and 4 real (but not 

necessarily different) eigenvalues 21, 22, 23, 24. 
Let/~k, Vk be the two solutions of (17); if they are real we assume/lk >t Vk. Then we 

have 

/tk + vk = 1, i f  /Zk, Vk real ,  

Re/Zk = Re Vk = �89 if /Zk, Vk complex. 
(19) 

A time shift in (12) shows that 33 is one of the eigenvectors 

71 =33. Furthermore,  there follows 

7k; hence we denote 

21 4 = _ 1 (20) - -  9 ,  ]'/1 --" 4 ,  V1 -3-" 

In a first order approximation the 8-parameter family of all solutions nearby the 

reference (12) is given by 

Y = c t 2 / a  71 -J l -  7~(ajt~J + b~taJ , (21) 
j = l  

where Siegel's exponents 

ctj /z~ - 2 z 2, 3, 4) (22) ---" 3 ,  f l j - - ' ' F j - - 3  ( j = l ,  

)Z.'- ~ 

J _._~2--.. J 

+ 

t 

Fig. 1. The auxiliary parameter ~c(mx, m2, m3) for the collinear central configuration with m3 as the 
inner mass. The masses are represented in triangular coordinates. 
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have been introduced. The 8 small quantities aj, bj ( j =  1, 2, 3, 4) are the parameters of 
the linear family. 

In view of the irrational exponents in (21) t can only take positive values. In the 
following we therefore let time go b a c k w a r d s  towards t=0 .  

For a rigorous analysis the complete discussion of the eigenvalue problem of Jo is 
necessary. Here we shall only state Siegel's (1941) classical results regarding the 
eigenvalues; the detailed discussion is left to a later paper. 

In order to obtain Siegel's exponents the auxiliary parameter to(m1, m2, ms) is 
calculated first. In the equi la tera l  case we define 

1 
/r = - -  % / � 8 9  - -  m 2 )  2 + ( m 2  - -  m3) z + ( m a  - -  m l ) 2 1 ,  (23) 

and there follows 

0 ~ x ~ l  

0c=0 corresponds to ml--m2--m3, and to= 1 results if two of the masses vanish). In 
the col l inear  cases  m3 is assumed to lie between ml and m2. The geometry of the central 
configuration is described by one of the ratios 

r l  r2 
U " -  , V ' - "  

r, + r2 rl  + rz 
(u + v = 1); 

they satisfy the well-known quintic equation 

mlvZ(u  3 - 1) + m2u2(1 - v 3) + ma(u 3 - v 3) = 0 .  (24) 

From u, v we obtain 

rn(mlu -3 + m2 v-3 -Jr- m3u-av -3) 
lc = [ml + m2 + m3(u - z  + v - 2 ) ]  2 ' (25) 

and there follows 

1 ~<~c~<8. 

(to-1 corresponds to the vanishing of the two outer masses, and ~c=8 results if 
m3=0, ml = m 2 ;  if the two masses to the right or to the left vanish, x=4) .  Figure 1 
shows x as a function of the masses ma, m2, m3, for which triangular coordinates are 

used (m 1 + m2 + m3 = 1). 
For every set of masses and every type of central configuration two eigenvalues of 

Jo agree with those of the two-body problem: 2 1 - 4  22 2 This follows from the - - 9 ,  ---- - - 9 "  

existence of the Lagrangean solutions (see Waldvogel, 1976). The corresponding 
exponents are 

~ 1  = 2 (energy variation) 

~2 = 0 (coordinate rotation) 

f12 = - � 89  (angular momentum variation) 

Pl = - 1 (time shift), 
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where the parenthesis refers to the effect of the corresponding perturbing term onto 
the reference solution. The remaining 2 eigenvalues and 4 exponents are 

1 x 1 x 
2 3 = 9 + 3  ' 2 4 = 9  3 

fla = 1 ( _  1 4- ~/13 + 12x) 

f14 = - ~ ( -  1 4- V'I 3 - 12to) (26)  

in the equilateral case and 

2~ = - ~ ,  ;~, = - I ~  

fla = ~ ( -  1 4- V'9 + 16to) 

=,} 
f14 = -~(- 1 + "V/9 - 8to) (27) 

2 

c ~ .  

0 

- I  

0(3 

�9 2 .  

5 k  I I I t I I 

(31--- 1 

-2- 

f~3 

Fig. 2. Siegel's exponents ~j,/i' 1 as functions of the parameter x. 
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in the collinear cases (see Figure 2). For x > 9 
jugate, 

the exponents 0~4, f14 are complex con- 

f14 -x6 + io9, I 1- 9 ~< -~v~7, (28) 

otherwise all the exponents are real and in the interval [-~(- 1 - v / l ~ ,  ~ ( -  1 + a/137)]. 
The first order approximation is valid as long as all perturbing terms are small 

compared to  the leading term. Since some of the exponents have negative real parts, 

Equation (21) will generally be meaningless for t > 0. However, if 

bl = b2 = b 3  - b4 = 0 (triangular case) 

bl = b2 = ba = b4 = a4 = 0 (collinear cases) 
(29) 

the perturbation remains bounded with respect to the reference solution as t ~ 0. 

Hence (29) represents the subfamily of triple collision solutions; it is described by the 4 

parameters a~, a2, a3, a4 in the triangular case and by the 3 parameters a~, a2, a3 in the 
collinear cases. 

Here only first order approximations will be considered; the subfamily of collision 
solutions is near t = 0  fully described by Siegel's convergent power series 

y = c t 2 / a p ( a l t  2/a, aat%, a4t~4), (30) 

where P is a Taylor series in all its arguments, with coefficients depending on the 

masses only. In the collinear cases the last argument must be omitted. A modification 

in the above series (logarithmic terms) is generally necessary if two of the exponents 

have an integer ratio (see Siegel, 1967). The parameter a2 has been omitted from the 
series since this degree of freedom can be eliminated by rotating the coordinate 
system. 

On the other hand, for t > oo the perturbing terms with positive exponents exceed 

the contribution of the reference solution, and the linearized approximation is no 
longer valid either. However, in both of the subfamilies 

al = a 3  - -  a4 = 0 

5 parameters: bl,  

(triangular case) 

a2,  b2,  ba ,  b4; 

al - a3 - -  0 (collinear cases) 

6 parameters: b l, a2, b2, b3, a4, b4 

(31) 

the perturbation remains bounded with respect to the reference even for t ~ ~ .  
These families contain the parabolic solutions, whichare  characterized by 

x j  > ~ ,  ~j >0 as t L > ~ .  (32) 

By means of the substitution t - z  -1 the situation of the parabolic 

t > ~ is reduced to a situation analogous to triple collision as z - +  O. 
following theorem holds: 

motion as 

Hence the 
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The parabolic solutions of the planar problem 
power series about t =oo of the form 

of three bodies have convergent 

y = ct2/aP(b2 t -1/3,  battJ3, b4tl3,, agt%), (33) 

where P is a Taylor series in all of its arguments, with coefficients depending on the 
masses only. In the triangular case the last argument is missing. A modification of the 
series is generally necessary if two of the exponents have an integer ratio. 

The parameters a2 and b l have been eliminated by an appropriate coordinate 
rotation and time shift. The parabolic solutions in the collinear cases with complex 
exponents ~ ,  fl4(x > 9) show an oscillatory behaviour since 

Re(a4t ~, + 2/3) cos (o ;o) (34) 

This term, however, is generally overshadowed by the leading term O(t2/a). Only if 
this latter contribution vanishes, the oscillatory motion can be 'seen'  directly. An 

example will be given in Section 4. 

3. Matching 

In general a solution near the reference (for instance given by initial conditions which 
nearly result in the reference solution) will neither be a pure collision solution nor a 
parabolic solution, but all the 8 perturbing terms of Equation (21) will be present. 

We now consider the limit of a nearby solution arbitrarily close to the reference. 
This is done by introducing one single small parameter e > 0 and assuming all the 
parameters a:, bj to be of the exact order O(e), i.e. a:, b: are assumed to be pro- 
portional to e. Now the solution (21) is subjected to the homothetic transformation 

(3): 
( 4 

j = l  
),l(ajc~a~JI~J + b/P/bi/J.O) ( 3 5 )  

hereby introducing new coordinates and time )7, L In the following limit process T will 

be fixed. If in addition ~ is fixed, while e--~0, 

--~ d2/a71 , 

i.e. the reference solution is obtained again. This is referred to as the outer limit (Cole 
1968), whereas (21) corresponds to the intermediate solution in singular perturbation 

theory. 
The inner limit is obtained by linking ~ to e: 

= O(e), > 0  as  e > 0 .  

It is sufficient to choose the order function c~(e) as 

= 0 > O. (36) 
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Then, the coefficients of i'J, iBJ in (35) are of the orders O(e 1+ 3,jo), O(et+ aajo), respec- 
tively. The limit e ~ 0 exists if 

1 + 3 ~ 0  >i O, 1 + 3fljQ >f 0 (j = 1, 2, 3, 4), 

and a 'distinguished limit' is obtained if the equality holds in at least one of these 
conditions; hence 

- � 89  (37) - - - -  �9 

0 min (~j, flj) 
J 

In order to simplify the matching procedure, we assume ba # O, and 
is to be eliminated by an appropriate time shift; then we have 

the parameter bx 

1 
> o. (38) 

0 - -  3fl3 

By particularly choosing 

(39) 

hence transforming 

t =  (40) 

we obtain 

lim 37 = c~2/3{), 1 + sign (b3)),3Tt~3). (41) 
~---~ 0 

For any fixed t > 0 the above limit implies ? ~ oo according to the time transformation 
(40). Consequently, Equation (41) describes the asymptotic behaviour of the inner 
solution for T--+ Go, which, according to (4), is a three-body motion with zero energy 
(h=0) and zero angular momentum (C =0). The inner solution itself may be com- 
puted by backwards numerical integration of the differential Equations (9). The 
initial conditions are obtained by substituting a sufficiently large value of ? into (41). 

Only the two cases corresponding to the two possible signs of b3 have to be treated 
for each type of central configuration in order to know all possible inner solutions 
(i.e. all triple collisions between ml, m 2 ,  m3). Only in a boundary layer near b 3 - 0  the 
situation is more complicated. 

The final evolution of the inner solution for ~ > -oo  can be hyperbolic-elliptic 
(escape) or parabolic, according to Chazy's (1929)classification, the latter case being of 
measure zero. 

Let ~ (independent of e) be the asymptotic velocity of the escaping body in the 
inner solution. Then, by (4) and (39) the escape velocity immediately after the triple 
encounter is 

v = [bala/aP3.~, (42) 

which is arbitrarily large if only Iba] is sufficiently small. 
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In order to achieve a good agreement between numerical examples and the theory, 
reference solutions with non-zero energy must be considered as well. Also, it may be 
necessary to extend matching to slightly higher orders. This will be done in a later 
paper. 

4. The Equal Mass  Case 

If  m l = m 2 = m a ,  

(x=0): 
the equations of section 2 yield in the 

t ~3  - - -  ~ 4  - -  t~ - -  

- 1  + V' l3 
6 

= 0.43425 85459 

/~ =/~, = p =  - 1 - x /13 
6 

equilateral 

= -0 .76759 18792; aft = - � 8 9  

configuration 

(43) 

and in the collinear configurations (x = 2.4): 

ca} = - 1 +~/47.4 f0.98079 42985 
fla - = I , -  1.31412 76319 

oc4) - 1 + i~ /10 .2  
f14 -- ~ , co = 1/10.2/6 = 0.53229 06474 

(44) 

We first consider the equilateral case. Even in this case of coinciding eigenvalues, the 
matrix Jo is diagonalizable since it has 4 linearly independent eigenvectors 2,1, 2,2, 2,a, 
2'4 (then Siegel's series exists in the form (30)). The vectors 2'a and 2,4, however, are not 
uniquely determined, but span a 2-dimensional eigenplane. Every vector in this plane 
is an eigenvector of Jo. We choose 

(7 i f =  , ~ , $ ,  

1 
' 2 '  }.' 

~I = ~,-T i '  2 ' -  

~ I =  - ~ '  2 ' ~ '  " 

(45) 

Equation (21) now becomes 

y =  ct2/30,1(1 + al t  2/3) -t- (a3Y3 q- a42,4)t e -i- 

q-2,2b2 t-1/3 + (ba2,a + b,2,4)ta}, (46) 

where b l and a2 have been eliminated by an appropriate time shift and coordinate 
rotation. For  simplicity we put 

b3 = b cos ~0, b4 = b sin ~0 (b > 0); (47) 
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then the transformation 

y = 62~, t =  63[7 (~ --- b -1/3B = b �9 (48) 

y ie lds  the following results from the inner limit process: 

l i m  97 = r --l- (73 c o s  ~ -~- 74 sin ~o)?B}. 
g--*O 

(49) 

Due to the degeneracy of  the eigenvalue problem, a one-parameter family (parameter 
~o) of inner solutions has been obtained. 

In Figure 3 and Figure 4 the members ~0= 30 ~ and ~0=45 ~ of this family are shown. 
In both cases ml, m2, m3 approach on almost equilateral triangles, and m3 escapes 
after the triple encounter with finite velocity, which becomes arbitrarily large in the 
outer variables. The numerical integration was done by regularizing all three binaries 
(Waldvogel, 1972). 

The case ~0= 30 ~ is exactly (up to notation) the one investigated by V. Szebehely 
(1974) by numerical integration of extremely close triple encounters. Figure 3 shows 
an infinitely close encounter in infinite magnification. 

In the case ~0=60 ~ the body m l describes a rectilinear path and escapes after the 
triple encounter. Hence there exists an exceptional value ~Oo, 45~ ~0o < 60 ~ such that 
the final evolution for ~ > -oo  is again parabolic. This d o u b l y  p a r a b o l i c  solution is 
shown in Figure 5 and Figure 6; the value 

~o = 0.995 775 (50) 

)(2_ 
Yr/Z. 

"YeTz- ~ 

"r)7 3 

q77! 

25/ 
t .  I �9 

A3 / I o  \ • 
A/ 

Fig. 3. 

~ 'rr/1 

Triangular parabolic solution in the equal mass case; ~0= 30~ m3 escapes. Example investi- 
gated by Szebehely (1975). 
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Triangular parabolic solution in the equal mass case; ~0=45~ ms escapes. 
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\ "r~l 
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XI 

Fig. 5. Doubly parabolic solution in the equal mass case, (0=0.995775. Triangular incoming con- 
figuration, collinear outgoing configuration with m2 as the inner mass. 
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q'vt 5 X~ 
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6 

"[ Xt  

/-12_ 

"Wle_ 

Fig. 6. Detail of Figure 5 in 25-fold magnification. 

was found by repeated numerical integration to large negative values of L Since the 
family of parabolic solutions has higher dimensionality in the collinear cases (six) 
than in the triangular case (five), the three bodies are expected to approach a collinear 
central configuration as ~ > -oo.  In fact, m2 appears to oscillate with increasing 
amplitude and increasing period around the center of mass, whereas ml and m3 
quickly evade to the bottom and to the top. The distance of these two bodies from the 
origin grows as O(U/3). In the expansion of the motion of m2, however, the term 
0(~ z/3) is missing due to the symmetry of the central configuration. Hence the distance 
of m2 from the origin grows as 

o( ,  , os , ~ - ~  - ~ .  

If the inner solution corresponding to a close triple encounter is doubly parabolic, 
the matching procedure can be applied for T--~ - ~  in the same way as for T ~ ~ .  
Hence, after such an encounter a second outer solution becomes valid, and no 
immediate escape with high velocity takes place. Since this is true even for e > 0, the 
doubly parabolic solutions provide the extension by Easton's (1971) method of certain 
triple collision solutions. Beyond the collision the motion is a 'triple explosion' (triple 
collision in time reversal). 



300 JOERG WALDVOGEL 

This extension is completely different from the real-analytic continuation of triple 
collision solutions that is possible for particular mass ratios (e.g., in the triangular 
case rnl =m2=28 ,  m3= 19), where all the exponents are rational numbers with odd 
denominators. Even if analytic continuation is possible, however, it has no connection 
with the behaviour of nearby solutions, where the high velocities of the close encounter 
are retained afterwards. 

On the other hand, Easton's extension becomes possible only when the collision 
solution is embedded into a family of close encounters such that the inner solution is 
doubly parabolic. In this family the extended solution is uniformly close to nearby 
solutions. 
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