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Abstract. We consider the Wess-Zumino Witten two-dimensional sigma 
models with fields taking values in an arbitrary connected (but not necessarily 
simply connected) simple Lie group G. The quantum states of the theory are 
realized geometrically as sections of a line bundle over the loop group LG. The 
action of the current algebra of the theory is decomposed into highest weight 
representations by explicit construction of the highest weight states. This solves 
for the spectrum of the models. As a by-product, we obtain modular invariant 
partition functions of the theory on tori. The present paper extends the results 
of [7] where the cases G = SU(2) and SO(3) were treated. 

1. Introduction 

The Wess-Zumino-Witten (WZW) models [27,15] of two-dimensional quantum 
fields with values in group manifolds have attracted considerable attention in recent 
years. There are multiple reasons for that: 

1. In special cases, the WZW models provide a non-abelian extension of bosoni- 
zation rules [27] whose abelian version had been one of the main tools in the 
analysis of two-dimensional field theories. 

2. Because of extremely rich symmetry combining non-abefian current algebra and 
conformal invariance, they provide generally non-trivial examples of field 
theories solvable not only for spectrum but for Green functions as well [15]. 

3. As models of conformal field theory, the WZW systems are possible building 
blocks of perturbative string theory vacua [1t]. 

4. Models with rank two groups play an important role in the classification of the 
so-called minimal conformal field theories [-4, 6, 10]. 

* Ce rapport a 6t6 publi6 en partie grace fi une subvention du Fonds FCAR pour l'aide et te 
soutien ~ la rercherche 



128 G. Felder, K. Gawe.dzki and A. Kupiainen 

Last but not least, 

5. The WZW models provide a natural meeting- and play-ground for many ideas 
of modern mathematics and physics like anomalies, Virasoro and Kac-Moody 
algebras, Yang-Baxter equations, braid groups [8], etc. 

The distinctive feature of the WZW theories is that they are defined through 
an action functional containing a topological term. Our aim in the present paper 
is the canonical quantization of the models. As pointed out by many authors 
[24, 28], due to the topological character of the theory, the wave functions, instead 
of being functionals on the configuration space LG of the field (LG is the space of 
loops in group G), become sections of a complex line bundle over LG. It is in fact 
convenient to work in a complexified setup and consider as states the analytic 
sections of a holomorphic line bundle L over LG c. The classical symmetries of 
the theory 

g g lgg2 ,  (1) 

where gi are analytic maps into G c, give rise to a pair of (left, right) projective 
rer~resentations of the loop group LG c in the space of states or, equivalently, to a 

r A C 

pair of representations of the central extension LG c of L G ,  i.e. of the Kac-Moody 
group [--23]. Our main aim in this paper, is to decompose these representations 
into irreducible highest weight (HW) components. As is well known, this is enough 
to recover the spectrum of the theory whose Hamiltonian has the Sugawara form 

A C 
[ 15, 21 ], i.e. is the quadratic expression in the infinitesimal generators of LG . Using 
the realization of the quantum states as sections of the line bundle over LG c, we 
shall be able to construct explicitly the HW wave functionals. First, we do it for 
the simply connected groups by noting that the HW condition determines the state 
up to a factor on a dense open subset of the loop group. The weights of both left 
and right representations of LG c have to be equal. Only the wave functionals 
corresponding to the so-called integrable weights extend smoothly to whole LG c. 
The resulting spectrum of the HW representations has been conjectured in [29] 
for G = SU(2) and in [11] for a general simple group and in fact it follows from 
a theorem in [,-14]. In the next step, we use the result for the simply connected 
groups to find the HW states for non-simply-connected ones. In the latter case 
the loop group splits according to the homotopy class of the loops and the space 
of states splits into different sectors. For each sector, we establish a relation, 
preserving the HW vectors, between the wave functions in the sector and the 
original states of the model with the simply connected group. This allows us to 
find the spectrum in each sector. 

For the case of groups D 2 S Z 2  x Z 2, there exist two possible quantizations of 
the WZW model. They correspond to two "periodic vacua" of the theory [-5, 12] 
and lead to different contents of the HW representations. 

A 

From the calculated spectra of the LG c representations, we may obtain 
immediately the partition functions of the models on the tori. We check explicitly 
their modular invariance employing the techniques developed in [-2]. Our list of 
modular invariants extends the one obtained there. It also agrees with the results 
of [1] based on a semiclassical analysis in a few cases where the latter ones were 
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worked out explicitly. It is worth stressing that we do not use the modular invariance 
to solve for the spectrum of the theory as advocated in [11]. Instead, we obtain 
it as a by-product in the theory quantized canonically. Verification of the modular 
invariance just establishes the absence of global (gravitational) anomalies in the 
WZW models. 

The paper is organized as follows. In Sect. 2, we recall the definition of the 
model and summarize the main properties of its probability amplitudes with the 
main stress on their behavior under point-wise multiplication of the fields. In Sect. 
3, we briefly analyze the spectrum of the models with simply connected groups. 
In Sect. 4, we extend this analysis to non-simply connected groups. In Sect. 5, we 
prove the modular invariance of the partition functions of the models defined on 
tori. Finally in Sect. 6, we give explicit formulae for the spectra in all cases of 
simple non-simply connected groups. Appendix 1 analyzes the quantization 
conditions for the coupling constant of the models, Appendix 2 establishes the 
properties of the probability amplitudes of the models stated in Sect. 2 and Appendix 
3 collects some useful facts from the Kac-Moody theory. 

2. Probability Amplitudes in the WZW Models 

The WZW theories are usually defined through the action functional [27], 

ik . ( _ i ik . i 

Sz(g) = - ~ n j  g Og, g-l~g)-T4-~nJB(O- dO,[O-ldO, O-idO]). (11 

The first term in (1) is the standard sigma model action of the field g:X -+ G (or 
GC), where X is a compact Riemann surface without boundary (we consider the 
euclidean version of the model) and G is a compact Lie group, assumed here to 
be connected and simple but not necessarily simply connected. The second 
contribution in (1) is the Wess-Zumino topological term: B is a 3-dimensional 
chain with boundary parametrizing X and 0 extends g to B. (-, ") denotes the 
Killing form on the Lie algebra # of G (or on 37 c) normalized so that the longest 
roots of the algebra have lengths squared two. 

Remark 1. The consistency of the quantum theory requires that Sz(g) be well 
defined (independently of the choice of g) modulo 2rciZ. This implies that 

k 
! < 0-  ~ dO, [9-  ~ dO, 9-  ~ dO] ) eZ (2) 48n 2 

for every closed (OB = 0) 3-chain B and imposes a quantization condition on 
k:k( > 0) has to be an integer or an even integer, see Appendix 1. 

Remarks 2. There are cases when no extension 0 may be found. Then a more 
general definition of the action (see Appendix 2 and [91) may be used accounting 
for different consistent choices of Sz(g) for non-extendable g and resulting in 
different "periodic vacua" of the quantum theory labelled by the elements of the 
cohomology group HZ(G, U(1)) [9]. As already mentioned, we shall encounter this 
phenomenon when studying groups Dzp/Z2 x Z 2. In this case H2(G, U(1)) = Z 2 
and two possible quantizations arise. 



130 G. Felder, K. Gawedzki and A, Kupiainen 

The knowledge of the action of fields defined on surfaces without boundary is 
enough to set up the vacuum to vacuum transition amplitudes defined (formally) as 

~ F(g) e-S~(g)[dg], (3) 

where [dg] denotes the Haar measure on the maps from 27 to G and F(g) carries 
possible insertions. 

In order to describe transition amplitudes between general initial and final 
states, we shall need amplitudes e x p [ - S z ( g ) ]  for Riemann surfaces 2; with 
boundaries. These may be still naturally defined but no more as complex numbers, 
but as more geometric objects [9]. In the simplest case when the boundary of 2; 
is composed of a single circle, ~2~ = S 1, the amplitudes e x p [ - S ~ ( g ) ]  form a 
complex line bundle ~ over L0 G c, the set of contractible loops. The base element 
of e x p [ - S ~ ( g ) ]  is g]a£.  This might seem strange but what it is saying is quite 
simple. We may describe e x p [ - S z ( g ) ]  by extending g from the surface 2; with 
boundary to a dosed surface and computing the amplitude of the extended map. 
Different ways of extending g would yield different values related by computable 
transition functions and there is no canonical way of assigning a complex number 
to e x p [ -  Sx(9)]. 

The line bundle ~ may be extended over the whole LG c. For a general compact 
Riemann surface 27 with the boundary consisting of circles 7~ and for g mapping 
27 into G c, the amplitude of g 

exp [ - Sz(g)] ~ @ 5¢g ,, (4) 

(is an element of the tensor product of the fibers of £0 over the boundary loops of g). 
The essential property of the amplitudes e x p [ - S z ( g ) ]  is their behavior 

under the multiplication of fields. In the simplest cases, it is described by the 
Polyakov-Wiegmann (PW) formula [22] 

exp [ - S~(g~ g2)] = exp [Fz(g~, g2) - S~(gj ) - S~(g2)], (5) 

where 
i k .  1 

Relation (5) holds for 2; = PC 1 or 22 = D ~ {z[ [z[ =< 1}; but in the latter case only 
if gl or g2 is equal 1 on ~D. We shall however need a generalization of (5) to the 
case 27 = A ==- {z [ 1 __< f z [ _< 2}, where the boundary contributions have to be taken 
into account. 

For  simple, connected, compact groups G, G = G/Z, where G is a simply 
connected group, one of the Cartan series A , = S U ( n +  1), B,~-SO(2n+ 1), 
C, ~ Sp(2~, D, ~-SO(2n), Eo,ET,Es,F4, G2, and where Z is a subgroup of the 
center of G. Z may be only trivial for the last three groups and in general is a 
cyclic group except when it is the center of D2p equal to Z 2 x Z 2. In general, we 
may write 

z = (7 )  

where m = 0, 1, . . . ,  N - 1 and 0 is an element in the Lie algebra ~ of G (for Z = ZN) 
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or m = (ml, m2), ml = 0 or 1, mO= mt 01 + m2 02,0/eq (for Z = Zz x Ze). Consider 
maps h and g of the annulus A into G c such that htOA = 1 and 

g(2e ~') = d ~°"° - er,(q~). (8) 

h may be lifted to a unique map h : A ~ G  c such that 

hilzl=l = 1, h]lzl=2 = eZ'~i"°eZ" (9) 

The following generalized PW relations hold: 

exp [ - Sa(hg)] = ( _ )m ̂ , exp [ -- ltik (mO, nO ) + £A(h, O) -- Scvl (h) - Sa (9)], (10) 

e x p [ -  SA(gh)] = (+_)m^"exp[~ik(mO, nO)+ Fa(9,h) - Sce~(h) - SA(9)], (11) 

where m A n - - O  for Z = Z N ,  m A n - m l n 2 - m z n ~  for Z = Z 2 x Z 2  and h is 
extended to CP 1 by setting h(z) = 1 for Izl < 1 or Iz] > 2. Different choices of sign 
for Z = Z2 x Z 2 correspond to different periodic vacua. 

In Appendix 2, we shall derive relations (10) and (11). The reader not interested 
in geometric intricacies should notice that (10) and (11) may be used to reconstruct 
£0 Over the component LInG c of loops homotopic to e,,, the line bundle £a may 
be identified [20] with 

[MaPo(a, G c) x C1]/Map~(A, GC), (12) 

where Mapo(A,G c) is the set of maps g:A ~ G  c satisfying (8) and MapI(A,G c) 
contains h:A ~ G c, h[a A = 1, which act on MaPo(A, G c) by right multiplication and 
on C 1 by multiplication by 

( __ )" ̂ " exp [rcik (mO, nO) + Fa(g, h) - Sce~ (h)]. 

The projection onto L,,G c sends [(g,z)] to glOD. 

Remark I. Notice that the consistency of (10) and (11) requires that for Z = Zs,  

kN 
2 101z~Z' (13) 

as n is defined modulo N. We shall show in Appendix i that (13) follows from the 
quantization condition (2). 

Remark 2. Similarly, for Z = Z 2 x Z2 the consistency imposes: 

klO~ 12, klO2t2,k(01,02 ) eZ .  (14) 

Here the first two conditions follow from (2). The third one is imposed by demanding 
that the antiholomorphic involution of LG c defined by 0 ~ 9 "  (* is the complex 
conjugation on the Lie algebra level) lifts to an antilinear involution of £,e (also 
denoted by *) such that 

exp[ - Sz(O*)] = expt - -  Sz(9)]*, (15) 

see Appendix 2. Condition (15) accounts for the desired positivity properties of 
the quantum theory. 

Given (4), it should be clear how to build general ("stringy") transition 
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amplitudes in the WZW theory. The wave functions of the system should be taken 
as sections 0~ of the line bundle ~o over the configuration space LG and the 
transition amplitudes between states t)~ will be (formally) given by the functional 
integral (compare (3)) 

.[ @ O~(glT~- 1 )F(g)e-S~(o~ [dg], (16) 
i 

where 27 is a compact Riemann surface with the boundary composed of circles ~,. 
7-1 denotes the circles with inverted orientation. Since the fibers of 2 '  over loops 
with inverted orientation are naturally dual, the integrand of (20) is a number 
although individual factors lie in the bundle. 

The main subject of the present paper is the analysis of the space of states 0~. 
For convenience, we shall adopt a slightly more restrictive definition of wave 
functions admitting only the holomorphic sections of ~ over LGC: 

~l eran(~(~). ( 1 7 )  

That the quantum states should be defined as sections of a line bundle over 
the configuration space is a phenomenon known for many mechanical systems 
and exploited over years by the so-called "geometric quantization" [17, 26]. Its 
rules allow one to represent geometrically classical symmetries of the system in 
the space of quantum states. The projective action of classical symmetry groups 
on wave functions gives rise to quantum representations of the central extensions 
of these groups. In our case, the classical symmetries (1.1) act on the configuration 
space L G  c through the left and right multiplication by loop group elements. The 
geometric quantization of this action leads to representations of the Kac -Moody  

/ x ,  . • C " group LG c (being the central extension of LG ) an Fa,(S¢). We shall define and 
study these representations in the next two sections. 

3. Spectrum of the WZW Models with Simply Connected Groups 

Throughout this section, we assume that G is simply connected. In this case the 
WZW amplitudes are consistently and uniquely defined for k integral, see 
Appendix 1. The Kac-Moody  group of quantum symmetries may be constructed 
using the line bundle ~ over LG c. As a set 

L~'GC= £¢\{zero section}. (1) 

The multiplication of elements of ~ is defined by 

(21 e-SD(gl/).(22 e -sD(°2)) = 2 t 22 exp [ - FD(gl,  g2)] e-S~'~glg2). (2) 

The reader will convince himself, using the PW formula (2.5), that (2) defines an 
associative operation on ~ under which L"G c becomes a group'. Embedding 
C* - C \  {0} into LAG c by 2--, 2 exp [ - SD(1)], we obtain the exact sequence of groups 

1 ~ C* ~ L~  c ~ LG c ~ 1. (3) 

In other words, L"G c is a central extension of LG c. Notice that our construction 
works for any (integral) k. The k = 1 extension is called the universal one as the 
other extensions may be obtained from it via modding out the cyclic subgroups 
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Z k of C*. The Lie algebra L¢ c of LG c is spanned by (Ill)d/de I~= o exp [ - SD(ei"XZ")], 
n > O, and (1/i)d/del,=oexp[-SD(e~=~-")], n < O, (both shortly denoted by xz  ~ and 
identified with the elements of L~ c) and by " ~ (1/Od/del~=oe e x p [ -  So(l)] identified 
with 1 eC. The commutation relations read 

[xz", yz m] = Ix, y] z" + '~ + nk ( x ,  y )  6, +,,,o, (4) 
/~'C so that L¢ is the Kac-Moody  algebra with central charge k [13, 21]. 

One can also consider the real form LG of the Kac-Moody  group composed 
of the elements 0* = 0 - 1  For LG, the exact sequence (3) reduces to 

/ x ,  

1 -~ U(1 )  - -  LG-~  L G - -  1. (5) 

It is easy/..to represent L~'d; c x LG c in the space of analytic sections • on £o. 
A ^ C For 9a ,g2eLG projecting to 91,92 in LG c, we define 

[1(01)r(02)0](9) = 01"O(g~ l gg* -  l)'O~. (6) 

It may be shown that representation (6) is the geometric quantization of the action 
of classical symmetries, see Appendix 2. On the infinitesimal level, it gives two 
commuting representations of the Kac-Moody  algebra generated by J , ( x ) =  
dl(xz") and J,(x)  = - dr(xz") respectively and the constants. Notice the difference 
between them: one is complex linear, the other one antilinear although J,~ = J,(z") 
and ji-~ _ .T. (z ~ ) for (z ~ ) a basis of ~, (za, Z b ) = 1/2 6 ~b, [Z", Z b] = i f  ~b~ Z ~, satisfy the 
same commutation relations: 

[J,,, J.~] = ifab~j~.+,. + 6ab6.+,.,O . (7) 

Let us fix some group-theoretic notations [23]. The Cartan subalgebra of 
will be denoted by ~, the Cartan subgroup of G by H. Roots ct, coroots ev = 2e/[ ~[2 
(both in ,~) and the step generators e~ = e*_, of G satisfy the relations 

[h,e~] = (h,c~)e~,, h ~ ,  (8) 

[e~, e_,]  = ev. (9) 

Positive roots are combinations of simple roots ej, j = 1,2 . . . . .  I-= rank G, with 
positive coefficients. The Weyl group W of G may be realized as the normalizer 
N(H) of H in G with w,w ' sN(H) ,  w - a w ' s H ,  giving the same element of 
the Weyl group. It is generated by the "reflections in simple roots" r~, = exp[(rr/2) 
i(e,j + e_,j)]. We shall consider nilpotent subgroups Ng of G c generated by 
e~, e <~ 0 and the Borel subgroups Bg = Ng H c. 

On the loop-group level, it is convenient to extend the Kac-Moody  group to 
the semi-direct product U(1) ~< LG associated with the action of U(1) on 0 = 2e -s°(°) 
by rotations of the argument of g. On the Lie algebra level, the generator d of U(1) 
satisfies 

[d, xz"] = nxzn, [d, 1] = 0. (10) 

As a vector space, the Lie algebra of U(1)x LG is R d G L c G R .  Its Cartan 
subalgebra Rd • ~ • R carries the Lorentzian Killing form 

( a d  + h + k,a'd + h' + k ' )  = ( h , h ' )  + ak' + a'k. (11) 
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The affine roots ~ = c~ + n, n an integer, and n, n a non-zero integer, correspond to 
step operators e~ = e~z" and e~ = hz" (h arbitrary in g), respectively. Positive affine 
roots correspond to either n = 0, c~ > 0 or to n > 0 and ~ any root or zero. The 
simple anne  roots are ~o = - q5 + 1, where ~b is the highest root of ~ and ~j = c 9 
for j = 1 . . . . .  I. The affine Weyl group W ale may be realized as a subgroup of LG 
composed of loops q~ ~eZ~'~w, where o- is in the lattice in ~ generated by the 
coroots and weN(H)  defines an element of the Weyl group IV. Again W aef is 
generated by the "reflections in simple affine roots," ra. = exp[(r~/2)i(e~. + e_~.)] 

• i J • ~ J 

(considered as elements of LG), r~o(q 0 = e ~ r~ and r~. = % for j = 1 . . . .  , I. We shall 
consider nilpotent subgroups N :~, M e of LG c. N -+ [s generated by e~ with ~ ~ 0, 
M +- by e~ with 5--c~ + n such that - e  + n ~ 0. They will be identified by means 
of the lift g ~ e -sD(gl with the subgroups of LG c composed of the boundary values 
of holomorphic/antiholomorphic maps g : D ~ G  c with g(O)~N~ (for N +-) and 
g(O)eN~ (for M e). Similarly, the Borel subgroups B e - N -+ H c may be considered 
as subgroups of LG c or LG c. 

Our aim in the present section is to decompose representation (6) of the pair 
of Kac -Moody  groups into irreducible components generated by the highest weight 
(HW) vectors 0 # 0 e F , , ( ~ )  satisfying, by definition, the relation 

S . (x )O = 0 = Y. (x)O,  n > O, 

Jo(e~,)O = 0 = Jo(e- ,)O, a > O, (12) 

Jo(h)~b =(COL, N}O, fo(h)t p = (09R,h }O, he~, 

for a pair of weights c~ L, coRe,~. It will be more convenient to rewrite the above 
definition in terms of the K a c - M o o d y  group action: 

l(gl)~b=~k=r(gz)~b, g~sN +, g2~M +, (13) 

l(eih)~l = ei(°L'h) ~l, r(eih)O = ei(°~g'h*) ~t, h ~  c. (14) 

We shall show now that these conditions completely fix ~ and also set conditions 
for possible ogL and ~o R. Our argument parallels the Borel-Weil construction for 
loop groups, see [23], Sect. 11.3. 

Let us first use (13) and (14) to evaluate ~b on special loops, namely those of 
the form glwog* with g leB  +, g2eM + and woeN(H) representing a Weyl group 
reflection mapping the positive roots into the negative ones, WoCtWo i = _ e. The 
point is that B + wo(M + )* = B + w o M -  is an open dense subset of LG c, see below• 
If e ~h is the H c component of g~ then 

S * . , - i(~.h)rl( ,~ lr[,, "~,l,-it,~ w "'*'~--e--~(C°L'h}e--So(o~)'ddW "be-~(02) 
(15) 

Setting O(Wo)= const e -s'(w°) and using (2), we obtain 

O(g~ woO*) = const e iO°L'h)e-So(~'w°°*). (16) 

Thus the HW condition determines ~p completely (up to a constant factor) on 
B + w o M -  and thus everywhere. 

On the other hand, since B + ~ w o M - w o  ~ = B  + c ~ N - =  1, given weight co~, 
the right-hand side of Eq. (16) defines (up to a multiplicative constant again) an 
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analytic section q of 5¢ over B + w o M -  clearly satisfying (13). Moreover, for h'~d c, 
S ih" . ,  . ,  . ,  

[I(eih')OJ(gl Wog~) = e D(e ). O((e ~h gl e,h )e ,h Wog~ ) 
• P ih' -- ih' ,'R 

= const e - * ( m L ' h - h  ) e  -SD(e ) . e  -SD(e glW°92) 

= e~<~L'h'>~(gi wog*), (17) 

where we have used the fact that e- ih 'N+eih '= N +. Similarly 

[r(eih')~ ](gl wog~ ) = ~b(g l woeih'*(e-lh'gzeih')* ) . e -  SD(e-ih'*) 

= ~(ga e- ih'*w o (e-  ih'g 2 eih')*) ' e -s1'le-ih'') 

e--i(C°L,h--h'*) e- -  SD(gl wog~eih'*).e-- SD(e-ih'*) 

= ei(°~L'h'*)l[ l(gl  W O g * ) ,  ( 1 8 )  

so that ~ satisfies also (14) with coa = COL. 
The above discussion implies that the HW states correspond with multiplicity 

zero or one to pairs of equal weights (co, co). The (co, co) state will appear in the 
spectrum if and only if ~, as defined by (16) on B + w o M -  , extends to the analytic 
section over the whole LG c ((t3), and (14) for the extended states will then follow 
by continuity). 

In order to study the limiting behavior of sections q given by Eq. (16) on the 
boundary of B + w o M - ,  we need some facts about the stratification of LG c (for 
proofs see [23], Sect. 8.6 and 8.7). 

LG c may be written as the union of disjoint strata 

LGC= U Z?,, (19) 
ff~ff W aff 

where 

X~ = B + k N - .  (20) 

The stratification of LG c which we shall really need is by 

~Z,~Wo = B + kWo(Wo 1 N -  wo) = B + k w o M - .  (21) 

The reader not familiar with (19) and (20) should consider the case of G c = SL(2, C) 
where, by virtue of the Birkhoff theorem [23], any loop can be written as 

Z n 0 , 

with gi holomorphic for l zl==_ 1. w "ff may be represented by loops 

and 

where 

(o  n)wo 
wo(  



136 G. Felder, K. Gaw~dzki and A. Kupiainen 

Now, stratification (19), (20) may be established in an elementary way with the use 
of the partition of SL(2, C) into the strata BJ No and Bo ~ woNo-. 

Let us return to the general case. LG c may be also covered by open dense sets 
U~ indexed by waif: 

LGC= U U~, (22) 
e W a f t  

U® = B + N -  #. (23) 

We have so far found ~ on N1Wo = U1Wo. Now, we seek to extend it to N~w o, ,k ~ 1. 
Some knowledge of the codimensions and relative locations of X~.'s will be needed. 
In fact, Z~ ~ U~. and has a finite codimension there. To see this, first note that N -  
may be split as 

N -  = (N-  rag'- 1N+ # ) (N-  c~#- 1 N -  #). (24) 

On the level of Lie algebras, Eq. (24) is obvious: the first factor is spanned by e~ 
with f l=  # - 1 ( 5 ) <  0 for ~ >  0 (by definition e~(a)= #ca#  -1) whereas the second 
factor has/~ = ~ -  ~ (5) < 0 for ~ < 0. The global result holds due to the nilpotency 
of the groups, see [23], Chapter 8. 

Splitting (24) gives immediately 

Z~ = B + ~N~-, (25) 
where 

N~- = N -  c ~ - l N - ~ .  (26) 

Moreover, Eq. (25) leads to a unique decomposition of elements of X~. 
For  U~ we need the splitting 

+ - (27) ~$' - IN-~=N® N~ , 
where 

N + = N + c~ v$'- 1N - ~. (28) 

On the level of Lie algebras, Eq. (27) is again clear and the global result follows 
as before. Splitting (27) yields a unique decomposition 

B wN~ N~ . (29) U , ~  ~ + ~ + - 

Thus X~ = U~ and its codimension is equal to the dimension of N +. Since 
N + is generated by e~ with/~ = ~ -  1 (c~) > 0 for ~ < 0, its dimension is the number of 
positive affine roots which ~ transforms to negative ones, the so-called length l(#) 
of v~. 

We need the following result (see [233, proof of Proposition 11.3.1) 

U (30) 

Suppose that our section ~ given by Eq. (16) on X~ w o = U 1 w o extends analytically 
to U~w o with l (k )=  1. Then, from Hartogs theorem [16], it follows by induction 
over l(v D that ¢ extends uniquely to whole LG c. We are thus left with I(k) = 1. 

In this case, ~ has to be one of the reflections ra~ = exp[Or/2)i(ea~ + e aft] in 

the simple affine roots ~ ,  transforming gj to - ~ and keeping the other positive 
roots positive. Consider thus a general element of U~w o decomposed according 
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to (29). As N,+ = { e x p [ -  it%]IteC}, it may be written as 

g 1 r~j exp [ - ite~j] g* w o =- g(t), (31) 

where gl eB + and g3 eN@ To see that for t # O, g(t)e U1Wo = B + w o M - ,  consider 
a homomorphism Raj of SL(2, C) into LG c given by 

(o 00) o) dR~i 0 =e~j, dR~j =e  sj, dR~j\O - 1 = e~' (32) 

where ~ -= - q5 v is the projection of c~ = [% e ~] into L]c. For non-zero t, we 
have (compare [23], proof of Proposition 11.3.1) 

• . R 0 i t 
r~jexp[--ite~fl= ~ ( ( i  0 ) ( 0  - - 1 ) )  

0 1 
= R  1 ) ( : - 1  t ) ( i t _  0 ) )  1 1 

= exp l i t -  1 es fl exp[ -- log t c¢~] exp[i t -  1 e si ] 

= g 1 (t) eih°(~)g2 (t)*, (3 3) 

where gl(t)~N +, ho(t)~A c and g2(t)*~N-. Thus for t # 0, 

g(t) = g 1 g i (t) e ih°(t) gz (t)* g* w o ~ B + w o M - ,  (34) 

as wolg2(t)*g*woeM -. Hence, by virtue of Eq. (16), 

tP(g(t)) = const e i<~oL.h+~ot,)> exp [ - -  SD(g(t))], (35) 

where e gh is the H c component of gleB +, or 

(g(t)) = const e-i<°~L'h+%(~/> exp [ -- SD(g 1)]'exp [ -- SD (gt)] "exp [ -- SD(g* Wo)] 
(36) 

with gt =- 9~ (t)e~h°~°g2(t)*. The behavior of the amplitude e x p [ -  SD(g~)] when t ~ 0  
may be extracted as follows. By Eq. (A.2.22) of Appendix 2, the covariant t-derivative 
of the amplitude is 

D e x p [ - S D ( g t ) ]  = ( ik . / 3 /  -1 

4re ik < @ t - 1  > }  i~1 ~=1 g2-1 -~ ,  gt dgt e x p [ -  SD(gt)]. (37) 

Since for Iz[ = 1, 

gt = R 0 

is regular at t = 0, the only singular behavior of the amplitude comes from the ~ 
term of (37). Integrating it by parts (~(g~- 1 ~-gt) = 0), we obtain 

D { ik  < lOgt - ~ g t )  reg( t ) }exp[-  (38) = - -  ~ gt- ~ , g t  + So(g~)], ~ e x p [  - S~(gr)] 2;¢ I~1=~ 
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where reg(t) is analytic at t = 0. The first term in the bracket vanishes for j = 1 . . . . .  l 
as ~gt = 0 then and is equal to (k/t)(e¢,e_o) = kit for j = 0. Thus 

~'e r~g~° j = 1,. . . ,  t (39) 
e x p [ -  SD(gt) ] = [t%rcg(o ' J = O. 

Since ho(t ) = / l o g  te~, we infer from (36) that O(9(t)) extends analytically to t = 0 
if and only if 

<C0L, e~> > 0, j = l  . . . . .  l, (40) 
and 

(~OL, ¢" ) < k. (41) 

The weights satisfying (40) and (41) are called integrable. 
We have just proven that the HW states in F,,(5¢) correspond (with multiplicity 

one) to the pairs of equal integrable weights. This is a result conjectured in [11]. 
In fact it follows from a theorem of [14]. Note however that our approach provides 
via Eq. (16) a concrete realization of the HW vectors ~: 

(9¢1 [ i~l= 1) = const Z(gcl(0)) exp [ - SD(gJ] (42) 

if g~ satisfies the classical equation of motion 0(9~ ~{9o~)= 0 on D and )( is an 
analytic function on G c, the HW vector of the left and right regular representations 
of G. This follows from the previous discussion since the classical solutions on D 
are of the form gt92*, where 9~ are analytic maps from D to G c. The equality of 
the left and right highest weights of Z and condition (40) for them is a part of the 
classical Peter-Weyl representation theory for compact groups [19]. Condition 
(41), which cuts out all but a finite number of weights, is imposed, as we have seen, 
by the regularity of states (42). 

Starting from the HW vectors 0X one ~ n  generate the "HW modules" carrying 
the irreducible representations of LG c x L'G c by taking the linear combinations of 
vectors l(01)r(O2)~t. As follows from the main theorem of [14], the (direct) sum of 
these H W  modules gives a subspace of "strongly regular" states in F~,(A°). By 
definition, a state is strongly regular if it is invariant with respect to some subgroup 

+ 1 C of the form (]O~N gi- of LG (a finite intersection). We do not know whether 
the strongly regular states are dense in F~,(cS) in some reasonable topology so 
that the decomposition into the HW modules decomposes also F=,(A°). It is 
however easy to see that a possible obstruction: the existence in F , , ( ~ )  of lowest 
weight states, does not occur. 

4. The Case of Non-Simply Connected Groups 

Let G be one of the simply connected groups considered above. Let Q(R) (Q(RV)) 
denote the lattice generated by the roots (coroots) of G. Both Q(R) and Q(R ~) are 
subsets of the Cartan algebra ,~ of G. The Cartan subgroup/4 of G may be identified 
via the exponential map with A/2~Q(R~). Let 

Q*(R)= {hEAl(h ,e ) sZ  for each c~eQ(R)}. (1) 

The center of G corresponds to 2rcQ*(R)/27rQ(R ~) (he2rcQ*(R) if and only if e ih 
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acts trivially in the adjoint representation). The subgroups Z of the center of 
are generated either by a single element O~Q*(R) or by 01, OzeQ*(R), see (2.7). 

In the present section, we shall consider the WZW models with fields taking 
values in G = G/Z. The loop group LG c decomposes into sectors corresponding 
to different homotopy classes of loops labelled by elements of Z. Defining L,,G c 
as the set of loops homotopic to e,,(em(~0) - ei~°"°), we have 

LGC = U L,, G c. (2) 

Let us denote by ~ o  the restriction of line bundle 5¢ to Lm Gc. Recall that for g 
mapping the annulus A into G c, g(2e i~°) = e,,(~0), 

e sA~)ESeem ® 5 e ~ ,  (3) 

see (2.4). Hence a general element of 5~,, may be represented as 

#e s~(g), (4) 

where #eL~°em. The space of quantum states of the model also decomposes into 
sectors, 

r . . (~)  = @ra.(~em). (5) 
m 

The classical symmetries of the theory, acting on the configuration space L,, G c 
by left and right multiplivation by elements of LG c lift to left and right actions of 
the Kac-Moody  group LG c on ~ .  These actions may be easily found with the 
use of rules of the geometric quantization. We shall give here only the final result 
(see Appendix 2 for simpler infinitesimal expressions): 

/"~C Upon representing general elements of LG as 2~exp[-SD(gi)], 0 ¢2~sC, 
g~:D ~ ~c, their action on an element of ~ , ,  given by (4) becomes 

(21 e x p [ -  SD(91)]).(# exp [SA (g)]) = ";1 exp [Fa(01 ,9 ) -  Sce~(01)]# exp [Sa(01 g)], 
(6) 

(# exp [Sa(g)])'(22 e x p [ -  SD(g2)]) = 22 exp [Fa (g, 0 2 ) -  Sc~,,(O:)]#exp[SA(g02)], 
(7) 

where O~:CP 1 ~ ~c extend g~ so that 0i(z) = 1 for ]z[ > 2 (and should be treated as 
G c valued when required by the context). The reader may check, using the PW 
formulae, that the right-hand sides of (6) and (7) depend only on the line bundle 
elements on the left-hand sides and that the action has the required associativity 
properties. 

For what follows, it will be important to know how the elements of Z c L ~  c 
act in each sector. Using Eq. (6) and the PW formula (2.10), we obtain for g ~ = e 2~'°, 

exp [ - S D (e z'u'°) ]. (# exp [SA (9)]) = exp I F  A (O1,9) - Scj,~ (01)] # exp [S a (01 g)] 

= ( _+ )~ ̂ " exp [ - uik (toO, nO) ] # exp [S A (g)], 
(8) 

so that for 0 s ~ , ,  

e 2,~i,o. 0 = ( _ )m ̂ , exp [ - r~ik (toO, nO ) ] 0, (9) 
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and similarly 
0" e2~i"° = ( -+ )m ̂ , exp [nik (mO, nO) ] 0. (10) 

~ . .  / ' \  

The action ofLG c x LG c on ~,~ induces its representation 1 x r on OeFan(2'm) 
defined again by formula (3.6). Our aim is to decompose l x r in each sector into 
HW representations built upon HW states. This may be easily achieved by 
establishing a correspondence between the states 0 in F,,(~em) and wave functions 

of the simply connected problem with group G, i.e. analytic sections of the bundle 
over LG c. Given 0 ¢ ~,,e~C~° m (projecting to emeLmGC), we shall assign to 0 a 

section ~ satisfying 

 m'0(o) = (11) 

for each g e L 6  -c. It is easy to see that Eq. (11) defines a unique ~. Moreover, the 
consistency requires that 

~,,,. ~(g) = ~,,. ~h(e- 2,~i,o g) = ( ¢ . e -  2,~,0). (e2,~,,o. ~(e-  2~,,O g) ) 

= ( + ) m ^ % x p [ -  ~ik(mO, nO)J¢.[l(e2~'°)~k](g), (12) 

where we have used multiplication rule (10). Hence 

l(e2~i,o)~ = ( _+ )rot,, exp[nik(mO, nO)] ~. (13) 

Conversely, since e~LGC/Z = Lm Go, every analytic section of ~ satisfying (13) 
defines via (11) a unique analytic section 0 of ~m. 

Let us find out how the Kac-Moody  action behaves under the transformation 

1 ^ Y A 8 ^ 1 * - 1 ~  A *  

= O~ "~m" ~(~2, l O-~ ~ e , ,ag*  - ~) '0".  (14) 
/ ' x  

Let g'l = ~ig~e,~ and let O'iaLG c be the unique element projecting to g'laLG c 
such that 

= (15) 

The right-hand side of Eq. (14) may be written as ~m" [l(01)r(02)~] (a) resulting in 
the relation 

[IOi )r(02)O]~= l(O'l )r(02)~. (16) 

Equation (16) implies that the Kac-Moody  modules generated by 0 and ~ are 
mapped into each other under the transformation 0 ~ 0. 

Up to now, ~m was an arbitrary non-zero element in ~,~. The crucial fact is 
however that it may be chosen so that the transformation 0 ~ ~ maps HW states 
onto the states with the same property. We shall look for ~ of the form 

em= e,,v~m, (t7) 

where #m is an element of the affine Weyl group W "ff. More explicitly, 

~.,( go) = et~°("° + "m)w,. = e-~°.~'°)w,., (18) 

where w,.eG represents an element of the Weyl group of G and a,. is in the coroot 
lattice Q(R') ~ ~. The complicated notation for mO+ am will become transparent 
later. Notice that, since go ~ e i~¢" lifts to a loop in G, e., is homotopic to e,. and 
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thus lies in LING. In order to be able to compare the HW conditions (3.13), (3.14) 
for ~, and ~, we would like to assure that 

~,~ 1/~ce, " = Be  (19) 

and 
e,~ ~_N + e,. = _N +. (20) 

Relation (19) holds automatically since w,. normalizes ~ c  
Let us discuss condition (20). The Lie algebra of the nilpotent group N + is 

generated by the step generators e~ of the K a c - M o o d y  algebra with ~ = ~ + n > 0. 
Let us see how they transform under the conjugation by em 1: 

~,.(~p)- 1 e,,ei.,~ em(~p) = w~ 1 ei~O,~(O)e~e-i~oo~.~(O)w.,ei.~ 

=Wm 1 e~w,. exp [i(n + ( ~, c%.(o) >) ¢p] 

= ew? " i(~) exp [i(n + ( e, coum(o ) ))  ~0], (21) 

where w~, 1 (e) _= w~, 1 e Win. Hence 

e;, 1 e~+.~,. = e~,+., (22) 
with 

~' = w,7,1 (~), n' = n + < ~, c%.(o ~ > (23) 

(this also holds for ~ = 0). 
In Appendix 3, we prove that it is possible to choose I ~ z E W  aff SO that :¢'+ n' 

is positive if and only if so is ~ + n. We also establish there some useful relations 
involving ~,,. For  the corresponding choice of am, condition (20) follows. 

Let us elucidate somewhat the problem of choice of km by relating it to some 
facts in the K a c - M o o d y  theory. By letting the affine roots act on the Cartan 
algebra by 

(o~ + n)(h) = <a,h> + n, (24) 

we may characterize the positive affine roots as those positive on the positive Weyl 
alcove 

Cg fe -- {he~l~(h) > 0 for 5 > 0}. (25) 
Since 

(~' + n')(h) = (a ,  win(h) + co.~¢o ) > + n = (~ + n)(wm(h) + o~u..¢o) ), (26) 

~' + n' are positive for positive a + n if and only if 

w,.(Cg ff ) + cou..(o ) = C~ ff. (27) 

Relation (27) may be rewritten as 

l ~  1 (Cla~ f ) ~ w ; l ( C  aff ~- O'ra) = C~ ff, (28) 

where C~ f =  C~ff+ mO is another Weyl alcove (i.e. a connected component of 
~\{h{(c t ,  h > e Z  for some root a}). 

Now, the existence of v~,, satisfying (28) (unique up to multiplication of w,, by 
an element of the Cartan subgroup) follows from the simple transitivity of the 
affine Weyl group on the set of Weyl alcoves [23, Proposition 5.14]. The Weyl 
alcove C~ ff is a simplex with vertices O, 1/k] o91, . . . ,  1/kycoz, where co 1 . . . .  ,cot are 
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the fundamental weights of the group, (cog, e~ ) = 6u, and k~ are the dual Kac labels 
appearing in the decomposition of the highest coroot & = I k~e~. We shall put 
co o = 0 and k o -  i. The transformation h--* w,,,(h)+ co,,,(o) satisfying (27) has to 
rearrange the vertices of Cg ff. As the ratios of the dual Kac labels of the interchanged 
vertices are easily seen to be integer, only the vertices with equal dual Kac labels 
may be exchanged. Thus 

Wm(COj) + k~col~m(o) = COlI,,n(j) (29) 

for some permutation (#m(0), #re(i),..., #,,(1)) preserving the values of ky's. Note 
that (29) is consistent with the previous definition of c%,(o). This establishes a 
relation between the elements of the center of group G and the symmetries of the 
extended Dynkin diagram of the Lie algebra of G. 

In order to relate the HW states ~ and if, we still need more than relations 
(19) and (20), see (16). Any 91~/~ + = ~ c ~ +  is the boundary value of an 
analytic map from D into ~c (which we denote by the same symbol). Relations 
(19) and (20) imply that also 9'~=emlgle,, extends analytically to D. For 
01 = exp[--  So(gi)], we have to compute 0~ as given by Eq. (15). Since gl ~O't is 
a group homomorphism, 

0'1 = )~ (g i ) exp [ - S o (9'1) ] (30) 

for some one-dimensional representation X of /]+ (both sides project to 0'1). 
Representing g,, as #exp[Sa(g,,)], where gm:A~G c interpolates between s,, for 
[zl = 1 and em for ]zt =2 ,  we obtain using definition (6): 

Ol'~r, = exp[F A(Oi,gm) - Scp~(O1) ]#exp[Sa(Oi gm) ]. (31) 

Similarly, 

~,,'O'l = Z(gi)exp[FA(~,,,O'l)-- Sce~(g'i)]#exp[SA(g,~O~l)]. (32) 

Choosing 0] equal to (the analytic extension of) 9'1 on D, to gml01~m on A and 
to 1 for I zl > 2, we find Z: 

)~(9~) = exp [FA (0~, g~,) -- FA(e~, 0'~) -- Scp,(O~) + Scl-(O'~ )]. (33) 

In order to express Z more explicitly, let us calculate d/dtz(e ~x) at t = 0 for X in 
the Lie algebra of/3 +, i.e. the boundary value of an analytic map from D to 
with X(0) in the span of gc and %, e > 0. 

Denoting by )7 an extension of X to CP 1 vanishing for Izl _-__ 2, we obtain 

,= o)~(e "x ) [ r A ( e  "x , g,,) - Fa(g,,, g; 1 e,t~g,,)] 

2r~ A 

_ _ k  fd(~,emdem 1 k = ) = ~  ~ (2~,~mde~ 1) 
2~z a "~ Izt= 1 

ik 
= 2--~ ~ ($,o9~,,,,(o)) dz. = ik(X(O),co~,.(o)), (34) 

Izl = 1 tZ 
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where in the last step we have used the analyticity of J~ on D. Notice that the 
right-hand side of (34) selects only the ~C-component of X(0). In particular, it 
follows that 

z ( g x ) = l  for glEIV + (35) 
and 

z(e~h~)=exp[ik(ht,co,,.(o)>] for hl~/~ c. (36) 

Given (19), (20), (30) and (36), relation (16) implies that O is a H W  vector (see 
(3.13, 14)) if and only if ff is. Since, by Sect. 3, the H W  states ff correspond (with 
multiplicity 1) to the pairs of equal integrable weights (co, co) satisfying additionally 
(see (13)) 

(co, nO> = k/2 (mO, nO)( + 1/2m ,x n)mod[ I ]  (37) 

for each n, we infer that the H W  states ~ are labelled (also with multiplicity 1) by 
pairs of weights (o~ L, COR) where 

COL = Wm((D) + k(-D/tm(0) ~--/~m(CO) (38) 
and 

COR = 09. (39) 

This establishes the classification of the H W  vectors in each sector of the WZW 
model with group G = G/Z. The decomposition of Fa,(~m) into the H W  modules 
generated by those states follows in-as-much as it was established for the simply 
connected case, i.e. in the subspace of strongly regular states of [14]. 

The spectrum of the H W  states may be encoded in the "mass matrix" (M~L,o,~) 
giving the multiplicities of the H W  vectors corresponding to weights (coL, COR)- 
Denote by C~ the set of integrable weights satisfying (37). Our results may be 
summarized in the formula 

Mo~L,o, = ~ Z to,Li~.,(co)6o,,o~. (40) 

Notice that #m defined by (38) carries integrable weights into integrable ones. This 

follows as the integrable weights are exactly the ones in the closure k C~ ff of the 
positive Weyl alcove dilated by k and the latter is preserved by #m due to (27). 
Without loss of generality, we may then restrict Mo, L,~ to integrable wrights. Notice 
also t h a t / ~  maps C~ onto Ck_m. Indeed, 

<Itm(co),nO> = <Win(co) q- kco~,,.(o),nO> = (co, nO> - k(mO, nO>mod[1] (41) 

as w,.(@ - co is in the root lattice and kc%.(0 ) + kmO is in the coroot lattice, and 
as such both have integral scalar products with nO. Now, since/~;, ~ = #_,., 

m e)~C_m 

i.e. matrix M is symmetric. 
The condition co ~ C k in (40) may be imposed by writing the characteristic function 

of C k as the Fourier sum on the group Z: 

1 
lck,,(co)=~(~ exp[-- 2rci(co, nO> + ~ik <mO, nO>( + ~im A n)]. (43) 
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Thus 
1 

M~,,o, - IZ[ m,, ~ exp[ - 2~zi(d, nO) + rcik(rnO, nO)( + rcim/~ n)]6o,,u,,(,o,), (44) 

We shall compute M more explicitly for all possible cases in Sect. 6. 
The knowledge of the HW content of the space of states for the WZW models 

gives immediately the spectrum of their Hamiltonian which has the Sugawara form 

J/t" = Lo + Lo, (45) 

where 

L o = k @ I , 2 o o ~ : J ~ _ , J ~ : - z ~ k d i m G ] ,  (46) 

and L 0 is given by the same formula with aV's replacing J's. 

I 

h V - Z k y  
j=0 

is the dual Coxeter number of G and the normal ordering in (46) puts J~ with 
positive n to the right of the ones with negative n. For the HW state ~ characterized 
by weights (coL, coR), we find 

~ = (k + ha) - l(Cas(coL) + Cas(COR) -- 1-~k dim G)~, (47) 

where Cas(co) denotes the value of the quadratic Casimir of G in the HW 
representation of weight co. Each operator JL ,  or J~-n, n >_ 0 increases the energy 
by n. 

Another important quantity fixed by the HW content of the space of states is 
the partition function on the torus T 2 = {(e ~' ,  e*~2)} with the complex structure 
defined by z = qh + zq~2,1m z > 0, 

Z(z) = Trace e 2~i~z° e- 2~*~go. (48) 

In each HW representation of weight co, 

Trac%e 2~i~L° = ch [k, co] (z), (49) 

where the right-hand side is the (restricted) affine character of the representation 
expressible in terms of Jacobi 0 functions, see [2, 23]. Z(z) may be rewritten in 
terms of the mass matrix M of the model and the affine characters as 

Z(z) = ~" ch[k, coL](Z)M~L,~Rch[k, coR](O. (50) 
(OL,O) R 

Since M is positive, Z(z) is real and positive, as it should. 

5. Modular lnvariance 

The partition function Z(-c) is formally given by the functional integral 

exp [ -- ST~ (g)] [dg]. (1) 
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modular automorphisms A ( :  Z act on the torus by 

A 
(q~l, q92) -->(aqh + bq~2,cq)l + d(p2) (2) 

and change its modular ratio by 

aT - b 
-o z' = _ cz + d" (3) 

The amplitudes are covariant under diffeomorphisms of the Riemann surface, see 
Appendix 2 or [9], so that 

e x p [ -  ST~(9oA)] = e x p [ -  ST~,(9)I. (4) 

Since the Haar measure is invariant under 9 ~ 9 ° A, we should expect the modular 
invariance of the partition function: 

z(~)  = z(T'). (5) 

Indeed, we shall show that (5) holds so that, as expected, no global anomalies 
appear when the formal integral (1) is computed using the loop-group theory. 

We shall base heavily on [2]. It is enough to check that 

Z(z) = Z(-r + 1) (6) 

and 

,71 

Since the modular transformations act linearly in the space of affine characters, 
conditions (6) and (7) impose requirements on the mass matrices M. Here it will 
be convenient to consider M defined by (4.44) as a matrix labelled by weights in 

(k + h v) C~ ff - p = k Cg ff, where p = col + " "  + ~ov Notice that, due to (4.29), 

p - win(p) = p - cou,.u ) -t- k~ c0,,.(o) = hVcoum(o), (8) 
j= l  \ j = l  / 

and consequently #m maps (k + h v) C~ ff - p into itself. The extension of M leaves 
it symmetric and moreover does not change Z(~) of (4.50) since the affine characters 
vanish for the added weights. 

Now, as shown in [2], Eq. (6) holds provided 

M,~,~,=0 if Ic51z~lch'lZmod[2(k+h~)], (9) 

where ~5-  co + p. To establish (9), we shall need the following property of cou..~o) 
proven in Appendix 3. 

2 ( p, co~,,,,~o) ) = hV]cotsm(o) ] 2 ~ z .  (10) 

Now M~,,~, # 0 if and only if for some m, co' satisfies (4.37) and co = #,,(co'), i.e. 
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(7) = Wm((D' ) "~ (k + h~')o)~m(o). Now 

1~51 z ----I wm(os') + (k + h~)c%m(0)[ 2 

[ k+h~ 21 = IcD'l 2 + 2(k + h ~) (wm(c~'),c%~(o)) + - ~ 1 c % . ( o ) 1  

I k+h" 21 = l r S ' 1 2 + 2 ( k + h  ~) (rS',0)~m(o))+---~-Iro~m(0)l mod[2(k+h~)] .  (11) 

But due to (4.37), 

k z 
((5', c%m(o )) = - ~1 c%m(o) I + (P, <o~,m(o)) rood [1] (12) 

(we use the fact that length squared of elements of the coroot lattice is an even 
integer). 

Equations (10), (11) and (12) imply that 

1~512 --Ic5'12 mod[2(k + hV)] (13) 
and prove (9). 

The second invariance condition (7) was shown in [2] to follow from the matrix 
relation 

SM = MS, (14) 

where S = (So,,o,), cD, c5' belonging to (k + h v) Cg ee, 

s ~ ,_, . , [ -  . ( ~ , w ( ~ ' ) ) ] ,  (15) o~,o,' = c ~w etw)exp L zrc' ~c--~ 

(W is the Weyl group of G) e(w)= ( - 1 )  parity(w) and C being a constant. Note 
important identities: 

. ( Coww,,(~') ) 
S~,u. ,(o, ' ,=C~we(W)exp[2m-~-~V t- 2rci (c5, w(c%,.(o)) ) 1 

= e(Wm) exp [27zi ((5, c%..(o) ) ] S~,~o,, (16) 

and similarly 

Sum(o,) ,~,, = e(w m) exp [2rci ( 05', cou,.(o) ) ] So~,~,,. (17) 

Using these relations and representation (4.44) for the mass matrix, we obtain 

1 (SM)o,o,, = ~ ~ S~,I,.,(~y) exp [ - 2rci (co', nO) + rcik ( mO, nO) ( + rcim A n)] 

= ~ ~ e(w,.) exp [ -- 2rci( ( p, mO)+ (co, toO) + <o)',n0>) 
t I m,n 

+ zcik(mO, nO)(+ rcim A n)'lSo,,~,,, (18) 

and for the other order (replacing M by its transposition) 
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1 
(MS),o ,~, = ~ ~ exp [- - 2~i (co, nO) + ~ik ( rnO, nO) ( + rcim ̂  n) ] Su..~,o).,o, 

• I 1,~,. 

= [Z-~m~ e(Wm)exp[-- 2rci((p, mO) + (co',mO) + (co, nO)) 

+ 7cik(rnO, nO>(+ rcim A n)]S~,,~,. (19) 

But ,  as shown in Appendix 3, 

e(Wm) = exp[27zi(p, toO>I, (20) 

so that equality (14) follows from (18) and (19) by exchange m~-~n. This completes 
proof of the modular invariance of partition functions (4.50). 

The series of modular invariants that we have obtained here is more general 
than the one discussed in [2], where the modular invariants were associated with 
single elements of the center of G (the generators of Z = ZN in our language). 
Firstly, some central charges k were strangely missed in [2] by requiring that kl012 
be an integer, (condition (3.1t) of [-2]). Secondly, we get pairs of new invariants 
(one for each periodic vacuum) for the WZW model with group Dzt/Z: × Z2. They 
are associated to a pair of generators of Z2 × Z2 rather than to a single element 
of the center. 

6. Examples 

In the present section, we shall give more explicit expressions for the mass matrices 
of WZW models with non-simply connected groups G/Z. We shall label the weights 
of group G by (l + 1) integers (rj), j = 0 . . . .  , l = rank G such that ~ k~rj = k. The 
correspondence is 

1 

co = r ico j ,  (1) 
j=l 

where co o = 0 and col,...,coz are the fundamental weights. The gain from this 
somewhat strange labelling is two-fold. First, integrable weights correspond to (r j) 
with rj > 0. Secondly, due to (4.29), 

l 

am(co) =- WIn(co) q- kcoum(o) = Z rjWm(coJ) "4- kcou,,(o ) 
j = 0  

l 1 l 

: 2:0Z r~co,,,~j) - j :o  ~ r~kycou~°) + kcou~"¢°)= j:~o r,: l(j)coj. (2) 

First consider the case Z = Zu. Here #,~ = #m. Upon replacement in (4.44) of 0 by 
- ¢Ou(o) (recall that their difference is in the coroot lattice), the mass matrix becomes 

exp 2rcin r)(coj, cou~o)) + Tzikmn[cou(o)[ 2 1-I6, ¢. (3) 

Notice that in order to compute (3), we only need to know the fundamental weights 
of G and the permutation # defining a symmetry of the extended Dynkin diagram 
of G corresponding to the generator of the subgroup Z of the center of (~, 
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Ai, 1, 2, . . . .  

The  integrable weights satisfy Z r j  = k. Possible subgroups  Z of the center Zl+ 1 
are ZN, where N divides l + 1. The integrabili ty condit ion for k requires tha t  k ~ 2 Z  
if 1 and  (l + 1)/N are odd and k 6 Z  otherwise. 

1 N-1 V l 
M(rj)"r)':-gm~n=°exPL - 2~in ~ jr)/N + rciknml(l + l)/N2] l-I s, / ,  (4) 

, = j= 1 J j= o '+'('+ ~)1~" J 

where j + rn(l + 1)/N is taken m o d [ l  + 1]. 

BI, ! = 2, 3 , . . .  

Integrable  weights: ro + rl + 2(rz + ... + rz- ~) + rt = k. Z = Zz .  k eZ .  
l 

1 M(,s),(6) = 3 [ ( 1  + ( - 1)rO~)ror'oC~rv' + ( 1  + ( - -  1 ) r ; + k ) ~  r / C~ r / ] H 6 r  / "  ( 5 )  
0 1  l o  j = 2  J ' J  

CI, I = 3, 4 , . . .  

Integrable  weights: 27r i = k. Z = Z2, k 6 2 Z  for 1 odd  and k 6 Z  for 1 even. 

I/ 2s,)\, l /  ;~j,]+k,12\t 
M(,,).(6) = i t  1 -~ ( - 1) '=t / ~ a r r' ~- = / 1  ~- ( - 1) , ' t ) ~^ 5,,_,.6. (6) 

}S:O ~,s z \  i~=,  
DI, ! = 4, 6, 8 , . . .  

Integrable  weights: r o + r 1 + 2(r 2 + ... + rt_2) + rt_ 1 + rz = k. Center  = Z 2 x Z 2. 
There  exist three possible choices of  cyclic Z = Z 2 inside it. 

1. k 6 2 Z  if I is not  divisible by 4, k 6 Z  otherwise. 
l-2 

~I ~" JrJ+((l-2~/2)r~- l +(l/2)r~ ) J O0 
M%),(6) = 1 + ( -  i)':' ,-. 6.s.r $ 

1( 
+ 1 + ( -  1)'" [ I  5 . . . .  .. (7) 

j = O  I l ' J  

2. k~Z.  
l 

M%),(6) = ½(1 + ( -  1) ~i-~ +~;) 1~ 5o, 6 j=O 
l-2 

' l+r~+k. t .g  .~ [ - [  .~ , ,-~ , 
+ ½(1 + ( - 1) ̀2- J~',t/o",o/~ I I wrj,r 2 Vrl,rl- 1 (~rl-l,r t" (8) 

j = 2  

3. k ~ 2 Z  if 1 is not  divisible by 4, k e Z  otherwise. 
t-x 

M(~),(6) = 1 + ( - 1) ~:~ 1"-[ ,i j,) 
.#=0 ' 

1-2 ~ ( ~l JrJ+ (l/2)r~- l + ((1- 2)/2)r~ + kl/4 "~ 
+ 1 + ( -  1) - )5o_ jo5 , ,  A 

l - 2  

• H a,,-,, 6 6,o,,i-16,1,,;" (9/ 
.#=2 
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D ,  1 = 5, 7, 9, . . .  

Integrable weights as for I even. Center = Z+. 

1. Z = Z 2. k~Z. 

l 

M(,)@ = ½(1 + ( -- 1) r~-l+rl) I~ 6,j,r) 
j = 0  

I - 2  

+½(1 + ( -  1) )6,~./o6,o A I-I5,/j6,, . ,~_5 . (10) j = 2 ,  r l - l ' r l "  

2. Z = Z , .  k~2Z.  
r-2 ! r i 1 a ,i,(Z j,j+(t/2),,+((~-2)/2)rz+(k~/4)m) ! 

M%~(6)=~m~oe J+~ 11 fi~ - ; . '  (11) , = j = 0 g~ttp .+ 

where p is the permutation ( l -  1 , l , 1 -  2 , 1 - 3 , . . . ,  1,0). 

E6 

Integrable weights: r o + r~ + 2 r  2 -~- 3r a + 2r4 + 2rs + r6 = k. Z = Z a, kEZ. 

1 2 I-2~i 
' + 2km) l  l~I fir / ,  (12) M%).@ =-~ , .~  o e x p L ~ - n ( r t  + 2r~ + f4 "31- 2f6 

, = . J j = o  ~0"~' i 

where # =(1,6,4,3,5,2,0).  

E7 

Integrable weights: ro + r~ + 2r 2 + 3r 3 + 4r+ + 3r 5 + 2r 6 + 2r7 = k. Z = Z2, k¢2Z. 
7 6 

- ~  (--1);~+/~+;7)I-ISrj,,)+½(1+(--1);~+;3+r'7+k/:)I-I5 , (13) M%).@ - ~(1 + 
j = 0 j = 0 r#o')'r'i 

where/~ =(1,0,6,5,4,3,2,7).  
The last case to consider is 

D I , !  = 4 ,  6 ,  8 ,  . . .  , Z = Z 2  x Z 2. k s 2 Z .  

Replacing in (4.44) mO and nO by - e)~(o) and - c%m(o), we obtain 

1 1 
M%).(6) = ~ X exp [ 2ui X r~ < o)/, ~l..(o) > m,n L j= 1 

+ rcik(co~,..(o),Oh,.(o))( + rcim ^ n fit / .  (14) 
I ~ ~ Jz~O), j 
_ 1 3 = u  

More explicitly 
t-2 

M(rj).(,,=¼(l +(-- l)r;-t+r})(1 +(--1).,~J6+((l-2)/2'r~-~'+(l/2'r~)jO0 ° 8,j,6 
1-2 

( +2-20 ° +¼(1 __ ( -  1) ~-+~'+kn) 1 + ( -  1) '=~tjj+((l-2)/2)ri- 6r,_j.r ) 
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t -2  

t . . ~ t + ¼(1 + ( -  1) ';-,+';) 1 + ( -  i v  -, j-, , , , ;-,o,, i  

l - 2  

• ~ , 6 ,  6 , jU rj ,r j  r l , r l -  1 r l -  1,rl 

1-.2 ~ r ..~l(t_t_(__l)r~_l+r'l+k/2)(l_{_(__l)j~oJr'J+((l--2)/2)rl-l+(l/2)rl+k(l--2)/4) 

I-2 
1 - 1 , 0  l ~ l  . 2 l - j ' j  0 ' 1 - 1  l ' l  j= 

___ signs correspond to different periodic vacua. Sum over two choices of the sign 
is a linear combination of previous mass matrices (sum over the three different 
Z = Zz choices minus the Z = 1 solution). Their difference gives a modular invariant 
linearly independent of the previous ones. 

A p p e n d i x  I 

Consistent quantization of the WZW models requires certain information about 
the topology of the group G in which the fields take values. For connected, simply 
connected, simple, compact groups G, the first integral homology groups are 

f l  for q=0 ,  
Hq(G) = for q = 1, 

for q = 2 ,  
for q=3 .  

(1) 

H3(G ) is generated by the inclusion 9o of SU(2) ( -  S 3) into G on the infinitesimal 
level described by 

( ;  10)~%, (~  00)~e ~, (~ _ ~ ) ~ & ,  (2, 

where 4~ is the highest root of the Lie algebra q of G [3]. 
For non-simply connected groups G = G/Z, where Z is a nontrivial subgroup 

of the center of the covering group G of the previous type, Ho(G)= Z and 
H 1 (G)= 7q (G)= Z. The low homology groups of G are :related to the homology 
of group Z (for the definition of homology of finite groups see [25]). By Corollary 
XI.7.3. of [t8], 

Hq(G)~Hq(Z), q = O, 1,2, (3) 

and there exists an exact sequence 

H4(Z) ~ Ha(G) ~ H3(G) ~ H3(Z) ~ 0, (4) 

where the isomorphism (3) and the last arrow in (4) may be described explicitly 
[25] (the second arrow in (4) is induced by the canonical projection of G onto G). 
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For Z = ZN, He(Z) = Z and 

~ZN for odd p (5) 
Hq(Z) ( 0 for even p > 0 ,  

see [25]. Thus H2(G ) =0  in this case and there exists an exact sequence 

0 ~ Z ~ H 3 (G) ~ Z N -~ 0. (6) 

We shall need a more detailed description of (6). I~Z  (the generator of H3(G)) is 
mapped to the homology class [go] of the inclusion of SU(2) into G given 
infinitesimally by (2). An element of H3(G ) projecting onto the generator of Z N 
may be obtained from the map ~:B-~G defined as follows. Let B1,B z be two 
distinct copies o fD x SI(D = unit disc). Let F:S 1 x S 1 =- TZ ~ T 2, 

F(eiZl, e*O2) = (ei~l, e~¢n~, + ~2)). (7) 

B is the union of B1 and BE with the boundaries identified by F. It is a closed 
oriented 3-dimensional manifold. Let e 2~i°, 0~¢, be the generator of Z and let 
gI :D--~G satisfy 

= eiN ° (8) 

(the right-hand side is a contractible loop in G). Define ~ ~-go by putting on B I 

0o( rei°l , ei~) = g 1 ( re~l ) ei~2°, (9) 

and on Ba 

~o(r'e ~0~ , e i02 ) = e ion°. (10) 

A somewhat tedious calculation involving an explicit triangulation of B shows 
that the homology class [00] in H3(G) indeed projects via (6) to the generator of 
Zn. We conclude that for Z = Z N the homology classes [g0] and [g0] generate 

The only case not covered by the above is the possibility Z = Z 2 x Z 2 = 
{e z=i¢"~°~ +m°2)lm i = 0,1}(01 # O z ~ )  for G = D2p. Here Hz(G) ~ Hz(Z2 × Z2) = Z2 
is generated by map g: T 2 ~  G, 

g(d~,~, eie2 ) = ei(O~ol + ~o2). (11) 

H3(Z 2 x Z2) = Z 2 x Z2 x Z 2 and H3(G ) enters the exact sequence 

Z ~ H 3 ( G ) - , Z a  x Zz x Z : - ~ 0  (12) 

with the image of I ~ Z  in Ha(G) again equal to the homology class [go], and 
[g0,], [00~] and [g0~ +02] projecting respectively to (1, 0, 0), (0, 0, 1) and (1, 1, 1). Thus 
H3(Dzp/Z~ x Z2) is generated by [0o], [0ol], [0o~] and [0ol+0~]. 

Equipped with the knowledge of the generators of H3(G), we turn the 
consistency requirement (2.2) to the explicit conditions for the coupling constant 
k. For g = go, the integral in (2.2) reduces to the computation of the volume of 
SU(2) and gives the condition kzZ  for all groups. For g = ~0, only OolB1 contributes 
to the integral. In virtue of the invariance of the 3-form < g-  ~ dg, [g-  ~ dg, g -  1 dg] ) 
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on G under the right multiplication by e ~e~°, 

2n 
D~sl (O-idg'  [O-i&j,O-idO-1) = 3i~o ! dq~2(8' [g ; ldg t ,g[ ldgx] )  

= - 12zt i Id(8 ,g?ldgi)  = - 12rci I (8 ,g?adgl)  = 247z2NlS[2" (13) 
D OD 

Hence kN/21812eZ. This, together with the integrality, leads to the values of k 
listed in Sect. 6 for all but one case. The exception is D2p/Z 2 x Z2, where the 
condition (2.2) is equivalent to the integrality of k, kIOil2,kl0212 and kl01 + 8212 
and admits k~2Z for p odd and keZ  for p even. In the latter case however, the 
odd values of k lead to non-unitary theories with complex partition functions. 

Appendix 2 

We shall discuss here the construction of the probability amplitudes for the WZW 
model in a more down-to-earth way than in [9]. Let us focus on the topological 
part of the amplitude of the field O mapping a compact Riemann surface 2: into GC: 

see (2.t). Equation (1) defines Az(9) for g homological to zero unambiguously for 
k satisfying the quantization condition (2.2). A e(g) is invariant under the orientation 
preserving reparametrizations of 27 and goes into its inverse under the ones 
changing the orientation. Although A~(g) is not given as an integral of a local 
expression over 27, its variation is: 

In the case of G = D2p/Z2 × Z 2, the only one with non-vanishing second 
homology group, we should complete the definition of the amplitude by extending 
Az(9) to maps g not homologous to zero. Let for m=(ml,m2), n=(nl,n2), 
g,,,:S 1 x S i - T 2 ~ G be given by 

gm,(e~e,, ei~) = e~(~,~ + ~2,o), (3) 

where m8 =-m181 + m282 and e 2~°1, e 2"~°2 are the generators of the center of Dzp. 
9(1,o)(o, 1) defines the nontrivial element of H2 (G) = Z2 (see Appendix 1) and 9(2,o)(o, 1) 
is homologous to zero. Proceeding as in (A.1.9) or using directly (2), we obtain 

ATa(9(2,0)(0,1) ) = exp [2uik(81 , 8 2 ) ]  = ( - -  1) k (4) 

as (01 ,02)  = 1/2 mod[1].  We shall choose A(g(1,o)(o,1)) as a square root of (4), 

Ar~ (0(1,o)(o,1)) = + e~ik/2, (5) 

and define for general g 

e nik[°]/2 ex ik ~- 1 ~ A~(g) = ___ p [ ~ 7 ~ ! ( g  dg,[O-ldO, O- ldO]) l  , (6) 
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where [g ]eZ  2 is the homology class of g and ~ = g -  [g]g(1,o)t0,a) as a 2-chain. 
It is easy to see that extension (6) preserves the reparametrization invariance of 
the amplitude and continues to satisfy (2). The freedom of choice of the sign in (5) 
is in agreement with the results of [9] where different quantizations of the model 
were labelled by HZ(G, U(1)). Indeed, the cohomology long exact sequence 

... H 2(G,R) ~ H 2(6, U(1)) ~ H  3(G)--* H 3(G,R)... (7) 

implies that H2(G, U(1)) is the torsion part of H3(G) since H2(G,R)= 0, and the 
last arrow injects the free part of H 3 (G). But, by the universal coefficient theorem, 
the torsion of H3(G) is equal to the torsion of H z ( G  ) -= Z 2. 

To guarantee the reality properties of the theory, see (2.15), we shall additionally 
require that 

A z(g* ) = A ~(g). (8) 

Since g~,o)(o,1) is an orientation preserving reparametrization of g(1,o)(o,1), this 
implies the reality of e "~k/2 and leaves us with even k's for which property (6) follows. 
Noticing that for m proportional to n, Ore, is homological to zero modulo 0~, where 

does not contribute to (6), and using the reparametrization invariance, we compute 

Ar2(gre,) = ( +_ )" ̂  ", (9) 

where m ^ n = rna nl - m 2 / , / 1  . 

For gl = gmn,02 = Ore',', explicit check shows that 

AT2(g192) = (+ 1)"^'+"^m'exp[uik((mO, n'O) - (nO, re'O)) 

ik . 1 1 1 + ~ j 2 ( g ~  dgl,gzdO; ) Ar2(gl)Ar2(g2). (10) 
--I  

Using Eq. (2), it is easy to verify that (10) holds for any gl and g2 in the homotopy 
class of Ore, and g,,,,, respectively. 

The holomorphic line bundle ~f over LG c with holomorphic connection is 
determined by the holonomies of closed paths in LG c given by the WZ action (6) 
on tori. The construction goes as follows. 

In each connected component of LG c we choose a reference point g . .  Then 
£f is the set of the equivalence classes of pairs (7, z), where 7 is a path ~:[0, 1] --* LG c 
with 7(0)= g* and zeC. Two such pairs (7,z) and (7',z') are identified provided 
7(1) = 7'(1) and 

z' = Ar~(7'- 1.7)z. (11) 

Here 7' - t denotes the path 7' run in reverse order and for paths V 1,72, ~2 (0) = 71 (1), 

f71 (2t) for teE0,½], 
72.7~(t)= [72(2t - 1) for t~[½,1]. (12) 

The projection u: &o ~ LG c is given by u [(7, z)] ---7(1). 
Due to the reparametrization invariance of Ar~, Eq. (11) does not depend on 

the details of the identification of the closed paths in LG c with maps from torus 
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T 2 to G c implied in (11) and defines an equivalence relation. Similarly, different 
choices of the reference loop g* lead to isomorphic bundles ~ .  

We may now define the parallel transport in L,e. Given path 71 in LG c, the 
parallel transporter A(h) mapping 5e~1~o ) to ~ , (1 )  is defined by 

A(h)[(7, z)] = [(?l *% z)] (13) 

(this is readily seen to be well defined using (11)). It satisfies 

A(?i)A(T2) = A(?l *?2). (14) 

If h is a closed path then 

A(T1 )[(7, z)] = [(7, A~2 (Y- i ,  7i * 7)z)] = AT~(Yi )[(~2, z)], (15) 

i.e. AT2(h) is the holonomy as desired. 
The covariant derivative D/dt along a path gt in LG c is now easily computed. 

Let ~k be a section of ~ .  By (11), we may view it as a function ~ on the paths ? 
which satisfies 

if(?') = AT2(7 ' - I  *y)t#(y) (t6) 

(smooth ff satisfying (16) defines a section ~, ~(?(1)) = [(7, ~(?))])- Denote by ?t,, 
the path gt run from t' to t. Thus 

d-t~]J(gt)=d t,=tA(?tt')~(gt') 

= [ * 

t ' = t  

= • ]/t') ~ ( ? t ' ) ) ]  
t '=t 

where ?t: [0, 1 ] ~ LG c, ?t (0) = g . ,  ?t(1) = gt- The derivative of A r is computed using 
Eq. (2). Noting that the contribution from ?t,. vanishes as t'-~ t, we obtain 

D ~  ~O(?t)=(d~ ilc . / iO?t d(?t~dTt)>)~(yt). (18) 
The action of the WZW model includes, apart from the topological term, 

also the standard sigma-model part. Identifying a path g:[zi ,z2] ~LG c between 
euclidean times T~ and zz with a field configuration on the annulus 27 = {zle ~ < 
z ~ e ~ } by the exponential map, we put 

e-S~g)=exp[i4~<g-l@,O-l~g)lA(o)-e-S°°)A(9 ). (19) 

exp [ -  S~(O)] is an element of &ao(~ ) ® * 
It is convenient to use exp[ -S~(9) ]  rather than [(7,z)] to represent the 
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elements of L~. A general element of ~g~2~ is given by 

e-S~(~)#,#eLPg,, (20) 

for g('cl) fixed at g , .  If fl = [(?o,Zo)] then 

e-Sz~g)# = I-(g*Yo, e-S°(g)Zo)] (21) 

in the previous representation. 
Equation (18) for the covariant derivative gives immediately for a homotopy gt, 

D -s-,g) F i k _ d  -1 -1 ik . d /  _ l~ t ,d(g t tdgt , ) ]e_S~g, )  d-'[ e . . . .  L jr2/(a, (~gt, gt "~gt ) -- -~ ~ ~ ~ gt 
I _.J 

_ i k  - 1 ~ g t  - ik -~ ,g t  

(22) 
On the identity component of LG c, we may take g ,  a constant and represent 

the bundle ~e with the help of action So on the disc D = { z ] l z [ ~  1} by 
putting z~ = - 0 o  and ~2 = 0. Bundle LP restricted to constant loops is canoni- 
cally trivialized by the mapping [(y,z)]---~(7(1),Aec~(?)z)eGCx C, (~(0) and ~(1) 
being constant loops, 7 defines a map from C P ~  GC). Hence we may take 
e x p [ -  SD(g)]eLZ~I~o canonically and let the value of g at z = 0 be arbitrary. It is 
easy to see that formula (22) still holds for 27 replaced by D. 

On the nontrivial sectors, it is convenient to use the annulus A = {zl 1 < Iz[ < 2} 
and fix gll~l=2 = g*- Lzgll~l=~ is hence represented by elements #exp[SA(g)] with 
#e~e, .  To obtain the PW formulae (2,10) and (2.11), write 

- -  0 h S ° I )  e-Sa(ah) eS,~) _ e-Sa( a)+ A~g) Ar~(hg.g- (23) 
or 

eSaO)- SA(gh) = eS%)- s%h) Ar~(g - 1 *gh), 

and use (10). 
The classical symmetries (1.1) of the W Z W  theory act on the (complexified) 

configuration space LG c of the model by left and right multiplication by the 
elements of LG c. The quantum action of the symmetries comes from the 
appropriate lift (geometric quantization!) of this action to bundle ~ .  Its infinitesimal 
generators dn(x) and f,,(x), x ~ ,  (see Sect. 3), act on analytic sections ~, of ~ by 

(J~(x)~,)(~) = li ~ , :  o ~ (e-~t~"~X g) 

ki 2~ imp gg --1 + I ~ ! ( x e  ,~-~g )d~p]~fi(g), (24, 

and 

1 D[ • -~,~ 
(J.(x)~h)(g) = ~ ~t=l  o ~(ge'te x) 

(25) 
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Using the definition of the covariant derivative given here, one can check that J, 's 
and J, 's satisfy the commutation relations (3.7) of the Kac-Moody  algebra and 
give the infinitesimal versions of the global actions of the Kac-Moody  groups 
defined in Sect. 3 for the simply connected groups and in Sect. 4 for the non-simply 
connected ones. 

Appendix 3 

We include here the standard proof of existence of the affine Weyl group element 
needed in Sect. 4 and of some identities which were used in the proof of modular 
invariance. The affine Weyl group elements # represented by ei~'~weLG, where 
aeQ(R v) and wsG defines a finite Weyl group element, act on affine roots ~ = c~ + n 
according to e~(~)= # e ~ - 1  readily computed to give 

#(~) = w(e) + n + (w(c0, a ). (1) 

For OeQ*(R), we want to find the unique affine Weyl group element # such that 

# - 1 ( ~ _  (cq 0>) = w- 1 (c~) + n - <~,0 + o-> > 0 (2) 

for each positive root ~ = e + n, see (4.23). Let A be the (finite) set of the negative 
affine roots ~ =  ~ - ( e , 0 ) =  ~o(c7) with ~ > 0. The set - A  contains at least one 
simple affine root cTi if it is non-empty. Indeed, if for all simple/~j, ~0-1( _/~j) < 0, 
then (p-~(/~)< 0 for all/~ < 0 and A is empty. Since the reflections r~, in simple 
affine roots change the sign of ~i and map other positive affine roots into positive 
ones, 

lr~,Zl = I h l -  1, (3) 

where I'[ denotes the cardinality. By iteration, we obtain the element ~?- 1 with the 
required properties. Its uniqueness follows from the fact that the only affine Weyl 
group element mapping positive roots into the positive ones is the identity. 

As explained in Sect. 4 the class of 0 in Q*(R)/Q(R ~) uniquely determines an 
automorphism # of the extended Dynkin diagram such that the action of 
w(# = eiO~w) on the fundamental weights co o = 0, coa . . . . .  col is 

w(co;) + k]oO,(o) = couo), (4) 

see (4.29). Let p denote half the sum of the positive roots of the finite dimensional 
Lie algebra. It is well known that p = coa + ... + co~ and (4) implies that 

p - w(p) = h~o9,(o), (5) 
compare (5.8). 

We shall prove now the following formulae for the length l(w) of the finite Weyl 
group element w: 

I(w) = 2 ( p, o9,(o)) = hO[ cOu(o) l 2. (6) 

This will imply (5.10) and (5.20) (e(w)= e~"°~)). Replacing 0 by -co,(o) above and 
repeating the preceding construction, we obtain # = w and l(w) = I A I, where the 
set A contains only the roots of the finite Lie algebra. For ~ <0,  (c~,co,(o))< 0 
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a n d  < c~, C%(o) ) = 0 or  - 1 only,  

A -- { .  < O[ ( ~, C%(o) > = - 1 }. 

T h u s  

l (w)  = --  ~ <a,e).(o)> = ~ <a,  ogu(o)> = 2<p,~%(o)>. 
• e A  o~ > 0 

O n  the  o the r  h a n d ,  

(7) 

(8) 

a n d  

(use inver t ed  (2)). 

T h u s  

Z ( - - ° 0 =  Z a --  Z a (9) 
a > O  ariA ~ > 0  

0~,~%(o)> = 0 

Z (lo) 
~x>O a~A a > O  

<c~,eOv(o)> = 0 

~ = w(p )  - -  p = --  hVcou(o), 
ct~A 

where  we have  used  Eq. (5). T a k i n g  the scalar  p r o d u c t  wi th  ~ou(0) gives the  o the r  

equa l i ty  in  (6). 
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