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Abstract. It is shown that the equations of the general three-body problem take on a very symmetric 
form when one considers only their relative positions, rather than position vectors relative to some 
given coordinate system. From these equations one quickly surmises some well known classical 
properties of the three-body problem such as the first integrals and the equilateral triangle solutions. 
Some new Lagrangians with relative coordinates are also obtained. Numerical integration of the 
new equations of motion is about 10 percent faster than with barycentric or heliocentric coordinates. 

1. The Equations of Motion in Barycentric Coordinates 

Let the coordinates of the three positive point-masses ms, m2 and m 3 be represented 
by the position vectors r~, r2, and r 3 in the barycentric rectangular coordinate system 
with three dimensions. The Lagrangian of the system is: 

I 1T/1FF/3 FF/llT/2 1 rn2m3,+ + . . . .  , (1) 
= �89 + mxf2 + m # 2 l  + lr3 - r21 I~-- r31 irx - r,I 

and the three position vectors satisfy the following equations: 

r l  - -  1"2  ]['2 - -  r 3  
r l  - -  m 2  - -  m 3  

Jr1 - - r 2 ]  3 Irl - - r 3 l  a '  

r 2 --  r 1 r2 -- r 3 
i=2 = -  ml I;rE - rl '31 -- m3 IrE -- r3 '3'1 

r 3 ~ r 1 r a  - -  r 2 

[3 = -- m l / ' r 3  --  r ,  '~l --  m2 Ira --  r2 '3'1 

m l r  i + m z r  2 + m 3 r  3 = 0 .  

(2) 

(3) 

2. The Equations of Motion in Relative Coordinates 

If we are interested only in the relative motion of the three masses, it is then indi- 
cated to use as variables the three relative position vectors Q1, Q2 and Q3 defined by, 
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(Figure 1): 

~ 1  --- r 3  ~ r 2 ,  

~ 2  = r l  ~ 1"3 '  

~ 3  - -  1"2 ~ 1['1 " 

S ~ ~ l  ~- ~ 2  ~- ~ 3  --- 0 .  

(4) 

(5) 

m l t  a . , - - ~ j  m2 

r 2 

Fig. 1. 

m 3 

Conf igu ra t ion  of  masses ml ,  m2 and  m3. 

The second-order differential equations of motion in relative coordinates can now 
be obtained directly from the substitution of the previous equations of motion (2) in 
(4). We obtain the remarkably simple and elegant result: 

�9 . QI QI Qz 
Q~ = - ~ e '  3 + rn~ q 0~  ~ , 

~ = - ~ 0 ~ +  m~ ~ o~ ~ , 

~3 - - ~  ~ + m3 ~ -~ ~ ~ , 

(6) 

where Qi is the length of the vector Qi, and /~=m 1 +mz +m3. 
Besides the theoretical properties that will be described below, the equations of 

motion (6) have a very important practical importance. In the numerical integration 
of orbits it has been found that the relative coordinates are much faster than either 
heliocentric or barycentric coordinates. A careful Fortran programming shows that 
with the equations of motion (6), there is a 10% saving of arithmetic operations in 
the calculation of the accelerations, given the position vectors. This is of course im- 
portant if one remembers that in one orbit the acceleration has to be computed thou- 
sands of times, and that in many investigations, literally thousands of orbits are com- 
puted. 

In agreement with Deprit and Delie (1961), we will introduce the quantity m0 and 
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three other quantities nz (associated masses) satisfying the following relations: 

2 
m 0 - -  

m l m 2 m 3  

# 

m 2 m 3  m l m 3  mlm2 
/~1 --- ~ ?/2 ~-~ ' ,  / / 3  ~-~ ' 

1 1 1 ~t 
+ - - =  

O 

nl  n2 /'/3 m~ 

(7) 

(8) 

(9) 

The equations of motion (6) may then be written in the form 

Q O  

nlQ 1 -- ~ ~n 2 Q1 Q2 
+ + , 

O3 

/ ' / / ' /2 ~ 1  ~ 2  
n2Q2 - -  ~ 2  ~ 2  .qt_ m o  -~ Q~ F , 

#n3  2 ~1 ~2 
= + m o  q v �9 

(10) 

Equations (10) can be looked upon as representing the equations of motion of the 
associated masses ni with position vectors Q~. Each associated mass is acted upon by 
a force of attraction due to a fixed mass g located at the origin as well as a perturbing 
force (the last three terms in Equations (10)!) which may be thought of as a force 
that three unit-masses placed at the location of the associated masses nz would exert 

2 placed at the origin. It is also easy to see that the equations of motion on a mass rn0 
(6) satisfy the constraint equation S = ~ ; = S = 0  given in (5). 

The equations of motion (10) also have a remarkable similarity with the equations 
of the two-body problem. In fact (10) may be considered as 3 two-body problems 
connected by a binding force which keeps the constraint (5) satisfied at all times. 
This will also be clearly shown in Section 4 with the aid of a Lagrange multiplier. 
Let us also mention that several attempts to reduce the three-body problem to a two- 
body form have previously been made, for instance by Lagrange himself (Nahon, 
1963). 

3. The Lagrangian in Relative Coordinates 

Let us now also develop the Lagrangian in relative coordinates. In order to do this 
we have to solve the system (3)+(4) for the position vectors r i: 

r 1 - -  ( r r / 3 Q  2 - -  m 2 Q 3 ) / #  , 

r 2 = ( / T / I ~  3 - -  F F / 3 ~ I ) / / A  , 

r 3 --  (m2Q 1 --  m l ~ 2 ) / / z .  

(11) 

We will now consider the equations (11) as defining a change of variables from 

rl, r2, r 3 t o  Q1, Q2 and ~3. This change of variables can be used to transform the 
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Lagrangian (1). However, in making the substitution (11) in (1), the constraint (5) 
should not be used to simplify the new Lagrangian. Before transforming the Lagrangian 
(1), the following differences are first derived from (11): 

r 3  - -  r 2  = el - -  m l S / / l ,  

rl - r3 = ~ 2  - -  m 2 S / / / ,  

r 2 - r~ = e 3  - m 3 S / I t ,  

(12) 

where S has been defined in (5). 
The Lagrangian (1) of the problem may then be written as: 

1 
+ - + 

2# 2 

+ - + 

I D,12m3 
+ le~ - m~-S/~l + le~ 

mira2 1 m l m 3 -Jr- 

- m2S/,ul le3 - m3S/,ul 

(13) 

The equations of motion can now be derived from this Lagrangian. The fact that S 
depends on all three coordinates Q i must be taken into account when the partial de- 
rivatives of ~ are taken, but the equations can be simplified afterwards by setting 
S equal to zero (Broucke, 1971). 

However the Lagrangian (13) has an unusual property which has to be mentioned. 
Due to the non-independence of the variables Qi, this Lagrangian has a Hessian deter- 
minant lgu] which is zero. We have thus here an example of a Lagrangian which is 
perfectly useful and which has a singular matrix 9u- This Lagrangian would thus 
not be appropriate for the definition of the canonical momenta and the Hamiltonian 
corresponding to the variables e~, (at least in the classical sense). This property of 
the Lagrangian is all the more remarkable because the full rank of the Hessian matrix 
can be restored by adding to the Lagrangian a quantity which has a zero Lagrangian 
derivative, for instance an appropriate multiple of S;2. We find the simplified (but 
equivalent !) Lagrangian: 

, =  ~ le~ - ~ n , S / u l  " 

(14) 

4. The Lagrange Multiplier of the Problem 

It turns out that the above Lagrangian (14) can be simplified by replacing S by zero, 
but then it is necessary to use a Lagrange multiplier 2 to take this constraint into 
account. Another valid Lagrangian of the three-body problem is thus: 
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The equations of motion derived from it are: 

ni~/= #n~ O~ Qi + 2. 

Using now the constraint 
will give 

3 

i = 1  

S = 0  to determine the value of the Lagrange 

which is the additional term that is found in the equations of motion (10). 

multiplier 

5. The First Integrals in Relative Coordinates 

It will easily be found that the energy E, the angular momentum C, the polar moment 
of Inertia J and the Lagrange identity can be expressed and derived in relative coor- 
dinates: 

E = n i - , 

i = 1  

3 

c = Z ,,, [m x 
i = 1  

3 

J =  Z 
i = 1  

J = 2 (E + T).  

6. Lagrange's Equilateral Triangle Solutions 

An immediate consequence of the equations of motion (6) is the equilateral triangle 
solution due to Lagrange. Let IQxI=IQ21=IQ31=  initially and let the three bodies 
remain in a fixed plane. From the constraint S = 0  the equations of motion (6) 
will uncouple and become the familiar equations of Keplerian motion. From the 
theory of the two-body problem we have then for all three values i=  i, 2; 3: 

02~i - - "  k~ = const. ; = 

where 4~i is the angle that ~ makes with a fixed line, say the x-axis. Thus all three 
associated masses n~ must have the same angular momentum k~ given by the equation 

k { = #Q. 

They must also have the same angular velocity 4;i given by 

4;{= " 3 "  
0 

This result is well-known (Wintner, 1947, formula (40), page 304), and is in fact 
Kepler's third law for the equilateral triangle solution. 

The above considerations refer to three circular orbits but they can be generalized 
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to elliptic orbits, corresponding then to the similar conic sections with arbitrary ec- 
centricity. We obtain the equilateral triangle solution whose sides vary with time. 
In fact this is an obvious consequence of our equations of motion (6), because these 
equations uncouple if IQII=IQ2[ =[Q31 =Q even if 0 is a function of time. From the 
results of the two-body problem in polar coordinates we have then: 

# 
Qzq~ i = k i = const.,  

and the angular velocity 4;z is proportional to 1/~2. 
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