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Tiling a Polygon with Parallelograms 

Richard Kenyon 2 

Abstract. Given a simple polygon in the plane we devise a quadratic algorithm for determining the 
existence of, and constructing, a tiling of the polygon with parallelograms. We also show that any two 
parallelogram tilings can be obtained from one another by a sequence of "rotations." and give a 
condition for the uniqueness of such a tiling. Three generalizations of this problem, that of tiling by 
a fixed set of triangles, a fixed set of trapezoids, or parallelogram tiling for polygonal regions with 
holes, are shown to be NP-complete. 
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1. Introduction. A tiling of a simple polygon ~or polygonal region with holes) P 
by parallelograms is a set {Ti}~= I of parallelograms whose umon is the closed 
region bounded by P and for which any two T~, Tj are either disjoint~ have an 
entire edge in common, or have a vertex in common. We also assume thal if a 
parallelogram T~ touches the polygon P. then it touches along an entire edge (of 
both Ti and P) or at a vertex of both. (Ti and P may, of course, have several vertices 
or edges in common in this way.) 

Thus, for example, the polygon in Figure t does not have a tiling by parallelo- 
grams in this sense. We discuss the more general definition of tiling (allowing 
subdivisions of edges of P) in Section 4. In particular we show that the problems 
we consider are essentially no more difficult (although they may take longer to 
solve). 

Given some simple closed polygon P in the plane, under what conditions can 
we tile P by parallelograms? Given the existence of such a tiling, how can we 
construct it? How can we describe the set of all such tilings for a given polygon? 
These are the questions we discuss in this paper. 

Tiling the plane with a fixed set of shapes has been considered by many authors. 
In 1966 Berger [B] proved that the problem of tiling the whole plane with a fixed 
set of shapes is undecidable. 

A first instance of the problem of tiling a finite region with a fixed set of tiles 
was shown to be NP-complete in 1977 by Garey et al. [GJP].  

These results have not prevented anybody from continuing to work on these 
problems, however. Closer to the paper at hand is the paper by Thurston [T] 
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Fig. 1. A pentagon can have no parallelogram tiling. 

based on work with Conway which discusses filings of polygonal regions by simple 
shapes such as dominoes and hexominoes, using some combinatorial group theory. 

This author in his thesis [Ke] discusses tiling a generalized parallelogram with 
parallelograms. 

Section 2 of this paper discusses tiling a simple polygon, and gives an algorithm 
for determining existence of and constructing such a tiling. The results in this 
section were found independently and simultaneously by Kannan and Soroker 
[KS]. In particular the proof of Theorem 3 is essentially theirs. Since the proof is 
quite natural I have reproduced it here. The proof of Lemma 2, which is essential 
to the algorithm, is quite different than that appearing in [KS], and has I believe 
an easier implementation. 

Section 3 defines "rotations," and shows that any two filings of a simple polygon 
can be obtained from one another by rotations. This allows us to discuss the 
possible uniqueness of a parallelogram tiling. Section 4 discusses the problem of 
paving versus tiling. 

Section 5 contains a proof that parallelogram-tiling a nonsimply connected 
polygonal region is NP-complete, and a proof that the problems of tiling by a 
fixed set of triangles or trapezoids can be reduced to tiling by general polygons 
(and hence NP-complete). 

2. Simple Polygons. Let P be a simple polygon and let {vl, /92, ' ' ' ,  Un} be the set 
of oriented edges of P, in counterclockwise order from some starting vertex. We 
call the edge type of an edge v the vector Iv] at the origin which is parallel to v 
and has the same length. (Thus the edge type records the length and direction of 
an edge.) The absolute edge types record edge type only up to sign. If [v] = - [w], 
we say that v and w have the same absolute type but opposite orientation. 

If v is an edge of P we define v • = i[v] to be the direction perpendicular to v, 
with orientation pointing from v into the interior of P. 

If a parallelogram has edges a, b, - a ,  - b  in counterclockwise (cclw) order, we 
often denote that parallelogram by [a, b]. 

LEMMA 1. I f  a parallelogram tiling of P exists, then for each edge in P there must 
be an edge of the same absolute type but opposite orientation in P. 

PROOF. For each edge v = vo in polygon P, consider the parallelogram tl for 
which vo is an edge. Let vl be the edge opposite v o in t~. Let t2 be the parallelogram 
which is adjacent to the edge v 1, and inductively define tn to be the parallelogram 
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adjacent to ~,_ 1 along the edge v,_ i. This chain of parallelograms (t 0, t~ . . . .  )aiways 
increases in the direction w (perpendicular to v pointing into P), so eventually 
the chain hits the boundary of P again. The boundary edge has the same length 
as v but is oppositely oriented. [] 

For edges c, C which are paired in this way m a tiling, we denote by (c. C )  the 
parallelogram chain from c to C. 

To find a tiling, we first determine a matching of oppositely oriented edges ~of 
the same length), which tells us which edges will be paired l as in Lemrna t ~ in the 
eventual tiling. This matching is subject to two rather obvious conditions: 

1 Two matched pairs of edges of the same absolute edge type cannot cross each 
other with respect to the cyclic ordering of edges in P, t Two matched pairs a~ 
A and b, B cross if between a and A in cyclic order around P exactly one of b. 
B occurs.) This follows from the proof  of Lemma l: the two chains of 
parallelograms connecting the matched pairs cannot cross each other in the 
usual sense. 

2. Two matched edges must each "see" the other in the interior of P, in the sense 
that there is a monotone increasing path in the interior of P from one edge to 
the other. This is again because there must be a chain of parallelograms in the 
interior of P leading from one edge to the other. 

A matching satisfying the above two conditions is called good, otherwise bad. 
See Figure 2. 

LEMMA 2. There is at most one marching satisfying the above rwo conditions. 

The proof  is contained in Section 2.1. 

a 

a ac 

Fig. 2. A good matching of edges in a polygon. 
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Once a good matching is found, there is another condition for the existence of 
a tiling; this is called peripheral monotonieity: given two matched pairs of edges 
a, A and b, B in P which cross, the edge b or B which is (in cyclic order) between 
a and A must be increasing in the a • direction. That is, if the edge between a and 
A is, say, b, we must have a • [b] > 0. 

We define a peripheral pair to be a matched pair a, A which, in cyclic order, 
contains no other matched pair between a and A. In other words, the path Va, A 
along P from the front vertex of edge a to the back vertex of A contains no matched 
pairs. The monotonicity condition tells us that the "peripheral path" V~,A of P 
must be monotonically increasing in the a I direction. 

We shall see from Theorem 3 below that peripheral monotonicity of a matching 
actually implies that it is good (and hence, from Lemma 2, unique). It is clear that 
peripheral monotonicity implies condition 1 of a good matching. 

THEOREM 3. A polygon P has a tiling by parallelograms iff there is a matching of 
the edges of P which is peripherally monotonic. 

PROOF. Let Q be a closed oriented polygonal curve in the plane (not necessarily 
simple). For each point in the plane not on Q there is associated a winding number 
w(x) of Q about x. It is an integer which describes how many times the curve Q 
winds around x. The winding number can be defined as follows: Take any half-line 
1 from x to o% oriented away from x, which avoids the vertices of Q and intersects 
edges of Q transversally if at all. Then w(x) is the number of right-to-left crossings 
of Q with l, minus the number of left-to-right crossings. It is an exercise to show 
that w(x) is independent of the choice of direction of the half-line l from x (and in 
fact any path from x to oe will do as long as it intersects Q transversally, and a 
finite number of times). 

If Q is a simple polygon, w(x) = 1 for all points x in the region enclosed by Q, 
and 0 for points outside. We do not define w(x) for points lying on the curve Q itself. 

Let us suppose Q is a closed polygonal curve with a peripherally monotonic 
matching of its (oppositely oriented) edges as before (this condition on the 
matching does not require Q to be simple). Find a peripheral pair a, A of edges of Q. 

We define V',,A to be the path obtained by rigidly translating V,,A by the vector 
- a .  Now V'a,A starts at the back of a and ends at the head of A. The region Ra. A 
bounded by V'a.A, a, v,, A, and A can be tiled by parallelograms of the form [a, vii 
for edges v i of V,,A. The polygonal curve Q' which is determined from Q by 
replacing the path a, V,,A, A by the path V'~,A now has two fewer edges, and the 
same matching as Q except that the pair a, A is gone. Because the edges were 
translated parallel to themselves and the cyclic order was preserved, the matching 
on Q' is still peripherally monotonic. See Figure 3. 

In addition, we see that except for those points in the region R~,A, the winding 
number of points with respect to Q' is unchanged from what it was for Q. For 
those points in Ra, A, the winding number is decreased by exactly 1. 

Because the new curve Q' has again a peripherally monotonic matching, we can 
repeat the process, removing peripheral pairs of matched edges, until there is only 
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Fig. 3. A tiling obtained from the matching. 

one pair left. At that point, the winding number of all points (not on the curve 
itself) is zero. 

If Q was initially a simple polygon, we see a posteriori that during the 
intermediate stages w(x) is always 1 or 0 when it is defined f because wix) was 
initially 0 or 1 and always decreases or remains fixed during removal of pairs). 
We can conclude from this that all the intermediate polygonal regions were 
noncrossing lat any crossing the winding number of one pair of regions opposite 
each other differs by twol, and in fact the regions were disjoint unions of simple 
polygons, with Q winding exactly once around each subpolygon. So the parallelo- 
grams added were all disjoint. 

Thus i fP  is a simple polygon this method creates a tiling of P by parallelograms. 
For the other direction, suppose we are given a tiling of P. Then following 

parallelogram chains gives us a matching. Let a, A and bo B be two matched pairs 
whose matchings cross, i.e. (without loss of generality}, we encounter the edges in 
the order a. b, A, B in the boundary P. Then somewhere in any tiling of P we 
have a parallelogram with edges abAB in that order: this parallelogram occurs at 
the intersection of the two chains of parallelograms (a, A)  and {b, B). However. 
abAB is the boundary of a positively oriented parallelogram if and only if 
a - -  [b] > 0. Thus peripheral monotonicity holds. D 

This proof  is essentially the proof of [KS];  we thank D. Soroker ~'or pointing 
out the errors in our original proof. 

From these results we see that the problem of tiling by parallelograms and the 
problem of tiling with afixed set of parallelograms are of the same difficulty. We 
must have parallelograms [a, b] available for any two matched pairs of edges 
whose matchings cross, and these are the only parallelograms we actually need. 
This contrasts sharply with the case of triangulations and trapezoidizations: it is 
easy, for example, to triangulate a polygon, but not if we are only allowed to use 
triangles from a fixed set. See Section 5. 

2.1. Finding the Matching. Theorem 3 gives a method for constructing the tiling, 
assuming we can find a matching satisfying the monotonicity condition. We give 
here an algorithm for the determination of such a matching. 
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Fig. 4. The edge coordinates in a polygon. 

We match each absolute edge type separately. As before, let {vi}~'= 1 be the edges 
of P. Let { +_ [wj] }}=1 be the set of absolute edge types. We begin by separating 
each absolute edge type into coordinate types as follows. 

Because of the noncrossing rule for good matchings, in cyclic order between 
any two matched edges w, W there must be an equal number of edges of each of 
the two orientations + [w]. 

We assign coordinates to the edges of type • [w] so that two edges of opposite 
orientation have the same coordinate if and only if there are an equal number of 
edges of type + [w] as - [w] separating them (in cyclic order). One possibility is 
to assign some edge x o of type [w] coordinate 0. Then assign each edge x of type 
-I-w] coordinate n+ - n_, where n+ and n_ are respectively equal to the number 
of edges of type [w] and the number of edges of type - [w] between Xo and x in 
cyclic order. Assign each edge y of type I-w] coordinate 1 + n+ - n_,  where n+ 
and n_ correspond to the edges between Xo and y. See Figure 4. 

This procedure partitions an absolute edge type into different coordinate types; 
a matched pair of edges must have the same coordinate as well as opposite 
orientation. 

It is important to note at this point that the edges having a fixed absolute type 
and coordinate alternate in orientation around P. 

The matching among edges of the same coordinate and opposite orientation is 
now determined by the following lemma. 

LEMMA 4. Suppose P has a good matchin 9. Let  V be a complete set o f  edges having 
the same absolute type and coordinate. Sort V by the perpendicular direction v • for  
some v ~ V; let u be a highest edge in V for which u • = v a. Let  V~ = {us, u2 . . . . .  uk} 
be the set o f  edges in V which are seen by u, in (cclw) cyclic order starting from u. 
Then u I and uk are o f  different height and u must be matched to the lower o f  tq and Ug. 

As an illustration of this lemma, see Figure 5. Recall that u "sees" v if there is 
a path from u to v in the interior of P which is monotonically increasing in the 
u s direction. 

PROOF. In this proof we use the phrase "x  is between a and b," or x s (a, b), to 
mean "x  is strictly between a and b in cclw cyclic order from a to b." 
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Fig. 5. The highest ---, is matched to the lowest ,- which It sees. 

First note that V, ~ ~3 since otherwise u could not be matched;  also, each u i ~ V u 
has the opposite orientation of  u. Each edge of type - [ u l  is matched with 
something below it, and each edge of type [u] is matched to something above it. 
Suppose without  loss of  generality that u 1 is the lower of [ul, Uk}. 

Every edge in V is matched to something in E Consider the edges to which u 1 
could be matched. Firstly, ut cannot  be matched with anything between u~ and u 
since then u would have to be matched with something between u and u ~, which 
it could not by definition of u r (Recall that  matchings of  edges of the same type 
cannot  cross each other). See Figure 5(a). 

Secondly, we show that u 1 cannot  be matched to something in ~u. ul). There are 
an equal number  of edges I-u] as - [ u ]  between u and u 1 since u and u~ have same 
coordinate type. Either all edges in V between u and u 1 are matched to each other, 
or one of  these edges u' of type - [u] is matched to an edge u" of type [u] outside 
lu, ul). However. in this latter case, there is a decreasing path leading f rom u' to 
its matched edge u ' :  this path must  intersect the increasing path from u to ul, 
since u" is outside (u, ut). If they intersect at a point  y, then the path u ~ y ~ u' 
is a mono tone  path from u to u'. contradict ing the definition of u t- See Figure 5(b). 

Thirdly, consider the possibility that Ua is matched to something in (u~, uG 
Because u 1 is lower than uk, there ts no decreasing path from ul to anything 
between ul and u~ which is also lower than u (see Figure 5(c)), because such a 
path would necessarily obscure u t or uk from the view of u. So u~ cannot  be 
matched to anything in (u~, Uk). 

Thus u L is matched to u. the only remaining possibility. D 

2.2. Complexity of  the Algorithm. The algorithm for parallelogram tilings of 
simple polygons in words is: 

1. Separate edges into edge types and coordinate types. 
2. Determine the good  matching of oppositely oriented edges within the set of 

edges of the same absolute edge/coordinate type. 
(al Find the graph of "seeing" in a complete set of edges of the same absolute 

edge and coordinate type. 
(b) Find the lower of Ua, Ug and match to u; this divides the remaining edges 

~ [ u ]  into two regions: apply the lemma in each region, and repeat to get 
the complete matching. 
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3. Find a peripheral matched pair and check monotonicity. 
4. Slide the peripheral path across this pair and go back to step 3. 

For a polygon of n edges, we have the following. 
Step 1 is O(n log n), since separating edges into types (of which there may be 

O(n)) requires a certain amount of sorting. 
Step 2(a). A simple method to construct the "seeing " graph tbr a particular 

edge/coordinate class + [v] is to use a triangulation of the polygon. It is not 
hard to construct a triangulation in O(n2), in fact it can be done in linear time 
[C]. We only triangulate once, and then use the same triangulation for each 
edge/coordinate class. 

From a given edge v in an edge/coordinate class, to find the edges which it sees, 
start at the triangle T v containing edge v and move down in the tree of the 
triangulation (considering T~ to be the root), recording at each new triangle the 
set of points which are monotonically related to v. For each edge of a given triangle, 
either the entire edge or a connected subset of the edge (delineated by two points) 
is monotonically related to v, and this subset is determined by the subset in the 
parent triangle. Hence there is only a constant amount of work done in each 
triangle. 

We see that for each class of size Pi we can find the "seeing" graph in time 
O(npi) (there are n -  2 triangles in a triangulation), and since the classes are 
disjoint, the total time for step 2(a) is O(n2). 

Step 2(b) is O(n2), n 2 being the number of edges in the graph constructed. 
Steps 3 and 4 are O(k), where k is the number of parallelograms in the eventual 

tiling. Since k = O(n 2) (in fact at most n2/4, which can be seen by studying the 
process of tiling in steps 3 and 4) the algorithm in total is O(n2). 

Determination of the nonexistence of a tiling using this algorithm is also O(n2), 
since we may not run into problems until step 3. 

3. Rotations and Equivalence of Tilings. For a simple polygon there is only one 
edge matching (Lemma 2), but there can be many tilings (Figure 6). 

If d is the number of absolute edge types, then we can think of a polygon P as 
the projection 7r(P), ~: R ~ - ,  R 2 of a polygon P sitting in the one-skeleton of a 
d-dimensional lattice in R ~, so that the edge types are projections of the basis 
vectors of the lattice. 

Then a tiling of P corresponds to a polygonal surface, lying on the 2-skeleton 
of this lattice (that is, composed of squares formed by pairs of basis vectors), 
spanning the polygon P, and which projects one-to-one to R 2 under 7r. 

Fig. 6. A rotation. Or, one matching, two tilings. 
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Each rotation in a tiling of P can be thought of as pushing the corresponding 
surface S in R e across a three-dimensional cube to get a new surface S' spanning 
the same boundary. 

A rotation is defined as follows. Let x be a vertex in the tiling of P which lies 
in the interior of P and where exactly three parallelograms meet. Then the union 
of these three parallelograms forms a hexagon with opposite sides parallel. Such 
a hexagon has exactly two tilings by three parallelograms: replace the one present 
with the other one. This defines a rotation from x. Note that it preserves the 
number and type of parallelograms. (See Figure 6.) 

We call two tilings equivalent if one can be obtained from the other by rotations. 
From the higher-dimensional picture it is easy to believe that any two tilings are 
equivalent in this sense. Our proof  of this fact, however, is two dimensional. 

THEOREM 5. Any ~wo parallelogram tilings of a simple polygon are equivalent. 

PRoov. We first prove that any two parallelogram tilings of a simple polygon P 
have the same number of tiles. Indeed, if there is any such tiling, there is a unique 
good matching (Lemma 2), and the number of parallelograms is the total number 
of crossings of pairs of matched edges. This number depends only on the cyclic 
ordering of the matched pairs around P, not on the tiling itself. 

We now proceed by induction on the number of parallelograms n(P) necessary 
to tile any polygon P. For n(P) _< 3 the theorem is easy to check. Assume that 
two tilings are equivalent for any polygon which has a tiling of less than n tiles. 

Let P be a polygon with a tiling of n parallelograms. Let c, C be a matched 
peripheral pair in a tiling of P (recall that this means the path V~.c from c to C 
around the boundary of P contains no other matched pairs). Let 7 = vl . . . . .  vz be 
the monotonic path from c to C around the boundary of P, Let @, C )  be the 
chain of parallelograms from c ~o C. 

For  all v~ occurring in 7, there is a chain (v~, V~) which crosses the chain 4c, C). 
This means that (c, C)  contains exactly the parallelograms [c, vii, in some order. 

If the order of parallelograms [c, vii occurring in (c, C)  is the same as the order 
of vl occurring along 7, then the chain of parallelograms (c, C)  lies exactly along 
the edges of 7 on P. since c, C is a peripheral pair. 

If the orders are different, then the chain does not follow 7 exactly. {See for 
example chain (a, a )  in Figure 7(b).) We show, however, that there is a sequence 

a 

b 

c 

iat (b) 

Fig. 7. A '~triangle" can have its vertices rotated by rotations within the region. 
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of rotations in the tiling that strictly decreases the number of parallelograms in 
the region between 7 and (c, C). It then follows that there is a sequence of rotations 
which move the chain (c, C)  so it lies along 7. (See (a, a) in Figure 7(a).) By 
induction, in the remaining region of P any two filings are equivalent. Therefore 
any two filings of P are equivalent, since we can move them both to tilings which 
are known to be equivalent. 

Assume that the path (c, C)  does not follow y exactly. Then there are two edges 
vl, vj whose order is reversed between (c, C)  and 7. Therefore the chain of 
parallelograms (vi, Vi) crosses the chain (v j, Vj) in the region between (c, C)  and 
7. They cross at a parallelogram [vi, vj]. 

There is a triangular region T~,~,vj of parallelogram chains formed by the three 
chains between the three parallelograms [c, vii, [c, vii, and [vi, vj]. 

By the lemma below (Lemma 6), by using rotations within T~,v,.~ ~ we can move 
the path (c, C)  so that the parallelogram [vi, vii is outside the region between 7 
and the new chain (c, C)  (and nothing else moves in). This completes the 
proof. [] 

LEMMA 6. Given a triangular region T (without holes) bounded by parallelogram 
chains between three parallelograms [a, b], [a, c], and [b, c], there is a sequence of 
rotations within T which yields a tiling containing a rotatable hexagon formed by 
[a, b], [a, c], and [b, c] and lying on the three parallelogram chains (a, a), (b, b), 
<c, c). 

As an illustration see Figure 7. 

PROOF. We proceed by induction on the size of the triangular region T. If T is 
a hexagon, a single rotation will suffice. If T is larger than a hexagon, two of the 
"vertex" parallelograms are not adjacent (without loss of generality [a, b] and 
[a, c]); take some parallelogram [a, d] on the chain between these two. The chain 
from [a, d] leading into T crosses one of the two other chains bounding T when 
it exits T, at say [b, d]. Then there is a smaller triangular region T' bounded by 
[a, b], [a, d], and [b, d]. By induction, through a sequence of rotations we arrive 
at a tiling containing a rotatable hexagon formed by [a, b], [a, d], and [b, d] which 
lies on the chains (a, a),  (b, b), and (d, d). By rotating this hexagon, [a, b] moves 
closer to the [a, c] and [b, c] endpoints of chains (a, a)  and (b, b), respectively. 

We repeat this process, moving the three original vertices of T strictly closer at 
each step. Eventually they must be mutually adjacent; at that point they form a 
hexagon lying on all three chains and can be rotated themselves. []  

The same theorem is not true for nonsimply connected polygonal regions: see, 
for example, Figure 8. 

COROLLARY 7. Given a polygon P with a parallelogram tiling, the tiling is unique 
iff there are no triples of  matched pairs of edges {a, A}, {b, B}, {c, C} such that each 
pair crosses the other two. 
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Fig. 8. Two mequivalent tilings of a nonsimp~y connected region. 

PROOF. If there are no such 3-crossings, then in particular there are no interior 
vertices where exactly three parallelograms meet, so no rotations are possible and 
hence the tiling is unique. 

On the other hand, let {a, A}, {b, B}, {c, C} be such a 3-crossing. There is a 
triangular region formed by the chains between the parallelograms [a, b!, [a, el, 
and [b, c]. By Lemma 6. there is a rotation possible. [] 

4. Pavings Versus Tilings. We define a paving of a polygonal region P by 
parallelograms to be any exact covering of the region. P -- U T~, with a finite 
number of parallelograms T~, such that the interiors of any two parallelograms 
are disjoint. 

We show how to reduce a parallelogram-paving problem of a simple polygon 
P to a parallelogram-tiling problem, by adding vertices to P. 

It is clear by a generalization of Lemma 1 that a polygon has a paving by 
parallelograms only if, for each edge direction, the total signed length (counting 
orientation) of edges having that direction is zero. 

Let V be a complete set of edges of P all having the same direction (disregarding 
orientation/. We assign coordinates to the vertices of edges in V in a generalization 
of the assignment of coordinate types in a tiling: after choosing an arbitrary vertex 
v o as having coordinate c(vo) = 0, the coordinate c(v) of a vertex v (of an edge in 
V) is the total signed length of edges of V between v 0 and v in cyclic order 

We can similarly assign to any point x in an edge of V Ix is not necessarily a 
vertex) a coordinate c(x) giving the signed length of edges in V from v o to ~c. 

Let V' be the set of coordinates of the vertices of edges in V assigned in this 
manner. V' is finite. For  each point x in an edge of K if clxt is in V'. we subdivide 
the edge of P containing x, at the point x (in effect putting m a vertex at x.~ 

This adds a finite number of vertices to P, creating a new polygon P'. As a 
simple example, in Figure 1. the corresponding P'  has a vertex in the center of the 
upper edge. 

PROPOSITION 8. P has a paving] iff P' has a tiling. 

PROOF. Suppose we have a paving of P. There is a corresponding "matching ~ 
of the edges of P. which is obtained as in the case of a tiling, by following 
parallelogram chains. In this case. however, a parallelogram chain may split into 
two or more chains in the middle of P, or may merge with other chains. 
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Nevertheless, the coordinates of edge points c(x) defined above are preserved 
under this matching, thus we have a matching induced on P'. It is in fact a good, 
peripherally monotonic matching by the corresponding properties of the paving 
of P. Thus there is a tiling of P'. 

The other direction of the proposition is trivial. [] 

If a quick algorithm for constructing parings is being sought, this is not the 
best way; adding these dummy vertices may square the total number of vertices. 
A better way is to consider the problem as a flow problem, with the length of an 
edge of a particular direction being proportional to the flow through it. This point 
of view is taken in [KS], to which we refer the reader for an O(n 2) algorithm. 

5. NP-Complete Tiling Problems. Since we now know about how to tile a 
polygon with a fixed set of parallelograms, it is natural to ask about the same 
problem for more general shapes. The problem of characterizing sets of shapes 
which allow the solution of these tiling problems is likely to be a difficult one. 
There are certainly sets of shapes, though, for which the problem is hard; in 
particular we have: 

THEOREM 9 [GJP].  Given set of i x 1 squares with colored edges and an integer 
n, with n > the number of colors, tiling an n x n square with these tiles so that the 
edges of adjacent squares have the same color is NP-complete. 

COROLLARY 10. Given a set of polygonal tiles, each with O(n) edges and area >_ 1, 
and a polygon P with O(n) edges and area O(nk), tiling P is NP-complete. 

The area considerations are needed so that P is tiled by at most polynomiaUy 
many tiles. We did not have this problem in the case of parallelogram tilings since 
we saw that n2/4 parallelograms suffice to tile a polygon with n edges. Note also 
that by "tiling P"  here we mean any tiling in the sense of the introduction: a 
placement of translated copies of the tiles, covering P so that any two are disjoint 
or meet on a set of vertices and whole edges. Similarly for the intersection of a tile 
with the boundary polygon P. 

We could also define tiling to include rotations of the tiles; the proof below can 
be adapted to show NP-completeness for this case too. 

PROOF OF COROLLARY 10. Note that tiling P is in NP; there are at most n k tiles 
needed to tile P, and given a potential tiling we can check that it is legitimate as 
follows: subdivide P into connected regions cut out by the tile boundaries and 
the boundary of P; for each such region check that it is covered by exactly one 
tile. Also, we check that adjacent tiles meet along whole edges (i.e., it is a tiling 
not a paving). All this checking involves a polynomial amount of work. 

It is also easy to convert a problem about colored tiles to a problem about 
polygonal tiles: it is only necessary to replace each edge of a given color by a 
polygonal "key"  that only fits with edges of the inverse key; see, for example, [R]. 
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The only difference is that Garey et al. [GJP]  do not assume any particular 
color for the boundary of the enclosing square: any color of tile can touch the 
boundary. This will not be the case if we replace colors by keys. 

To this end we define some more tiles which fit only at the boundary of P. We 
define special keys k~, kt, kb, k r for the top, left, bottom, and right edges of P, and 
another key k i. We increase our set of tiles by adding tiles which have edge keys 
in cclw order ka, kl, kc, - k i  where kc ranges over all color keys, and k~ ranges 
over the set {kt, k~, kb, kr} (and with the appropriate orientation)i We also add four 
corner tiles, e.g., for the upper right corner, kt~ ki, ki, kr: 

Now let P be the polygon with edges 

kb, o.. , kb, k . . . . .  ; kr, kt . . . . .  kt, kI . . . . .  kt" 

n §  n + l  n + i  n + l  

There is a tiling of P with these tiles if and only if there is a tiling of an r, x n 
square with the colored squares given. This is because a tiling of P can only use 
the extra tiles at the boundary of P, and must use exactly those tiles. 

The interior n x n square of P is tiled using only the original color-keyed tiles. 
The polygon P we defined has at most O(nm) edges, where m is the maximum 

number of edges in a key. We can certainly arrange it so that m _< O(log n), which 
shows that the problem with n edges is also NP-complete. D 

COROLLARY !1. Given a set of  triangles of  area >_ t and polygon P with n edges 
and area O(nk), the problem of  tiling P with the triangles is NP-comp!ete. 

PROOF. Let T be a set of polygonal shapes, and let P be a polygon. For each 
tile t ie  T, we triangulate tl in a special way, such that no two edges in the 
triangulation have the same length, unless they are edges in the boundary of ti. 
This requires in general adding vertices in the interior of t i. 

For each t~ E T, we repeat the procedure, assuring that no two edges in the entire 
set of edges of all the triangulations are the same length, unless they are on the 
boundary of some tile t~. 

Then we have the property that in any tiling by these triangles, the triangles 
are forced to fit together to make copies of the tiles t~. 

In a tiling of P by this set of triangles, no edge of a triangle interior to its 
corresponding ti lies in the boundary of P since its length is different than the 
length of edges of P. Thus this tiling of P by triangles gives a tiling of P by tiles t i. [] 

COROLLARY 12. Given a set of  trapezoids (quadrilaterals with two edges parallel) 
of area >_ 1 and a polygon P with n edges and area O(nk), the problem of  tiling P 
with the trapezoids is NP-complete. 

PROOF. A triangle can be tiled by nine trapezoids so that new vertices appear 
only in the interior and at the center of the edges of the triangle (see Figure 9). 
Given a finite set of triangles, we can subdivide each one into different trapezoids 
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Fig. 9. Nine trapezoids can tile a triangle with vertices in the center of the edges of the triangle. 
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so that the trapezoids are forced to fit together to recreate the triangles, as we did 
before with triangles. 

The same argument shows that a tiling by trapezoids gives a tiling by the 
triangles. []  

THEOREM 13. Given a general polygonal region (not simply connected) with n edges, 
the problem of findin 9 a parallelogram tiling is NP-complete. 

Note that this problem is different from the previous two (Corollaries 11 and 
12) in that we do not fix the tiles beforehand. Tiling a polygonal region with a 
previously defined set of parallelograms is polynomial in the size of the polygonal 
region. 

PROOF OF THEOREM 13. The problem is certainly in NP:  there are at most nZ/4 
parallelograms in any tiling. 

We will show that solution of this problem allows us to solve the subset sum 
problem: given a finite set of positive integers A -- {ai} and a positive integer K, 
find a subset A' ~ A such that 

a i = K .  
( l i f f A  ~ 

That the subset sum problem is NP-complete  is due to Karp  [Kal .  We can assume 
in this problem that K < �89 ~',A ai. 

Suppose we are given an instance of the subset sum problem, with a set of 
positive integers A = {a 1, a2 . . . . .  ak} in increasing order. Let B = {bl, b E . . . . .  bg} 
be a set of k positive integers (in decreasing order) such that there are no disjoint 
subsets B1, B 2 c B which have the same sum. For  example, we can take b~ = 2 k -i. 

Let E = {(+_ ai, + bi)}~= ~ ~ Z 2. We construct a polygonal region P with edges 
in E' = E u {(_ 1, 0), (0, ___ 1)}. The boundary of P will consist of two polygons, 
the outer one P~ and the inner one P2, so that the region P is an annulus contained 
between P1 and P2. The edges of the outer boundary P~ in cclw order from (0, 0) 
are 

P1 = (al, - b0(az, - b2)'"(ak, -- bk)(1, O)(ak, bk)(ak_ 1, bk- 0 " " ( a l ,  bl), (0, 1), 

( - a  1, b 0 ( - a  2, b 2 ) ' " ( - 1 ,  O)(-a k, - -bk) '"( - -a  1, -bl)(O, -1) .  
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Fig. 10. The annular region P. 

Note thal P1 is convex. P2 is the square which, starting from (2K, 0), has edges 
(1, 0)(0, 1)( 1, 0)(0, 1) in cclw order. See Figure 10. 

Suppose we are given a tiling of P by parallelograms; it has edges from the set 
E'.  The higher edge ( -  1, 0) of P! must be matched with the top edge of P2, and 
similarly for the lower edge of P1 and the lower edge (1, 0) of Pa- There are no 
other edges ( _+ 1, 0) in the boundary P1. 

The left edge of P2 must be matched with the vertical edge at the origin. If we 
consider the parallelogram chain 7 from the origin to the left edge of P2, the 
x-direction lengths of the parallelograms in 7 sum to 2 K ;  and these lengths are 
all in A. 

No edge in ~ can occur more than once, since each edge type occurs only once 
(in each orientation) on the boundary P v  The total change in the y direction of 
7 is 0; but by the definition of B this means that for every edge (a, b) in this path 
the corresponding edge (a, - b )  occurs. 

Let A'  be the set of a ~ A whose corresponding edge occurs in 7. Then we have 
2 ~ A' = 2K or ~ A' = K. Thus by construction of a tiling we have tbund a 
solution to the subset sum problem. []  

It is interesting to note that a solution to the subset sum probtem gives us 
quite easily a tiling: Suppose we have a solution to the subset sum problem 
A' = {%, ai~,..., ai, } c A. We take a path ~ inside P from the origin to P2 to be 
the sequence of edges: 

= (ai,, bi,)(ai,, - b i l ) ( a i  2,  bi2)(ai2, - b i2 )""  (al,, bO(ai  ,, - b~). 

Note that 7 ends at (2K, 0). 
We can tile P so that this path occurs in the tiling, as follows. We can think of 

P with the path 7 adjoined as a simple polygon P'. The boundary of P'  starting 
from the origin traverses P1, 7, P2 clockwise, and then 7 in the reverse direction. 

Each edge of absolute type [(ai~, bl)] occurs exactly four times in the boundary 
of P':  once in the upper half of P1, once in the lower half, and twice on 7. The 
matching of these edges is trivial: each edge on P1 is matched to the corresponding 
one on 7. 
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The edges (0, _+ 1) are matched straight across; those edges (+  1, 0) are matched 
to P2 as explained above. Any other absolute edge type of P' occurs exactly twice 
(twice on the boundary of P1), once in each orientation. Thus finding the good 
matching in P' is trivial. It is also easy to see that it is peripherally monotonic, 
therefore P' is tileable. 

6. Some Problems 

1. How many parallelogram tilings of a regular 2n-gon are there? 
2. Can we use an algorithm similar to that in Section 2 to tile parallelohedra by 

parallelopipeds? A paralMohedron is a three-dimensional polyhedron with 
faces which are parallelograms. What if the faces are simply polygonal? 

3. Is there a general criterion for sets of tiles for which the tiling problem is not 
NP-complete? 
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