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Abstract. A family of rectilinear periodic solutions of the three-body problem, in which the central 
body collides alternately with each of the two other bodies, is investigated numerically for all values 
of the three masses. It is found that for every mass combination there exists just one solution of this 
kind. The linear stability of the orbits with respect to arbitrary three-dimensional perturbations is 
also investigated. Domains of stability and instability are displayed in a triangular mass diagram. 
Their boundaries form one-parameter families of critical orbits, which are tabulated. Limiting cases 
where one or two masses vanish arestudied in detail. The domains of stability cover nearly one half of 
the total area in the mass diagram: this reinforces the conclusion that real triple stars might have 

r 

motions of a kind entirely different from the usual hierarchical arrangement. 

1. Introduction 

In a previous paper (H6non, 1976), it was unexpectedly found that a rectilinear 
periodic solution of the three-body problem originally computed by Schubart (1956) 
was linearly stable in three-dimensional space. Moreover, this particular orbit was the 
origin of a family of plane periodic solutions, and along this family a sizeable interval 
was found where the orbits retained two-dimensional stability. These orbits were of 
the 'interplay' type (Szebehely, 1971), with alternating close approaches of body 2 
with bodies 1 and 3. This indicated the possible existence of triple stars with a motion 

radically different from the usual hierarchical arrangement. 
These results were limited to the particular case of three equal masses, and it would 

be of interest to explore more generally the stability of interplay orbits for all possible 

values of the three masses. But a given mass combination is represented essentially by 
2 parameters (the total mass can be normalized to 1); and for given masses, there 
exists a one-parameter family of periodic orbits. Thus, a full exploration would 
require the computation of a 3-parameter set of periodic orbits and of their stability, 

and would represent a considerable amount of work. 
We settle therefore for a more modest objective: we let the masses have all possible 

values, but for given masses we consider only one particular member of the one- 
parameter family of periodic orbits. Thus we deal only with a 2-parameter set of 
periodic orbits, which proves to be manageable. The particular member which we 
select is simply the rectilinear periodic orbit (as we shall see, this orbit continues to 
exist when the masses are varied). Such a choice may seem paradoxical since this 
particular orbit is completely unrealistic: it cannot exist in real systems because of the 

collisions. On second thought, however, this choice offers a number of advantages. 
First of all, the rectilinear orbit is the only one for which a determination of the linear 
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stability in the plane suffices to determine also the three-dimensional stability; this is 
a consequence of the axial symmetry (H6non, 1976). Second, if for some given values 
of the masses the three stability indices of the rectilinear orbit are found to satisfy 

Ik, I < 2, ( i - -  1, 2, 3), (1) 

then there will be a finite interval along the family of plane orbits for which (1) is still 
satisfied. In other words, there will exist not only a stable rectilinear orbit but also 
stable interplay orbits, free of collisions and therefore representing possible motions of 
real systems. Third, the rectilinear orbits represent a particular case of the three- 
body problem which is of interest in itself; and finally, they are particularly easy to 
compute because of their simplicity. The collisions are no problem when an adequate 
regularization is used (see H6non, 1974). 

2. Resul ts  

We consider periodic rectilinear solutions carried by the x axis; the system is then 
defined by the masses m~, the positions x~ and the velocities 2i=u~ (i= 1, 2, 3). We 
number the bodies in order of increasing abscissas: 

Xl ~ X2 ~ X3; (2) 

this order is invariant in time. We use the normalization described in a previous 
paper (H6non, 1974). The gravitational constant is equal to 1. The sum of the three 
masses is normalized to 1: 

m~ + m2 + ma = 1. (3) 

The origin is the center of mass of the system: 

mix1 + m2x2 + m3X3 = O, m~u~ + m2u2 + m 3 u 3  = O. (4) 

The dimensions are scaled in such a way that the total energy is 

E 1 2 = ~ ( m l u  1 + m2u~ + m a u l ) -  
m 2 m 3  m 3 m l  m i m e  

X 3 ~ X 2 X3 ~ X1 2 2 ~ X 1 

= -�89 + m3ml + mlm2). (5) 

Finally, the origin of time is defined by the condition 

= u3 .  (6 )  

A given mass combination can be conveniently represented by a point in a triangular 
mass diagram (Figure 1): the distances of the point to the three sides represent the 
three masses. The height of the triangle must then equal 1 to satisfy (3). Similar mass 
diagrams have been used before by Szebehely (1972) and Standish (1972). 

For given masses, the rectilinear three-body problem has in general isolated 
periodic solutions; if the masses are allowed to vary, each of these solutions generates 
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Fig. 1. The mass diagram. 

a two-parameter family of periodic solutions (H6non, 1974). Here we start from 

Schubart's orbit, an isolated solution for the case ml=m2=rn3, and we consider the 

two-parameter family generated by it when the masses are varied. Schubart's orbit 

is represented by a point at the center of the triangle in Figure 1 ; and locally at least, 

there should be a one-to-one correspondence between the members of the two- 

parameter family and the representative points in Figure 1. This is confirmed by the 

numerical computations. Moreover, the one-to-one correspondence turns out to 

exist not only in the neighborhood of the center, but throughout the triangle: for 

every mass combination, there exists exactly one member of the family. In other 

words, this family, considered as a function of two variables, has a single sheet which 

covers the whole triangle. (It can even be extended beyond the border of the triangle, 

but this is of no astronomical interest since one or two of the masses are then negative.) 

A typical solution is shown on Figure 2; it corresponds to the point shown on Figure 

1, and to the particular values m1=0.34, m2=0.48, m3-0.18.  The positions of the 
three bodies on the x axis are represented as functions of time. The period is T -  

5.485 6 1 7 . . . ;  two full periods are represented. The motion is symmetrical with 

respect to the time to of a collision 1-2: 

x,(to + x , ( to -  u,(to + ~)= --u,(to- "c). (7) 

It is also symmetrical with respect to the time to + 7/2 of a collision 2-3. In view of 
these symmetries, it might have been more logical to define the origin of time as the 

time of a collision; however, this would raise practical problems because two velocities 
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are then infinite and the initial conditions can only be specified in regularized variables. 
By contrast, the convention (6) ensures that the computation begins and ends away 
from collisions. 

We turn now to the linear stability of the orbits. It will depend on the values of two 
stability indices, kl and k2, which are related respectively to longitudinal and trans- 
versal perturbations (see H6non, 1976, where the practical procedure for computing 
kz and k2 is also given). These indices are always real. They change continuously as the 
representative point moves in the mass diagram of Figure 1, and our problem is to 
find the regions where the two following inequalities are simultaneously satisfied: 

Ikal < 2, [kzi < 2; (8) 

these will be the regions of three-dimensional stability. 
To this end, the triangle of Figure 1 was explored along a number of vertical 

'sections'. Each section is thus characterized by a constant value of m z - m 3 ,  and m2 
is used as a parameter. There is a symmetry in the problem: two points which are 
symmetrical with respect to the vertical axis (dashed line on Figure 1) represent 
essentially the same orbit, with only the direction of the x axis inverted and the names 
of bodies 1 and 3 exchanged. This symmetry is apparent in the results (Figure 5 
below). Therefore it is sufficient to explore the left half of the triangle, corresponding 
to mz >i m3. 

In each section, the stability indices were computed for a number of orbits, and 
then plotted as a function of m2. Figure 3 shows typical results for the section 
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m l - m a = 0 . 3 2 .  Critical orbits, corresponding to [k~[=2, or [k2[=2, were computed 
by an iterative process; they are represented by dots on Figure 3. Along this particular 
section, one thus finds that the orbits are longitudinally unstable for 0.246 958... < 
m2<0.448 362...; they are transversally unstable for rn2<0.107 484... and for 
0.144 496 <m2 <0.190 550 .... 

The section m ~ - m a = 0  (dashed line in Figure 1) is of particular interest since it 
corresponds to a symmetrical mass configuration. It is represented on Figure 4. The 
curves kl(m2) and k2(mz) touch the line k ~ = - 2 ,  at m2=0.354 838... and mz= 
0.178 072... respectively. This peculiarity is a consequence of the symmetry and can be 
explained as follows. Consider a particular orbit with ml =ma,  with period T. If, after 
one half-period, we invert the direction of the x axis and exchange bodies 1 and 3, 
we find that the initial configuration is recovered. In other words, in this special case 
the orbit can be considered as having a period T/2. This shorter periodic orbit has two 
Stability indices, which we call k[ and k;.  Let 2~ and 2~z be the two eigenvalues 
associated with k~; there is 

2 1  ! l ! ! 1 "Jr" / ~ i 2 - - k t ,  2tl)~i2 = 1. (9) 

The eigenvalues for the full periodic orbit of period T are 

2,1 = 2;~, 2,2 = 2;~, (10) 

and we have 

k~ = 2~1 + 2~z = k'~ z - 2. (11) 

This immediately shows that ki t> - 2 ,  and that ki will touch the value - 2  whenever 
k~ changes sign. A similar effect operates in the circular restricted problem when the 
masses of the primaries are equal (H6non, 1973). 

With the help of a number of sections similar to Figures 3 and 4, the domains of 
stability and instability were mapped in the mass diagram. Figure 5 shows the result. 
Horizontally hatched regions correspond to longitudinal instability, i.e. Ik l l>2;  
vertically hatched regions correspond to transversal instability, i.e., [k21 > 2. Therefore 
the orbits are three-dimensionally stable in the white regions, and unstable in all 
hatched regions. 

We see thus that the stability of the rectilinear orbit, established in our earlier paper 
for the case of three equal masses, exists also for many other mass combinations, 
though not for all. The regions of stability represent about 46~o of the total area of 
the triangle. This reinforces the conclusion that real triple stars might have an interplay 
type of motion, entirely different from the classical hierarchical configuration which 
until now was generally believed to be the only stable arrangement for stars of com- 
parable masses. 

The three regions of stability in Figure 5 have a somewhat complex shape, and can- 
not be characterized in a few words. Very roughly, however, it can be said that stability 
tends to prevail when the central mass rnz increases. In particular, the largest stability 
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Domains of stability (white), longitudinal instability (horizontal hatching), transversal 
instability (vertical hatching) in the mass diagram. 

region, at the top of the triangle in Figure 5, happens to be 

approximation by 

represented in good 

m2 > m l  and m2 > m3,  (12) 

i.e., the central mass is the largest of the three. That such configurations are stable is 

intuitively natural. But there are also stable mass configurations in which the central 

mass is not the largest, as shown by the two lower white regions in Figure 5. 

The boundaries of the regions correspond to one-parameter families of critical 

periodic orbits. These families are given by Tables I to III. Each critical orbit was 

determined with an accuracy of the order of 10 -s. Only one half of the boundaries is 

given; the other half is deduced by symmetry, i.e. exchanging rni and m3, xl and x3. 
To save space, only the initial coordinates x~, x3, u~ =u3 are listed; the initial values 

of x2 and u2 can be deduced from (4). Our program uses Waldvogel's regularization 
(1972), which requires that all three masses be finite; this probably explains our finding 

that the numerical accuracy deteriorates when one of the masses becomes very small. 

As a consequence, the limiting cases in which one or two masses vanish could not be 

computed directly. The initial lines of Tables I to III, corresponding to m2-rn3 =0,  

were derived from an analysis of the limit (see below Section 3); the last lines of 
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TABLE I 

Critical periodic orbits, kl = - 2  

mi m2 ma xl xa ul = ua T k2 

1. 0. 0. 0. 2. 0. 3.141 593 oo 
0.973 090 0.013 820 0.013 090 -0 .032  558 2.046 487 -0 .027  931 3.299 608 -16.235 7 
0.918 727 0.042 546 0.038 727 -0.111 213 2.050 788 -0 .059  544 3.477 898 -8 .964  711 
0.864 066 0.071 868 0.064 066 -0 .200  214 2.023 908 -0 .082  935 3.617 523 -6 .153 751 
0.809 295 0.101 410 0.089 295 -0 .296  196 1.981 592 -0 .102  294 3.741 601 -4 .517  760 
0.754 513 0.130 974 0.114 513 -0 .397  469 1.929 414 -0 .119  178 3.857 917 -3 .406  928 
0.699 792 0.160 416 0.139 792 -0 .503 085 1.870 178 -0 .134  383 3.970 494 -2 .585  521 
0.650 504 0.186 790 0.162 706 -0.601 686 1.812 034 -0 .147  039 4.071 066 - 2 .  
0.645 188 0.189 624 0.165 188 -0 .612  511 1.805 526 -0 .148 356 4.081 937 -1 .943 396 
0.590 750 0.218 500 0.190 750 -0 .725 477 1.736 509 -0 .161 366 4.194 224 -1 .420  913 
0.536 521 0.246 958 0.216 521 -0.841 898 1.663 848 -0 .173 576 4.309 069 -0 .982  418 
0.482 546 0.274 908 0.242 546 -0.961 830 1.588 060 -0 .185  086 4.428 123 -0 .604  976 
0.428 867 0.302 266 0.268 867 -1 .085  466 1.509 528 -0 .195  951 4.553 129 -0 .272  955 
0.375 530 0.328 940 0.295 530 -1 .213 134 1.428 544 -0 .206  197 4.686 046 0.024 857 
0.322 581 0.354 838 0.322 581 -1 .345 328 1.345 328 -0 .215  824 4.829 213 0.296 891 
0.270 074 0.379 852 0.350 074 -1 .482  746 1.260 051 -0 .224  812 4.985 537 0.549 805 
0.218 066 0.403 868 0.378 066 -1 .626  365 1.172 831 -0 .233 117 5.158 782 0.789 158 
0.166 622 0.426 756 0.406 622 -1 .777  553 1.083 744 -0 .240  673 5.353 989 1.019 893 
0.115 819 0.448 362 0.435 819 -1 .938 264 0.992 816 -0 .247  381 5.578 160 1.246 752 
0.065 747 0.468 506 0.465 747 -2.111 349 0.900 008 -0 .253 102 5.841 407 1.474 677 
0.016 515 0.486 970 0.496 515 -2.301 111 0.805 200 -0 .257  640 6.158 982 1.709 301 
0. 0.492 82 0.507 18 -2 .370  49 0.772 48 -0 .258 87 6.283 185 1.791 74 

Tables I and II, corresponding to m l = 0 ,  were obtained by interpolation from 

neighboring values and are therefore somewhat less accurate. 
Figure 5 shows that the boundary lines corresponding respectively to k l - - 2  and 

k 2 - -  2 intersect at two symmetrical points. These points represent a doubly critical 

orbit. The values of the masses are (for the point at the left): 
ml = 0.650 504 ..., m2 - 0.186 790 ..., m3 = 0.162 706 ... .  (13) 

Table IV lists the family of ordinary periodic orbits for the symmetrical case, 
m~ = m3 (see Figure 4). Again the first and last lines were derived from an analysis of 

the limiting cases (Section 3). 

3. Limiting Cases 

The sides and the vertices of the triangle (Figures 1 and 5) correspond to cases where 
one or two masses vanish, and are of particular interest. Because of the symmetry, 
only four cases need be distinguished; we shall examine them in turn. 

(a) Limit  m 3  > O. This corresponds to the left side of the triangle. In this limit we 
obtain the rectilinear restricted problem of three bodies. The primaries are bodies 1 
and 2, which describe an elliptical two-body orbit with eccentricity 1. Taking into 
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TABLE II  

Critical periodic orbits, k2---  2 

m l  m2 m3 XI X3 Ul "-- U 3 T kl 

l o  

0.973 707 
0.922 389 
0.872 234 
0.823 004 
0.774 577 
0.726 879 
0.679 861 
0.633 493 
0.587 752 
0.542 629 
0.498 119 
0.454 227 
0.410 964 
0.368 349 
0.326 4O9 
0.285 183 
0.244 725 
0.205 105 
0.166 422 
0.162 706 
0.128 814 
0.092 483 
0.057 747 
0.025 154 
0. 

. 

0.012 
0.035 
0.055 
0.073 
0.090 
0.106 
0.120 
0.133 
0.144 
0.154 
0.163 
0.171 
0.178 
0.183 
0.187 
0.189 
0.190 
0.189 
0.187 
0.186 
0.182 
0.175 
0.164 
0.149 
0.132 

586 
222 
532 
992 
846 
242 
278 
014 
496 
742 
762 
546 
072 
302 
182 
634 
550 
790 
156 
790 
372 
034 
506 
692 
1 

o 

0.013 
0.042 
0.072 
0.103 
0.134 
0.166 
0.199 
0.233 
0.267 
0.302 
0.338 
0.374 
0.410 
0.448 
0.486 
0.525 
0.564 
0.605 
0.646 
0.650 
0.688 
0.732 
0.777 
0.825 
O.867 

707 
389 
234 
OO4 
577 
879 
861 
493 
752 
629 
119 
227 
964 
349 
409 
183 
725 
105 
422 
5O4 
814 
483 
747 
154 
9 

. 

- 0 . 0 3 2  258 
- 0 . 1 0 6  710 
- 0 . 1 8 6  984 
- 0 . 2 7 0  573 
- 0 . 3 5 6 4 7 4  
- 0 . 4 4 4  218 
-0 .533  593 
- 0 . 6 2 4  534 
- 0 . 7 1 7  071 
--0.811 314 
- 0 . 9 0 7  437 
- 1.005 684 
- 1.106 380 
- 1.209 948 
- 1.316 944 
- 1.428 102 
- 1.544 417 
- 1.667 273 
- 1.798 668 
- 1.812 034 
- 1.941 626 
-2 .101  022 
- 2.285 446 
--2.512 146 
- 2.768 5 

. 

1.988 976 
1.934 263 
1.868 825 
1.798 746 
1.726 033 
1.651 615 
1.575 986 
1.499 425 
1.422 099 
1.344 099 
1.265 475 
1.186 240 
1.106 380 
1.025 859 
0.944 616 
0.862 562 
0.779 577 
0.695 496 
0.610 092 
0.601 686 
0.523 048 
0.433 895 
0.341 9O9 
0.245 850 
0.1594 

O .  

- 0.026 571 
- -  0.054 242 
-0 .073  353 
- 0 . 0 8 8  201 
- 0 . 1 0 0  305 
- 0 . 1 1 0  429 
--0.119014 
- 0 . 1 2 6  337 
--0.132 581 
- 0 . 1 3 7  867 
- 0 . 1 4 2  276 
- 0 . 1 4 5  858 
- 0 . 1 4 8  639 
- 0 . 1 5 0  625 
-0 .151  804 
- 0 . 1 5 2  141 
-0 .151  579 
- 0 . 1 5 0  030 
- 0 . 1 4 7  365 
- 0 . 1 4 7  039 
- 0 . 1 4 3  393 
- 0 . 1 3 7  824 
- 0 . 1 3 0  188 
- 0 . 1 1 9  654 
- 0 . 1 0 7  2 

3.141 
3.091 
3.056 
3.044 
3.043 
3.050 
3.065 
3.086 
3.113 
3.146 
3.185 
3.232 
3.286 
3.350 
3.424 
3.510 
3.611 
3.731 
3.875 
4.051 
4.071 
4.272 
4.557 
4.945 
5.513 
6.283 

593 
259 
634 
225 
438 
991 
472 
252 
132 
198 
773 
405 
886 
303 
120 
3O4 
539 
55O 
662 
778 
O66 
220 
517 
191 
957 
185 

- - 2 .  

- 1 . 6 3 1  0 

- 1.340 192 
- 1.179 305 
- 1.075 164 
- 1.005 294 
- 0 . 9 5 9  567 
- 0.932 656 
-0 .921  596 
- O.924 779 
- 0.941 505 
-0 .971  771 
- 1.016 200 
- 1.076 066 
- 1.153 398 
- 1.251 204 
- 1.373 846 
- 1.527 679 
- 1.722 168 
- 1 . 9 7 1  9 2 1  

- - 2 .  

- 2.3O0 666 
- 2.749 765 
- 3.398 939 
- 4 . 4 2 6  875 
- 5.963 3 

TABLE III  

Critical periodic orbits, k2 =+2 

m l  m2 m3 Xl X3 /gl -- U3 T kl 

l o  

O.973 836 
0.923 433 
0.874 856 
0.827 684 
0.781 661 
0.736 614 
0.692 420 
0.648 990 
0.6O6 258 
0.564 177 
0.522 714 
0.481 844 
0.441 556 

. 

0.012 
0.033 
0.050 
0.064 
0.076 
0.086 
0.095 
0.102 
0.107 
0.111 
0.114 
0.116 
0.116 

328 
134 
288 
632 
678 
772 
160 
020 
484 
646 
572 
312 
888 

a 

0.013 
0.043 
0.074 
0.107 
0.141 
0.176 
0.212 
0.248 
0.286 
0.324 
0.362 
0.401 
0.441 

8 3 6  

433 
856 
684 
661 
614 
420 
990 
258 
177 
714 
844 
556 

. 

- 0 . 0 3 2  187 
- 0 . 1 0 5  295 
- 0 . 1 8 2  230 
- 0.260 541 
- 0 . 3 3 9  388 
- 0 . 4 1 8  440 
- 0 . 4 9 7  576 
- 0 . 5 7 6  771 
- 0 . 6 5 6  045 
- 0 . 7 3 5  444 
- 0 . 8 1 5  028 
- 0.894 867 
- 0 . 9 7 5  037 

. 

1.976 450 
1.898 245 
1.812 633 
1.725 637 
1.638 897 
1.552 955 
1.467 964 
1.383 920 
1.300 758 
1.218 386 
1.136 706 
1.055 621 
0.975 037 

. 

- 0.026 277 
- 0.052 629 
- 0.069 987 
- 0.082 862 
- 0.092 859 
- 0.100 784 
- 0 . 1 0 7  105 
- 0 . 1 1 2  120 
- 0 . 1 1 6  022 
- 0 . 1 1 8  945 
- 0 . 1 2 0  976 
- 0 . 1 2 2  173 
- 0 . 1 2 2  569 

3.141 
3.046 
2.929 
2.842 
2.773 
2.717 
2.672 
2.635 
2.605 
2.582 
2.565 
2.552 
2.545 
2.543 

593 
373 
132 
206 
279 
500 
097 
251 
698 
532 
103 
953 
779 
407 

- 2 .  
- 1.552 7 
- 1.144 490 
- 0.893 368 
- 0 . 7 1 5  186 
- 0.581 642 
- 0 . 4 7 8  886 
- 0.398 970 
- 0 . 3 3 6  924 
- 0.289 481 
- 0.254 443 
- 0.230 341 
- 0 . 2 1 6  230 
-0 .211  582 
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T A B L E  IV 

Periodic orbits, ml = ma 

m l  = m3 m 2  - -  x~ = x3  ux = ua T k~ k2  

0. 1. 1.673 612 - 0 . 4 4 1  611 6.283 185 2. 2. 
0.02 0.96 1.662 672 - 0 . 4 2 7  962 6.261 636 1.692 301 1.998 187 
0.06 0.88 1.638 699 - 0 . 4 0 0  562 6.204 575 1.068 490 1.981 487 
0.10 0.80 1.611 441 - 0 . 3 7 3  018 6.124 824 0.441 729 1.941 098 
0.14 0.72 1.580 138 - 0 . 3 4 5  313 6.016 147 - 0 . 1 7 3  882 1.866 262 
0.18 0.64 1.543 774 - 0 . 3 1 7  425 5.870 221 - 0 . 7 5 7  751 1.740 473 
0.22 0.56 1.500 955 - 0 . 2 8 9  323 5.675 770 - 1.280 234 1.537 712 
0.26 0.48 1.449 716 - 0 . 2 6 0  957 5.417 254 - 1.699 229 1.215 886 
0.30 0.40 1.387 184 - 0 . 2 3 2  242 5.072 851 - 1.955 939 0.706 190 
0.322 581 0.354 838 1.345 328 - 0 . 2 1 5  824 4.829 213 - 2 .  0.296 891 
0.333 333 0.333 334 1.323 348 - 0 . 2 0 7  939 4.698 084 - 1.988 976 0.062 601 
0.34 0.32 1.308 968 - 0 . 2 0 3  024 4.611 314 - 1.970 496 - 0 . 0 9 6  853 
0.36 0.28 1.261 914 - 0 . 1 8 8  136 4.323 118 - 1 . 8 5 5  702 - 0 . 6 4 2  774 
0.38 0.24 1.207 937 - 0 . 1 7 2  973 3.987 051 - 1.640 491 - 1.272 088 
0.40 0.20 1.145 274 - 0 . 1 5 7  412 3.593 945 - 1 . 3 1 0  396 - 1 . 8 5 8  178 
0.410 964 0.178 072 1.106 380 - 0 . 1 4 8  639 3.350 303 - 1.076 066 - 2 .  
0.42 0.16 1.071 437 - 0 . 1 4 1  230 3.132 636 - 0 . 8 5 3  142 - 1 . 8 3 5  164 
0.43 0.14 1.029 240 - 0 . 1 3 2  783 2.872 269 - 0 . 5 7 4  580 - 0 . 9 9 2  562 
0.44 0.12 0.982 715 - 0 . 1 2 3  979 2.589 541 - 0 . 2 6 2  950 1.385 346 
0.441 556 0.116 888 0.975 037 - 0 . 1 2 2  569 2.543 407 - 0 . 2 1 1  582 2. 
0.45 0.10 0.931 027 - 0 . 1 1 4  667 2.282 257 0.080 055 7.425 331 
0".46 0.08 0.873 032 - 0 . 1 0 4  583 1.947 877 0.450 830 23.121 22 
0.47 0.06 0.807 059 - 0 . 0 9 3  232 1.583 150 0.842 952 68.981 76 
0.48 0.04 0.730 366 - 0 . 0 7 9  533 1.182 759 1.245 748 242.581 6 
0.49 0.02 0.637 325 - 0 . 0 6 0  362 0.732 288 1.641 762 1487.570 
0.50 0. 0.5 0. 0. 2. oo 

account the normalization (5), we find that the semi-major axis is 1 and the period is 

2~z. If to is the time of  a 1-2 collision, the motions of  bodies 1 and 2 are given in para- 

metric form by 

xl - -m2(1 - cos E), x2 = ml(1 - cos E), 

t -- to - E - sin E. (14) 

The motion of the third body, on the other hand, is not trivial and can only be obtained 

from numerical integration. An example of an orbit which is not actually at the limit 

m3=0,  but close to it, is shown in Figure 6; it corresponds to m1=0.504 353..., 

m2=0.491  294..., ma=0.004 353... (incidentally, this is a critical orbit with k l = - 2 ) .  

The results of Section 2 show that orbits with /9" /3--0  a r e  stable for 0.492 82... < 

m 2 < 1; unstable longitudinally for 0.1321... < m  2 <0.492 82...; and unstable both 

longitudinally and transversally for 0 < m 2 < 0.1321 .... 

(b) Limit m2 > 0. This case, which corresponds to the bottom side of the triangle, 

is quite interesting. An example close to the limit is shown on Figure 7, for m~ =0.495, 
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m2--0.01, m3 =0.495. It can be seen that the central body moves quickly back and 
forth while bodies 1 and 3 are almost motionless. As m2 tends to zero, its velocity 
tends to infinity, and the period tends to zero (see end of Table IV). This is easy to 
explain: only the repeated collisions with body 2 prevent bodies 1 and 3 from falling 
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towards the center of the system; therefore, as m2 decreases, its velocity must increase 
so as to still transfer a sufficient momentum at each collision. 

Asymptotic expressions are easily derived. Since the period is very short, we can 
neglect the displacement of bodies 1 and 3: xl and xa are assumed to be constants. 
Also, since the velocity of body 2 is large, we can take it as constant between collisions. 

Because of the time symmetry, we have then u2-- + u, where u is a constant. The period 

is 

T = 2(xa - x~). (15) 
U 

The momentum transferred to body 1 at each collision is -2rn2u.  The total force 

exerted on body 1 from the repeated collisions with body 2 and from the attraction of 
body 3 must vanish: 

2m2u m l m  3 
I- = O. ( 1 6 )  

T (xa - xl) 2 

Finally, the normalization (5) gives 

E = lm2u2 m l m 3  

X 3 -- X 1 
= - � 8 9  (17) 

From these three equations we obtain 

x a  - x x  = 1 ,  u = . ~  , T = 2 m 2  . ( 1 8 )  
k rn2 ] a 

The system can be described as two attracting bodies 1 and 3, separated by a weight- 
less gas whose pressure equilibrates the attractive force; the gas consists of a single 

molecule rn2! 
The present case is unusual because one of the masses tends to zero, yet in the limit 

we do not reach the classical restricted three-body problem: the motion of bodies 1 

and 3 does not become a two-body motion. This is because the effect of body 2 does 
not become negligible in the limit. 

Approximate expressions can also be obtained for the stability indices. We con- 
sider first the longitudinal stability. Suppose that the equilibrium values (18) are 
perturbed by small amounts A ( x a - x x ) ,  Au, AT.  Equations (15) and (17) still hold for 
the perturbed motion and give by differentiation 

Au = - u A ( x 3  - x l ) ,  A T  = 4 A(x3 - x l ) .  (19) 
U 

Equation (16) is no more satisfied by the perturbed motion; its left-hand side gives the 
force acting on particle 1. Differentiating and substituting (19), we obtain for this 
force: 

d 2 

ml  dt  2 d x l  = mlmad(xa  - x l ) .  ( 2 0 )  
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Combining this with a similar equation for body 3, we have 

d 2 
d t  2 A ( x 3  - x l )  = - A ( x 3  - x l )  (21) 

with the general solution 

A ( x 3 -  xl )  = C1 e it + C2 e -~t. (22) 

The perturbation oscillates with period 2re: the motion is longitudinally stable. This 
oscillation is superimposed on the much shorter period T of the motion itself. Equation 
(22) shows that the eigenvalues are e + ~T and their sum, i.e., the longitudinal stability 

index, is 

kl = 2 cos T (23) 

or, using (18): 

4 m  2 
kl ~ 2 �9 (24) 

mlm3 

This expression is in good agreement with the numerical results for m2 > 0 (see 
Figures 3 and 4 and the last lines of Table IV). 

Next we consider the transversal stability. We again assume that ml and ma are 
motionless, and that m2 has a constant velocity u between collisions. In a trans- 
versally perturbed orbit, the motion of body 2 lies no more on the x axis, and 

collisions are replaced by close approaches, with body 2 describing near-parabolic 
hairpin turns around bodies 1 and 3 in alternance. Let l be the impact parameter at 
one close approach of m3 by m2. The deflection angle is given by the classical formula 

tan fl m3 (25) = �9 

fl is not quite equal to ~z, so that body 2 does not come back straight at body 1, but 
deviates by a small angle ~z-fl. Therefore the impact parameter at the next close 
approach of body 1 is 

l' = (xa - xl) sin (~z - fl) (26) 

or, using (18) and (25): 

l' ,.~ 2ml 1. ( 2 7 )  
m2 

Similarly, the next close approach of body 3 will have an impact parameter 

l" = 2ma 1' (28) 
m2 
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and the net amplification factor after one period is 

1" 4mlm3 
7 = m~ " (29) 

For rn2 small, this is a large quantity: the orbit is strongly unstable transversally. One 
eigenvalue is equal to (29), while the other is its inverse and is very small. Thus the 
transversal stability index is 

4 m l m  3 
'~ �9 (30) ~ 

This asymptotic expression is in reasonable agreement with the numerical results (see 
end of Table IV). For m2 -+ 0, we have k2 > + oo. This explains why the bottom of the 
triangle in Figure 5 is entirely occupied by a region of transversally unstable orbits. 

(c) Limi t  rn2 > O, rna --~ O. This case corresponds to the left vertex of the triangle. 
An example is shown on Figure 8 for m1=0.973 090..., m2=0.013 820..., rn3= 
0.013 090... (second line of Table I). Body 1, having all the mass, is motionless at the 
origin: x 1 - 0 .  Bodies 2 and 3 have no effect upon each other between collisions and 
describe independent two-body orbits in the field of body 1; the collisions themselves 
are like billiard-ball collisions. The parameters of the orbit can then be derived as 
follows. Let to be again the time of a 1-2 collision. Two cases must be distinguished, 
depending on whether the motion of body 2 is elliptic or hyperbolic. In the first case, 
it is given in parametric form between the times t o - T / 2  and to + 7"/2 by 

x2 = aa(1 - cos E2), 

U2 "-- a2 1]2 
sin E2 

1 - c o s E z  

t -  to = a a / Z ( E 2  - sin E2), 

(31) 

where the semi-major axis a2 is a constant to be determined and the eccentric anomaly 
E2 is the parameter. The motion of body 3 is always elliptical, and is similarly given 
between times t o - 7 / 2  and to + 7"/2 by 

xa = a3(1 + cos E3), t -  to = a3/2(E3 + sin E3), 

ua = - a ; -  1/2 sin E3 . (32) 
1 + cos E3 

At t =  to + T/2, bodies 2 and 3 collide and there must be 

X 2  = X a ,  m2u2 = --m3u3, (33) 

the last equation expressing the conservation of momentum during the collision. 
Finally, the normalization (5) of the energy gives 

m2 ) -- m3 
- � 8 9  + ma). (34) 
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From Equations (31) to (34) one deduces 

(1 - cos E2) s 
(E2 - s in  E2)  2 

(1 + cos E3) 3 
(E3 + sin E3) 2 

(35) 

m 3 - ( } + c ~ s ~22 ) 1 / 2 s i n E 2 -  -c~ s~n -~a ' (36) 

where E2 and E3 represent now the values at the time of collision. For a given ratio 

ma/mz, Equations (35) and (36) constitute a set of two implicit equations for Ez and 

E3, which must be solved numerically. The semi-major axes are then given by 

m 3  
(1 - cos E2) + (1 + cos E3) 

m 2  
a 2 --- 

cos  , 

ma (1 + cos E3) 
m2 

�9 (37)  a 3  - -  

cos  , 

(1  - c o s  E ~ )  + - -  

If the motion of body 2 is hyperbolic, (31) must be replaced by 

x2 = -a2(cosh F2 - 1), t - to = ( - a 2 )  a/2 (sinh F2 - F2), 

u2 = ( -  a2)- 1/2 
sinh F2 

cosh F2 - 1 
(38) 

with a2 <0.  Equations (32) to (34) still hold. Equations (35) to (37) are replaced by 

(cosh Fz - 1) 3 

(sinh F2 - F2) 2 

(1 + cos E3) 3 

(E3 + sin E3) 2 
(39) 

m3 = [ 1 + cos _Ea_ ] 1/2 sinh F2 
(4O) 

m 2 ~cos-h  F 2 - 1 ] sin E a  

m3 (1 + c o s  Ea) - ( c o s h  F2 - 1) 
m 2  

a2 --- S ' 

m 3  (1 + cos E3) - (cosh F2 - 1) 
m 2  

�9 (41 )  a 3  - -  

+ 

Table V gives some numerical values. The second column gives E2 if a2 > 0, F2 if 

a2 < 0. The column X gives the common abscissa of bodies 2 and 3 when they collide. 
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T A B L E  V 

Periodic  orbits in the l imit m2 .~ 0, ma ~ 0 

mdm2 E2 or F2 E3 a2 aa T X k l 

0. 3.141 593 1.086 255 1. 1.364 440 6.283 185 2. -10 .103  776 
0.1 3.041 428 1.048 620 0.977 388 1.300 987 5.684 456 1.949 877 -8 .291  318 
0.2 2.946 893 1.014 967 0.961 851 1.247 362 5.194 752 1.905 530 -6 .901  149 
0.4 2.771 101 0.957 051 0.947 325 1.161 453 4.442 426 1.830 373 - 4 . 9 2 9  177 
0.6 2.608 660 0.908 689 0.950 329 1.095 424 3.892 103 1.768 868 - 3 . 6 1 4  386 
0.8 2.455 825 0.867 454 0.968 140 1.042 900 3.472 311 1.717 416 -2 .685  569 
1. 2.309 881 0.831 711 1. 1. 3.141 593 1.673 612 - 2 .  
1.2 2.168 729 0.800 312 1.046 607 0.964 218 2.874299 1.635 779 - 1 . 4 7 6  290 
1.5 1.962 225 0.759 595 1.149 231 0.920 329 2.557 287 1.587 673 -0 .891  238 
2. 1.619 130 0.704 279 1.453 912 0.864 977 2.174 891 1.524 157 - 0 . 2 3 9  314 
3. 0.804 578 0.623 495 4.682 320 0.792 303 1.702 973 1.435 528 0.479 759 
3.388 734 0. 0.599 111 c~ 0.772 144 1.578 208 1.409 809 0.653 145 
5. 1.492 946 0.522 645 - 0 . 9 9 6  308 0.713 908 1.232 727 1.332 510 1.093 851 
10. 2.606 877 0.397 974 - 0 . 2 0 9  533 0.634 014 0.793 121 1.218 479 1.560 856 
20. 3.480 886 0.294 832 - 0 . 0 7 4  511 0.581 045 0.518 568 1.137 018 1.787 513 
oo oo O. 0. 0.5 0. 1. 2. 

Note that for m3/m2 ~ 0, we recover case (a) above, while for ma/m2 ~ ~ we recover 
case (b). 

The longitudinal stability can be computed as follows. Consider a perturbed orbit, 
in which the changes in the position and time of a collision 2-3 are A X and At, while 
the changes in the velocities just after the collision are Au2 and Au3. From this one 
deduces successively the perturbations in the orbital elements of bodies 2 and 3; the 
perturbations A'X and A'z in the position and time of the next collision; the per- 
turbations of the velocities just before that collision; and finally the perturbations 
A'u2 and A'u3 of the velocities just after it. The computations are tedious and will not 
be reproduced here. The result is a matrix M such that 

d'r  ~ d'v 

zJ' U2 

\A 'u3/  \Au3 /  

(42) 

Two of the eigenvalues of M are equal to 1 ; they correspond respectively to a shift in 
time and to a change of scale of the orbit. The two other eigenvalues give the longi- 
tudinal stability. Thus, the trace of M is equal to 2 + kl ,  and one obtains 

12 sin E3(E3 + sin E3)(m~ ) 
kt = 2 + (1 + cos E3) 3 1 a2 - 4a2aa. (43) 

Numerical values are given in Table V. The orbits are longitudinally stable for 
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ma > m2, unstable for m3 <m2. For  m2=m3, kl equals - 2  exactly. This peculiarity 
can be explained as follows. For mz =m3, the velocities of bodies 2 and 3 are simply 

exchanged during a collision. Suppose that after each collision we exchange the 

identities of 2 and 3. Then the two bodies pass through each other without any 

interaction, and describe for all times independent two-body motions. The period of 

these motions is 2T, as can be seen on Figure 8. Consider now a perturbed orbit in 

which one of the motions is shifted in time by an amount + At, and the other is shifted 

by an amount -Az .  The periods do not change. If now we reestablish the original 

identities, we find that after each period T the shifts of bodies 2 and 3 change sign. 

This corresponds to an eigenvalue - 1. The last eigenvalue must then be also - 1, and 

kl = - 2 .  

As a consequence, the boundary line k t = - 2  on Figure 5 ends in the vertex 1 with a 

slope corresponding to m2 = ma, i.e., it is tangent to the bisectrix of the angle. 

To determine the transversal stability, we consider a perturbed orbit in which small 

motions in the y direction are superimposed on the rectilinear motion. Bodies 2 and 3 

describe then elongated ellipses around body 1. Suppose that they have just had a 

collision. In the general case m2 ~-m3, the two bodies will describe different orbits and 

they will '  miss' each other at the next period. Thereafter the perturbed motion becomes 

entirely different from the unperturbed motion. This corresponds to an infinite 

eigenvalue: therefore k2= + ~ in general. 

In the particular case m2 = m3, however, there is v2 = -v3  after a collision since the 

total angular momentum must be zero in the perturbed orbit also (see Henon, 1976). 
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Fig. 8. A n  orbit  close to the  limit m2 ~ 0, ma ~ 0. 
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There is also u2 = -  u3 since these values are the same as in the unperturbed motion.  

Therefore the two bodies describe the same orbit in opposite directions, and they will 

collide again. 

If we make the ratio m3/m2 change continuously,  the transversal stability index will 

jump from - ~  to + ~  when m3/m 2 c r o s s e s  the value 1. Numerical  results confirm 

this, and indicate that k 2- -  nt- cx3 for m3 > m2,  k 2 - - - - c  x3 for m3 < m2. We remark also 

that when jumping from - ~  to + ~ ,  k2 passes through the values - 2  and + 2. This 

explains why the boundary curves  k 2 - - -  2 and kz=  + 2 also end in vertex 1 tan- 

gentially to the bisectrix m2=m3 (Figure 5). 

(d) Limit m~ > O, m3-~-O. This case corresponds to the top vertex of  the triangle. 

An example is given in Figure 9 for m~ - 0 . 0 0 1 ,  m2 = 0.998, m 3 -  0.001. Here the mot ion 

is quite simple. Body 2, having all the mass, sits motionless at the origin. There is no 

interaction between bodies 1 and 3 since they are on opposite sides of  the massive 

body 2, and they describe independent elliptical two-body orbits with eccentricity 1. 

Their periods must be the same and therefore their semi-major axes are equal. From 

the condition (5) one finds then that  the semi-major axes equal 1, and the period is 

2~z. The motions of  the three bodies are in parametric form: 

xt = - (1 - cos Et), t - to = Et - sin Et; 

x2 = 0; 

x3 = 1 - cos E3, t - to - ~ = E3 - sin E3. (44) 
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Note that this limiting orbit is independent of the ratio m3/ml, in contrast to the 
situation in the previous case (c). 

Since we have a superposition of two independent two-body motions with the same 
period, all eigenvalues are equal to 1, and 

kl = +2 ,  k2--- +2.  (45) 

This is confirmed by the numerical results (Figure 4). 

References 

Hdnon, M.: 1973, Astron. Astrophys. 28, 415. 
Hdnon, M. : 1974, Celes. Mech. 10, 375. 
H6non, M. : 1976, Celes. Mech. 13, 267. 
Schubart, J.: 1956, Astron. Nachr. 283, 17. 
Standish, E. M. : 1972, Astron. Astrophys. 21, 185. 
Szebehely, V.: 1971, Celes. Mech. 4, 116. 
Szebehely, V.: 1972, Proc. Nat. Acad. Sci. U.S.A. 69, 1077. 
Waldvogel, J.: 1972, Celes. Mech. 6, 221. 


