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Abstract. The basic properties of super Riemann surfaces are presented, and 
their supermoduli spaces are constructed, in a manner suitable for the 
application of algebro-geometric techniques to string theory. 

O. Introduction 

Super Riemann surfaces were introduced by Friedan [Fr] as the correct 
supersymmetric analogue ofa Riemann surface, and the supermoduli space plays a 
role in superstring theory analogous to the role of moduli space in bosonic string 
theory. In this paper we will provide a description of supermoduli space in precise 
sheaf-theoretic terms, following the classical lines of Kodaira-Spencer deformation 
theory. 

We will in fact construct the supermoduli spaces for super Riemann surfaces 
with level-n structure, n > 3. The choice of n -  3 as the lower limit is dictated by the 
fact that 3 is the least of all integers n such that an automorphism of a Riemann 
surface (N, (9) inducing the identity on H I(Z, Z/nZ) is itself the identity map IF-K].  
It follows that the reduced space of the level-n supermoduli space is nonsingular. 
Nevertheless, the supermoduli spaces are orbifolds, so to speak, in the "odd" 
directions. Each is locally the quotient of a supermanifold by the canonical 
automorphism which sends any superfunction f of definite parity Ifl to ( -  1)lSlf 
The construction calls attention to the topological problem of determining, for 
each value of n, whether the level-n supermoduli space is a global orbifold. This is 
equivalent to asking whether the spin structures on the fibers of the universal curve 
over the reduced space may be fitted together to form a square root of the 
canonical bundle of that curve. Some remarks about this problem are given in the 
appendix. 

One may also consider super Riemann surfaces with a homotopy marking. The 
corresponding supermoduli space is a global orbifold. It is the quotient, by the 
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canonical automorphism, of super Teichmiiller space. For a given genus g, let 
denote the 4°-fold cover of Teichm/iller space corresponding to all possible spin 
structures, and let (U, tO/2)~ T denote the universal curve with its canonical square 
root of ~. Then super Teichm/iller space is (T,, A rc°(t~/2)), where o ~/2 - n,(tc ) ~s the 0 ~ 
direct image sheaf of t¢ ~/2. In particular, super Teichmfiller space, and all the 
supermoduti spaces, are superspaces of dimension ( 3 g -  3, 2 g -  2) (see [Fr, C-R]). 

All of the supermoduli spaces carry an action of the mapping class group, and 
one may obtain a "true" supermoduti space as the quotient of super Teichmiiller 
space by this action. The supermoduli spaces with level-n structure are smooth 
finite branched covers of the full quotient, and therefore provide an appropriate 
setting for superstring theory. 

1. Super Riemann Surfaces 

First recall the definition of a supermanifold. Let ( X , d )  be a Zz-graded- 
commutative ringed space over C. Let ~Ar C d be the ideal of nilpotents. (X, d )  is a 
complex supermanifold if 

1.1. (X, d/~U) is a complex manifold. 

1.2. Jc~/s~ p2 is locally free over d / X  and d is locally isomorphic to 

For example, if (X, (9) is a complex manifold and g is a locally free sheaf of 
(9-modules, then (X,/~ 6) is a supermanifold. Not all supermanifolds are of this 
form. For a general discussion of this point, see I-E-L, R]. A map (X, s/)  ~ > (Y, ~ )  
between supermanifolds is a pair consisting of a reduced map X ~,od > y and a 

homomorphism rc~(N) > d of Zg-graded sheaves of C-algebras. A family of 

compact supermanifolds is a map (X, d )  ~ > (Y,, N) such that ~r~d is proper and rc is 
submersive. The dimension of a supermanifold ( X , d )  is the pair (dimX, 
rank (~/ j trz)) .  The relative dimension of a family is the difference of the dimensions 

of the domain and range. Given a family (X, d )  ~ (Y, ~ )  and a point p • Y, the 
fiber of the family at p is the supermanifold n -  l(p) = (n~J(p), d/dp) ,  where d ,  C ~¢ 
is the ideal generated by rc*(g-l(sCl,)) and d{p C N is the maximal ideal at p. The 
dimension of re- ~(p) equals the relative dimension of the family. Let us denote 
supermanifolds by barred letters X, Y, etc., and let X" stand for (X, ~'~). The tangent 
sheaf of Jf is the sheaf of graded derivations, Der(dx), which we abbreviate by 
Der(X). If X ~ Y is a family, the relative tangent sheaf is the sheaf Derre~(X) 
C Der (X) consisting of derivations which annihilate rc*(~cr). Der~l(X ) is locally 

free, with rank equal to the relative dimension. If Jf ~ ~ Y has relative dimension 
(p, q) and z 1 . . . . .  z p, tl 1 ... . .  rl 't are sections of ~'~ (with the z's even and the t/'s odd), 
such that dz ~ .. . . .  dz p . . . .  , dill,..., dtl q are a basis for Der*ol(X), we call (z, q) a relative 

8 8 8 8 
coordinate system. Then 8z t, ..., 8z p, 8t/~, ..., ~ are defined to be the dual basis for 
Derr~l(X). 

Definition 1.1. A super Riemann surface over the supermanifold Y is a family of 

compact supermanifolds X ~ > Y, of relative dimension (1,1), together with a (0,1)- 
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dimensional subsheaf ~ C  Derrel(X), such that the Lie bracket 

~ z  E,1 Der~ol(X)/~ 

is an isomorphism. @2 denotes the tensor product ~ ® ~ , ~ .  A super Riemann 
surface is also called a SUSY-curve [M]. 

This definition connects with the standard definition in the physics literature 
by the following lemma. 

Lemma 1.2. I f  ( X - ~  Y; ~ )  is a super Riemann surface, one may cover X by relative 
coordinate systems (z, ~/) such that ~ is generated by 

Proof Let (w, 2) be a relative coordinate system. Since @ is locally free of rank(0, 1), 

0 + a ~ ,  with a odd. Since ~2 [,] it has a generator of the f o r m ~  ~ Der~,l(X)/~ is 
Oa 

an isomorphism, 02 must be invertible. 

Introduce a coordinate system (z, q) with q = 2. Then 

0 0 ( az i 0 

#z 
Thus we must solve a ~ + ~ = 2. Expand z and a as power series (first order) in 2: 

Z = J.Za -? z2  , 

We obtain two equations: 

0zz 
za +a l  ~w = 0 ,  

a = a l  + 2a 2 . 

OZ 2 OZ 1 
a z -~w + a l -~w =1 .  

Since a 2 is invertible, it is easy to see that this system has a solution. [] 

Call a relative coordinate system (z, ~) canonical if @ is generated by ~ + q Yzz" 

Note that by Lemma 1.2, one may define a super Riemann surface to be a 
family of (1, 1)-dimensional supermanifolds together with an atlas of relative 
coordinate systems (z~, ~/,) such that on the overlap of any two coordinate systems 

and fl, ~ ~ 0 + ~/~ is a superfunction multiple °f  ~n~n,,, + q~ ~z~ This is the definition 

in [Fr]. 

Example. Super Riemann surfaces over a reduced base. Let X o  Y be an ordinary 
complex curve over a complex manifold Y, and let K be the relative cotangent sheaf 
on X. If X = (X, d ) ~  Y is a family of supermanifolds with relative dimension (1, 1), 
then d is canonically ^ (/) for some line bundle l. Indeed (9 X = d o  and l = d  1. I f X  
admits a superconformal structure ~ ,  then for any D e ~ ,  f e  0 x and q ~ l, D(fil) 
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= D f . t  1 + fDt  1 =fDtl, since Df is odd and therefore of order q. Then ~ = l-1, and 
the bracket operation on ~ makes 1 a square root of ~c. Furthermore, (X,/x ~c 1/2) 
always admits a superconformal structure. Namely, if (z, t/) is a relative coordinate 
system for ^ K ~/2 such that tl®tl=dz, then take (z, t/) as a canonical coordinate 
system. Thus a super Riemann surface over a reduced base is simply a family of 
Riemann surfaces X ~ Y together with a choice of ~c ~/2. 

2. The Moduli Problem 

The goal is to find a universal super Riemann surface (Jr ~ Y; ~), meaning roughly 
that all super Riemann surfaces are obtained by maps into Y. This makes sense 
only after a suitable notion of equivalence is given. First introduce a notion of 
marking. For a given genus g, fix a smooth surface X of genus g. Then the family of 
smooth surfaces X ~  Y may be regarded as an associated fiber bundle of a 
principal DiffX bundle over X, and a marking is simply a reduction of the structure 
group. We will consider two types of marking. 

1. Homotopy marking, i.e., a reduction of the structure group from DiffX to 
DiffoX, where DiffoX is the identity component of Diff , .  

2. Level-n structure, i.e., a reduction of the structure group from DiffX to 
Diff, S, where Diff, S is the kernel of the natural map 

DiffZ ~ A u t  (HI(~, Z,)). 

If Jf -2-. ~'is a family and Z ~ ~ Y is a map, one obtains a family e*(X) ~*", Z, 
called the pullback, defined as follows. Set 

~ * ( x )  = {(z, x) e z x X N z )  = ~ (x ) } ,  

and set 

d~,(~) = dz~)dx/(( id~ x n)*d), 

where d z ~ d x  is the structure sheaf o fZ  x X and d C de (~  d t  is the ideal defining 

the graph of e. If N is a superconformal structure on Jf ~ ~ Y, then the pullback 
inherits a natural superconformal structure e*N. If the underlying family of curves 
has a marking, one may also pull that back. 

The Canonical Automorphism and its Effect on the Moduli Problem 

Fix a type of marking. Then ask the question, does there exist a marked super 

Riemann surface (X "~ Y; @) such that given any marked super Riemann surface 

(W , -  ' - ~ ,Z;c~*@) and Z ;N) ,  there is a unique map Z----* Y such that (a*Jf ~*~ 
(W ~ ~ Z; N') are isomorphic over Z, by an isomorphism which respects both the 
superconformal structure and the marking? The answer to this question is no, for 
the following reason. Define the canonical automorphism (of a supermanifold) to be 
the sheaf automorphism which sends any superfunction f of definite parity If[ to 
(- l ) l I If .  We denote this automorphism by A. Then given any super Riemann 
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surface (X" ~, Y; N) and any map Z ~, Y,, c~ and A o c~ induce equivalent super 
Riemann surfaces over Z. 

The canonical automorphism has the following effect on the moduli problem. 
After constructing the reduced space of the supermoduli space by classical 
methods, one may use Kodaira-Spencer theory to construct pieces of the 
supermoduli space over small open sets in the reduced space. However, when 
trying to glue these pieces together on each pairwise intersection, one finds that 
there are two ways to do it, and no natural way to choose between them. As a 
result, the supermoduli space is defined only modulo A. To say this more precisely, 
we introduce the following notions. 

Canonical Superorbifolds 

Define a quasimap between two supermanifolds J~ and Y to be an unordered pair of 
maps {q51, q~2} C Hom(X, ~ such that ~b 1 = A o q~2. Define a canonical superorbifold 
to be a set of data (X, {~},  ~a), where X is a complex manifold, ~ = (q/~, s¢~) is 
supermanifold defined on an open subset q/~ C X, the sets q/~ cover X, and the z~p 
are quasimaps 

which induce the identity on X and satisfy the cocycle condition 

"c~p'ct~,zv~ = {id, A}. 

Associated to any canonical superorbifold 2=(X,{~},L~p)_is a class 
~ H2(X, Z2), obtained by choosing a representative, f~p ~ Hom(q/~, q/a)[~u~ for 

each z~a, and then defining e~pe by 

If e vanishes, then we say that J7 is a global superorbifold. 
Notice that, while a canonical superorbifold is not a ringed space, there is a 

ringed space associated to it, for the even superfunctions are invariant under A. 
To construct the level-n supermoduli space as a superorbifold, we proceed in 

two steps. 

Local Theory 

The first step in the local part of the moduli problem is to identify the sheaf of 
infinitesimal automorphisms. Let (J~ " ,  ~ @) now be any super Riemann surface. 
Define sheaves f~  and 6°, on X: 

6a~={~eDer(X)[ [-(, ~ ]  C~},  fq~=6e~nDerr~l(X). 

f#. is the infinitesimal automorphism sheaf of the super Riemann surface. 
A simple but important lemma: 

Lemma 2.1. ff,---~2 as sheaves of ~-t(d~) modules. 

Proof Recall 

O__.~__. Derrex(R) q ~ N2__.O. 
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We claim that ql~, is bijective. Let (z,q) be canonical coordinates and set 

D = ~qq + t/~zz" Take ~ e .(¢~ and set ~ = a Oz + bD. Then 

Thus 

[D, ~'I = ( D a ) ~  z - ( -  1)g lb~  + (Db)D . 

e (¢~*-+b = ( -  1)l~lDa. 

The result follows. []  

Example. If ( X ~  Y, ~?/2) is a super Riemann surface over a reduced base, then ~"  
has a generator in ~c -"/2. Then 

1 - - n  

.~n=lg-n/Z®((Q(~igl]2)=lg-n/2@l £ 2 

Thus over a reduced base, (¢= = ~c-* ®K-1/2. 
Let ~ ,  denote the i th direct-image functor, i.e., for any sheaf.~" ofabelian groups 

on X, rc~,(~ -) is the sheaf on Y obtained by completing the presheaf 

Prolmsition 2.2. Let (X ~ , Y; ~)  be a super Riemann surface of  genus g > 2. Then 

Proof Let . f  C d r  denote the nilpotent ideal. Set 

V") = (Y, d /y" + 1), X'(") = ( x ,  + '))).  

Define (¢~)C Der~('X(")), by analogy with (¢~. Since the assertion is local, we may 
assume d t =  ^ g, where # is a locally free sheaf of (gt-modules. Then we have 

- 1 n 1 0 (n) ~ (n -  

As stated in the example above, o ~c-1 o ~ o _ f q : -  @to-1/2. Thus (rC~d),(~)--0, and the 
proposition follows by induction on n. []  

Let Z be a supermanifold, and let (W ~ , Z; xt/2) be a super Riemann surface 
over the reduced space. We wish to characterize the super Riemann surfaces over Z 
which pull back to (W g, Z; td/2). There is a characterization in terms on non- 
abelian sheaf cohomology, at least when Z is split. First declare two super 

Riemann surfaces (W ~ Z; ~)  and (W' ~') Z'; ~ ' )  extending (W-Z~ Z; tc 1/2) to be 
equivalent if there exists a superconformal isomorphism 

. \ / .  
2 

which restricts along Z to a. Now. assume Z =  (Z, A g), where # is a sheaf of 
(gz-modules. Extend the family W )Z  trivially in the g-directions to obtain a 
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super Riemann surface 

r~=(W, ^ g @  ^ ~I/2)~(Z, ,', g).  

[/k ~v® /k /~a/2 is an abbreviation for tr- 1( A ~ ) ® _  't¢~) A/¢1/2 ] Let X denote the 
nilpotent ideal of ^ & Over W one has a sheaf of nilpotent Lie superalgebras 
j tr®f#,.  Let G denote the sheaf of groups 

G = exp((Jff®ff,) . . . .  ). 

Lemma 2.3. The set of equivalence classes of super Riemann surfaces (IV e,  Z; @) 
extending (W ~ Z ;  xa/2) is in natural 1-1 correspondence with Ha(W, G). 

Proof Given a neighborhood ~CW,, consider a super-Riemann-surface 
automorphism 

( q l , ^ g ® ^ ~ a / z )  ~, (Oll,^¢®^~cl/z) 

(z,  ^ e)  

which is trivial m o d Y .  If (z, ~) is a relative coordinate system, then 

~(z, O = ( z  + ~z, ~ + ~ )  , 

where 6z and 6r/lie in X ®  ^ ~1/2 It follows that t - z is nilpotent, so that one may 
define log(z) as a power series about the identity. Thus z=exp(0 ,  where ( is a 
section of 

( ~ ®  Derrel( A xl/2)) . . . .  • 

Since the superconformal structure is preserved, ( lies in Jg" ® ~,.  If (17¢' ~ Z; ~)  is 
a super Riemann surface which pulls back to (W ~ , Z;  xa/2), then I~" is obtained by 
gluing together local bits of if" via a cocycle of automorphisms of the type just 
described. This proves the lemma. [] 

Now take Z as above, and assume furthermore that Z is Stein. 

Lemma 2.4. Let JV denote the nilpotent ideal in ix g and let Z ~") = (Z, /x 8/~V" + 1). 
Then 

1. Any super Riemann surface (X ~ ~ Zt"); ~)  over Z ~") may be extended to a 
super Riemann surface over Z t"+ a) 

2. The space of equivalence classes of such extensions is naturally an affine 
space modelled on 

1" n 1 (Z, ( ^ g ® n , ( ~ o a ) )  . . . .  ). 

Remark. Though Z ~") is not a supermanifold, there is no difficulty in defining the 
notion of super Riemann surface over Z t"), in complete analogy with the definition 
given in Sect. 1. 

Proof Suppose 

I ~ A-~Ga-~G2 ~ I 
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is an exact sequence of sheaves of groups over a space X, with A central. Then by 
pushing the long exact sequence as far as it will go, one finds 

1. There is a connecting map Hi(X, G2) a! ~ HZ(X,A), such that 

HI(X, G1)-*HI(X, Gz) al HZ(X,A ) 

is exact. 
2. Given zeHI(X, Gz), one may form a group H°(X, G2). If ~ is given by a 

l-cocycte z,a, then H°(X, Gz) is the group of 0-cochains {Q,} satisfying 
O ~ Q  ~- 1 = T~p. 

3. There is a connecting homomorphism H°(X, G2) ~° ,HI(X,A), and if 
A l(z) = 0, then HI(X, A) acts transitively on the fiber of H~(X, G1)~H~(X, G2) over 
z, with the kernel being the image of A o. 

To apply this to our situation, let a = nwd, and define f¢2 + 1) as in the proof  of 
Proposition 2.2. Then we have 

0 ~ (  ^" + ~£®fq,)own~exp((f~ + 1))even)~exp((~ )) . . . .  )--" 1. 

Because Z is Stein, 
S'( X, = r( z ,  

The lemma now follows from points 1, 2, and 3. Indeed, 2 (n) F(Z, a , ( f f ,  )) vanishes, 
since the fibers of a are curves. This and point 1 prove the first assertion. To prove 
the second assertion, take -c e Hi(X, exp((N~))~vo,). Since z is a family, one may form 
its sheaf of infinitesimal automorphisms, f~. Then H°(X, exp((f#~)) . . . .  )) is precisely 
H°(X, exp((ff,,) . . . .  ). By point 3, F(Z,(Ang®a~(~))ov~n) acts transitively on the 
extensions of z, and the kernel of the action in H°(X, exp((~ , )  . . . .  ). By Proposit- 
iorl2.2, the latter vanishes, so the action of F(Z,(^"#@o-I,(~,)) . . . .  ) on 
Hi( X, exp((ff~ )) . . . .  )) is faithful. []  

The next ingredient is the Kodaira-Spencer map. Given any super Riemann 

surface (X ~ , ~ @), the differential of n defines an exact sequence 

d~:  - -  1 0 - * f f ~ S f ~  ~ u (Der(Y))~O. 

The Kodaira-Spencer map is the connecting homomorphism 

Der(Y) ~(~)~ u~(N~). 

The Kodaira-Spencer map behaves naturally with respect to pullback, in the 
following sense. Take a split supermanifold Z = (Z,/x #) as before, and take Z to be 

Stein. Define Z (') as in Lemma 2.4. Let (W ~ ) Z; ~d/2) be a super Riemann surface 
over the reduced space, and define 

F ~ = {equivalence classes of super Riemann surfaces 

over Z (") which restrict to or}. 

We have seen that there is an action of F(Z, (/xng®al,(f~))¢~n) on F'. 
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On the other hand, let (ig ~ ?; ~ )  be a super Riemann surface and let 

Z <") ~.~ Y be a map. Let Z c ,  Y be the reduced map of h, so that h consists of the 
h* 

pair (f, h*), where h* is a homomorphism f -  1(~¢t) ~ ,x(n)8. If ( is a section over Z 
of ( A"g®~J*(Der(Y)))even (=  Bet  . . . .  ( f -  l(d,~), A"d~)), then ( +  h* defines a new 
map. Thus if we set 

M" = {maps Z<")~ Y which restrict to f } ,  

we find that there is an action of F(Z,(An(g®f*(Der(Y)))gve,) on M n. 
Now assume that (W ",  Z;  ~c u2) is the pullback of (X , I~ @) via f Then the 

Kodaira-Spencer map of (X ~ ~ ~)  gives us a map f*(Der(Y)) k~(,) a~(f#,), 
which induces a map which we will again call ks(g), 

F(Z, ( Anff®f*(Der (Y')))eve.) ks(~) F(Z, ( A n e @ G l , ( ~ r ) ) e v e n  ) . 

Lemma 2.5. Let 
pn 

M ~ ~ F ~ 

denote the pullback map. Then for all 

e F(Z, ( ^~g ®f*(Der(Y))) . . . .  ), 

and all h ~ M", 

p~(h + ~) = p~(h) 4- ks(n) (~) . 

Proof We may assume that yr is a coordinate neighborhood. Let w~,..., w M be 
supercoordinates on Y. Cover X by open sets q/~ equipped with canonical relative 
(super)coordinates 1 2 (u~, u~) as a (u~,u~). Then express power series in (w, u~): 

i i u p -  ~p(w, u~). 

If h e M ~, then the super Riemann surface pn(h) admits relative coordinate systems 
~1 ~2 (u~, u~), related by 

~ ='r~,,dh*(w), u~,). 
,,c1 

Take (~  F(Z,(A"g®f*(Der(Y')))~o~), and set ( = g  ~ .  The ga's are sections of 

A "& p"(h + 0 will be characterized by transition functions 

u# = z,#(h*(w t ) + ((wl),..., h*(w M) 4- ((wM), fi~) ---- Z,a + g ~ a  ,,  = const" 

Therefore p"(h+ ()-p~(h) is the cohomology class 

and this is precisely ks(re)((). The lemma is proved. []  

We now arrive at the basic result. 
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Theorem 2.6. Let  ( X  ~ > Y; @) be a super Riemann surface, let Z Y> Y be a map 

between the reduced spaces, and let ( W  ~ ~ Z;  ~c 1/2) be the pullback o f  n via f Define 

M R and F" as above. Assume Der(Y)  k~(~) . . . . .  ) n ~ ( ~ )  restricts to an isomorphism along 
the reduced space, Y Then for  all n, the pullback map 

M R P"> F R, 

is bijective. 

Proof. First observe that by taking an open cover of Z, one may restrict to the case 
that Z = ( Z , / ~  (~)), Z is Stein, and the range o f f  lies in a coordinate neighborhood 
of Y. One has restriction maps 

and 

and a commutative diagram 

an+  1 
M" + 1 ) M n 

b n  + 1 

F R+I >F R ' 

M n + I pn + l > F R + 1 

M n ' . . . . . . . . .  > FL 

Observe that in the local situation, any map h ~ M n lifts to a map at order n + 1. 
Indeed, if w 1, .... w u are supercoordinates on Y,, then h gives the values of 
h*(w 1) . . . .  , h*(w M) to order n, and we may extend these values arbitrarily to order 
n + l  to obtain a lift. Then (aR+')-~(h), being non-empty, is an affine space 
modelled on 

F(Z , (  A "+ x e ® f * ( o e r ( Y ) ) )  . . . .  ). 

Now the Kodaira-Spencer map of n is assumed to take 
F(Z,  A~+l~®f* (Der (Y ) ) )  isomorphically onto F(Z,  ^'+18®o-1,(~¢~)). Thus the 
fibers of a n+ ~ and b "+ I are affine spaces modelled on the same vector space. By 

Lemma 2.5, p"+~ intertwines the actions of this vector space, whence pR+~ is 
bijective on each fiber. Then, by induction on n, pR is bijective for all n. []  

Remark.  In proving Theorem 2.6, we used only the assumption that the Kodaira- 
Spencer map of n restricted to an isomorphism along the reduced space. However, 
it follows from Proposition 2.2 that n~(~¢~) is always locally free. Therefore, under 
the hypotheses of Theorem 2.6, ks(n) will in fact be an isomorphism over Y. 

Theorem 2.6 may be rephrased by saying that if (X ~, ~ )  is a super 

Riemann surface for which ks(n) is an isomorphism, and (W ~ > Z; ~ ' )  is a super 
Riemann surface for which there is a map Z ~'> Y and a superconformal 
isomorphism 

Z 4,'> y 
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then there is a unique map 
isomorphism 

169 

'~'~Y extending ~' for which there exists an 

with ~ extending q~. For the purposes of constructing the universal super Riemann 
surface, more control is needed over ~. 

Theorem 2.7. Let X ~> Y be any super Riemann surface for which ks(n) is an 
isomorphism. Then the only superconformal isomorphisms 

~ ~ ' ~  

inducing the identity on Y are id and the canonical automorphism, d. 

Proof. Let ~b be such an isomorphism. Since ks(n) is an isomorphism, the set of 
points y ~ Y for which n~d~(y) admits an automorphism has positive codimension. 
Thus ~red must be the identity. Now over Y, ~b is an automorphism of tc ~/2 
preserving the map x~/2® 1c~/2 ~ x. So along ~ ~b = id or A. It remains to check that 
if q5 =id  over Y, then ~b =id. First observe that ~b' must be the identity, by 
Theorem 2.6. But if ~b=id along Y and ~b'=id, then ~b=idmod nilpotents. It 
follows that ~b--exp(0 for some (~H°(X ,g~) .  By Proposition 2.2, (=0 .  [] 

We complete our discussion of the local theory by establishing the local 
existence theorem for super Riemann surfaces. 

Theorem 2.8. Let (X ~ > Y;/~1/2) be a super Riemann surface over a reduced base. 
Assume that Y is Stein, and that ks(n) (classical) is an isomorphism. Then there is a 

super Riemann surface X ~ > Y,, into which (X ~ > Y; ~c 1/2) may be imbedded, such that 
ks(g) is an isomorphism. 

Proof. We have f#~-~:- 1OK-~/2. Let ~='rrl[1~-l/2~l*='rrO{~r3/2"~ g is a locally free 
sheaf over Y, of rank 2g -2 .  Let Y=(Y,/x g). ~1~ is simply (Y, C0)d), and there 
is an obvious super Riemann surface over 7(1) namely the one which depends 
trivially on the d-directions. Then by Lemma 2.4, the super Riemann surfaces 
over Y(1) are in natural 1 - 1  correspondence with 

F(Y, (e@ n~,(~=)) . . . .  ) = F(Y, ' g ® n.(N~)oaa) = F(r, g®g*)  = F(Y, End (g)) 

Thus there is another obvious super Riemann surface over Y(~, namely the one 
corresponding to the identity section of End (g). By Lemma 2.4 again, this super 

Riemann surface may be extended to a super Riemann surface (X > ~ N). It 
remains to show that ks(~) restricts to an isomorphism along the reduced space. 
The tangent sheaf of Y pulls back along Y to OrGg*.  In the first summand, ks(re) is 
the usual Kodaira-Spencer map, which is an isomorphism. In the second 
summand, ks(~) is, by construction, the identity map. This shows that ks(re) is an 
isomorphism. [] 
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Remark. A more explicit construction of a super Riemann surface for which ks(n) is 
an isomorphism is given at the end of this section. 

Global Construction 

To complete the construction of the supermoduli space, it remains to solve an 
appropriate version of the moduli problem for reduced base spaces. We have 
already seen that a super Riemann surface over a reduced base is simply a curve 
X ~  Y together with a choice of K ~/2. However, it is easy to see that there does not 
exist a curve X-~ Y with a level-n structure and a choice of ~ ~/z which is universal. 
Indeed, suppose such an object existed. Then any curve W-~Z with a choice of~: ~/2 

would be induced by a unique map Z ~ , Y However, one could modify/~1/2 by a 
class co c Hi(Z, Z2). This produces no change in/£I/2 locally in Z, and therefore it 
cannot change the map a. So we see that the correct data for the moduli problem 
are not a curve with spin structure, but rather a curve together with a consistent 
choice of spin structure on each fiber. 

Recall that the choice of td/2 is strictly topological. Regard X-~ Y as a family of 
smooth surfaces, and let Tr~tX be the relative tangent bundle. Let S~o~X 
=(Tr~lX--{0})/R +. S~¢IX is a circle bundle over X. Let ~ e HI(Sr¢I X, Z2) be the 
mod2 class of any fiber S ~ ~S~jX.  Then a choice ofx ~/z corresponds to a choice of 
co6Hl(SrelX, Z2) such that co[~] is non-trivial. Associated to the fibration 

S~1X ~ Y is a Leray spectral sequence 

E~,q=~Gr(HP+q(S,~IX, Z2) ) with E~'q=HP(Y,~(Z2)). 

A choice of spin structure on each fiber of X is simply an element a ~ E °' 1 
=H°(Y,/~l.(Z2)) which is non-trivial on the fiber class. The differential 
d2(a ) ~ H2(y, Z2) must vanish for a to give rise to a choice of td/2, and if d2(o- ) = 0, the 
set of such choices is parametrized by Hi(Y, Z2). 

Define a fiberwise spin curve to be a curve X ~  Y together with a class 
a ~ n°(Y, ~(Z2))  as described above. 

Theorem 2.9. Universal objects exist in the following categories: 
1. Fiberwise spin curves of a given genus g >= 2, with level-n structure, n >= 3. 
2. Fiberwise spin curves of a given genus g >= 2, with homotopy marking. 

Proof Let (X ~ .~ y a) be a marked fiberwise spin curve of genus g, where the 
marking may be either a homotopy marking or a level-n structure. The marking 
assigns to each point y e Y a preferred set of maps Fy C Diff(n- l(y), X), where X is the 
standard surface of genus g. If ~p e Fy is any such map, then ~p transports the 
complex and spin structures on zc- l(y) to complex and spin structures on S. Thus, 
if we let cg be the space 

~- -{Complex  structures on Z} × {Spin structures on X}, 

then Fy determines a point q~(y) e Cg/G, where G C DiffX is the subgroup which de- 
termines the marking. It is essentially a classical result that Cg/G is a 3 g - 3 -  

dimensional complex manifold, and the map Y , Cg/G is holomorphic. Indeed, in 
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the case of the homotopy marking (giG is the trivial 4°-fold cover of Teichmfiller 
space whose sheets correspond to the choices of ~?/2 on the universal curve, and it 
well known that 4) is holomorphic in this case [A, G, K-S] .  Let us denote (diG for 
this case by T. Then let F denote the mapping class group, F =  DiffS/DiffoZ, and 
let F, denote the kernel of the natural map 

F~Aut(HI(S, Z,)). 

For  n__> 3, F, acts freely and properly discontinuously on T,, IF -K] ,  so that in the 
case of the level-n structure, Cg/G = 7"/F, is again a smooth manifold. Over (giG is a 
curve U =(cg x Z)/G. It remains to give U a fiberwise spin structure, such that 
(X ~ ~ Y, ~) is induced by ~b. For  each point (J, co) ~ (g, let [J, e~] be its equivalence 
class in Cd/G. Then we get a diffeomorphism 

lp(j, co) : S--* Ut[j, co], 

= [ J ,  x ] .  

Given g e G we get a commutative diagram 
lp( , r ,  (o) T r l  

S 
It follows that there is a well defined class 

given by 

It is clear that (U~Cd/G, ~) is the universal object. []  

We denote the universal level-n fiberwise spin curve by (U, ~ ) M,; a), and we 

denote the universal homotopy marked fiberwise spin curve by (U ~ > T; a). M,  is 
called level-n spinmoduli space. 

Construction of the Supermoduli Space and Universal Curve 

To complete the construction of the level-n supermoduli space, let {~g~} be a 
covering of M,  by Stein open sets. On each ~ -  1(~//~), choose tc~/2 compatible with o-. 
Let #~ = zc.(~a 1/2). Let ~ = (~//~, ̂  #~). By Theorem 2.8, we may construct super 
Riemann surfaces 

(-g~ ~ '  ~L; ~ )  

such that for all ~, ks(rQ is an isomorphism. Theorems 2.6 and 2.7 together imply 
that on each intersection, ~z-l(q/~c~q/~), there are two isomorphisms 

-1 1 TM 
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i = l , 2 .  Thepai rs  ~ ~ 2 ~ 1 2 Z~.~ = {X~,Z~} and z~,~ = {z~, z~} are uniquely defined quasi- 
maps, which therefore obey the cocycle condition. We now have canonical 
superorbifolds, 

:g.  = (u . ,  }, 

= (M.,  

if1 is the level-n supermoduli space. The data (J?, {~r~}, {N,}), constitute the universal 
level-n super Riemann surface. Level-n supermoduli space is universal in the 
following sense. 

Universal Property 

Given a supermanifold Z and a canonical superorbifold ~-= (Y, {~} ,  z~p), a map 

Z ~  ~- is by definition a map Z e , Y together with a collection of quasimaps 

such that for all e and t ,  the diagram 

commutes. 
Let Z b e  asupermanifold with H~(Z, Z2) = HZ(Z, Za) = 0, and let 0 = (0, {0~}) be 

(x=) a map Z ~ M , .  We obtain a collection of super Riemann surfaces ^ * - 
~ Z [ ~ -  l(q/~), and quasimaps between them. Since Hi(Z, Z/) = Hz(z, Z 2 )  = 0 ,  there 
exists a unique way, up to equivalence, of resolving the Z2 ambiguities to fit these 
super Riemann surfaces together and construct a super Riemann surface over Z. 
Denote this super Riemann surface (defined up to equivalence) by O*(X). From 
Theorems 2.6 and 2.9, we immediately obtain 

Theorem 2.10. Given any supermanifold Z with Hi(Z, Z2)=  Hz(Z, Zz)=  0, and any 
super Riemann surface (IFF~Z;~) with level-n structure, there is a unique map 

Z ~ ~ ]fl inducing the given level-n structure, such that O*(X) and FV are super- 
conformally equivalent. [] 

Super Teichmiilter Space 

The constructions of the supermoduli space and universal super Riemann surface 
can of course be carried out for homotopy marked super Riemann surface~. 
Indeed, this is the easiest case. Since ~ is Stein [B-E],  the local construction of the 
supermoduli space may be applied globally. The resulting base space, is therefore 
isomorphic to (~ ^ 7r°,(~3/2)) (with the trivial open cover {0, T} and the cocycle 
{id, A}). (T,, A n°,0c3/2)) is called super Teichmiiller space. 
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Uniqueness of Supermoduli Space 

Any supermanifold may be characterized up to isomorphism by data (X, z), where 
X is a complex manifold, and • is a 1-cohomology class with coefficients in the 
automorphism sheaf of the supermanifold (X,/x ((9"~)). Similarly, denoting this 
automorphism sheaf by f#, a canonical superorbifold over X determines an 
isomorphism class ~e H~(X, N/A). The isomorphism class of supermoduli space is 
uniquely characterized by the universal property of Theorem 2.10. 

Explicit Construction of Local Universal Families 

Finally, it is possible to be more explicit in the local construction of the 
supermoduli space. Again take the universal level-n fiberwise spin curve 

(U~ ~, M,;  ~r), take an open cover by Stein sets {%}, and on each re- 1(q4), choose 
xt/2 compatible with a. Fix c~ and set q/=q/~. Set _ 0 a/2 g-n,(~ ). Assume that U.l~u 
admits two disjoint relative divisors, D 1 and D 2. Let ~//;Crc-l(q/) denote the 
complement of D~, i=  1,2. Let 01 .. . .  ,02g-2 be a basis of sections of & The open 
cover {~K1, ~2} computes the analytic sheaf cohomology of re-l(q/), so we may 
choose sections q~l, ..-, q52~- 2 s F(~I  c ~ 2 ,  ~c- 1/2) such that the cohomology classes 

EqM ..... d H'({V1, V2}, 

are dual to 01,..., 02g- z. Using now the isomorphism (N~)oa~ -~ K-1/2, identify the 
/ 

sum 0~q~ as a nilpotent derivation of re-1( ^ N)®/~ xl/2. (Recall  that if t/ is a 
\ 

generator of xl/2 and z is a relative coordinate such that ~2 = dz, the identification 

of ~-  / with fq= sends - -  to On each of ~ and ~K~, one has the super 
Riemann surface &/ ~ - ~/ " 

( (% ~-  t ( ^  ~0® ^ ~l/2).(ag, A ¢); 9-3 

obtained by extending trivially in the 8 directions. Now glue these super Riemann 
surfaces together over the intersection by the automorphism 

exp(0~(ki). 

Then the Kodaira-Spencer map of the resulting super Riemann surface is an 
isomorphism, and this gives an explicit local construction of the universal super 
Riemann surface. 

For  the purpose of understanding the cocycle ~ which glues together 
supermoduli space, let us consider what happens if we make different choices in 
this construction. Theorems 2.6 and 2.7 say that the difference in the choices 
should produce a map /x 8 ~/~ g. For simplicity, take the same open cover 
{~/~1, ~/~2} for re-l(q/), but instead of $1, ..., ~b2g-2, take a different set of sections 
ip 1, .. ., ~Pzg- 2 ~ F( ~I  n ~2, x - ~/2), such that the cohomology class [0"t0,] is still the 
identity section of rt~(xl/2) Ng .  Then 0"~, = 0"q~, + (~ - ~2, where ~ is holomorphic 
in ~ .  Then the super Riemann surfaces defined by exp(Oa~)a) and exp(Oalpa) are 
isomorphic to first order in 0. To see what happens to second order in 0, we 
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compute 

e x p ( -  0"~b,) e x p ( -  (1) exp(0b~Pb) exp((2) 

= e x p ( -  0"~b~) e x p ( -  (1) exp(0"~b. + (1 - (2) exp ((2) 

= e x p ( -  0"~b~- ( ,  + ½[0"~b,, (i]) exp(0~q~, + (1 + ½[Oaff)a, (2] -}- ½[(1, (2]) 

= exp(2Z([0"q~a, (1] + [O"(Oa, (2] + [(1, (2]) + 0(02)) • 

The section 

~([Oa~)a, (2] "~ [-oaff)a, (1] -I- [-(1, (2]) ~ F(~Crlt") ~2, A2a(~)K- 1/2) 

defines a cohomology class 

)~ e H i (n -  l(q/), A2g® to- 1/2) = A2g ®HO(q/, 7~1.(~c- 1/2)). 

The Kodaira-Spencer map identifies Z with a /x2g valued vector field on ~ .  Then 
up to second order in 0, /x g , A d ° is given by 1 + Z. The higher order terms of z 
may be computed in a similar fashion. 

3. Appendix. Does the Universal Curve over Level-n Spinmoduli Space 
Admit a Square Root of r? 

Recall that M, = T/F,, where 7"= (Teichmtiller space) x (spin structures), and F, is 
the level-n subgroup of the mapping class group. Let a be the fiberwise spin 
structure described in Sect. 2, a e H°(M,, ~.(Z2). a gives rise to a square root of x if 
and only if 0 = d2a ~ H2(M,, Z2). We do not know in general whether d2a = 0, but 
we can offer the following observations. First note that M,  is a disjoint union of 
two pieces, called the even and odd spinmoduli spaces, corresponding to the even 
and odd spin structures. (For a discussion of the parity of a spin structure see [-At] 
or [J].) 

Proposition 3.1. For 2 < g < 4, dza vanishes on the odd spinmoduli space. 

Proof By results of [E-K],  for g < 4 the universal curve over Teichmiiller space 
admits exactly 20(20 - 1)/2 half-canonical divisors, one for each odd spin structure. 
Thus we can replace (Teichmiiller space) x (odd spin structures) by (Teichm/iller 
space) x (half-canonical divisors over the universal curve). It is then clear that 
U--'(M.)odd admits a half-canonical divisor, which defines a square root of to. [] 

For higher genus, the problem is more difficult. Since n > 3, M,  is in fact a model 
for B(F,). Therefore d20- can be described in terms of group cohomology. Fix a spin 
structure co e HI(Sro,2, Z2) on the standard surface. Let G C DiffX be the subgroup 
fixing co. co is an equivalence class of double covers of Sr~IS. If we choose a 
particular double cover P~Sre~Z corresponding to co, then for g e G, the fact that 
dg*co = co means that there are two isomorphisms of P covering dg. Thus if we let 
be the group of transformations of P covering dg for some g, we get a central 
extension. 

0 ~ Z 2 ~ 0 - ~ G - ~ I ,  (*) 

and dE0" vanishes o n  M(parity of w) if and only if this central extension splits when 
restricted to Gr~DiffnS. We can at least observe 
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Proposition 3.2. The sequence (*) does not split. 

Proof Certainly, DiffoZ C G. Since Diff o Z is contractible, it is easy to see that (*) 
splits on Diffo Z, and since every element of Diffo S has a square root  in Diffo S, 

there is a unique splitting DiffoZ ~ > G. Now represent Z as in Fig. 3.1, so that 
rotation through n about axis l maps S to itself. For  0___ 0___ 2n, let go be the 
diffeomorphism which rotates neck N through an angle 0, imagining region A to 
be made of rubber, and so that the complement of region A remains fixed. Then 
g2~ fixes the point x and the tangent vector v of N. Thus v(g2~ ) : P ~ P  fixes the 
fiber over v. 

Claim. v(gz~ ) acts nontrivially on the fiber of P over v. 

Proof Observe that the neck N is homologically trivial. It follows that the loop 
{O~dgo(V)}CS,e~X is homologically the fiber class. Since any spin structure is 
nontrivial on the fiber class, the claim follows. 

To finish the proof  of Proposition 3.2, let h eDi f fZ  be the diffeomorphism 
h=r.g~, where r is rotation through n about axis 1. r commutes with g~ and 
r2=  1, so h 2 =g2~. Moreover, h acts by - 1  on homology, and so fixes all spin 
structures. Also, h fixes the point x and the vector v. So if there were a splitting, g, 
of(*), on any subgroup of G containing DiffoX and h, v(g2~ ) would act on the fiber 
of P over v by ~(h) z, which is trivial. This contradicts the claim and finishes the 
proof. [] 
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