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Abstract. We treat the open p-adic string world sheet as a coset space F =  T/F, 
where T is the Bruhat-Tits tree for the p-adic linear group GL(2, Qp) and 
FcPGL(2, Qp) is some Schottky group. The boundary of this world sheet 
corresponds to a p-adic Mumford curve of finite genus. The string dynamics is 
governed by the local gaussian action on the coset space F. The tachyon 
amplitudes expressed in terms of p-adic 0-functions are proposed for the 
Mumford curve of arbitrary genus. We compare them with the corresponding 
usual archimedean amplitudes. The sum over moduli space of the algebraic 
curves is conjectured to be expressed in the arithmetic surface terms. We also 
give the necessary mathematical background including the Mumford approach 
to p-adic algebraic curves. The connection of the problem of closed p-adic 
strings with the considered topics is discussed. 

1. Introduction 

The idea of a non-archimedean string proposed in the papers [1-4] has stimulated 
great activity in this field [5-10]. Different approaches were suggested. One of them 
treats both the string coordinates (and momenta) and the string amplitudes as 
complex- (or real-) valued functions, but the string world sheet variables as the 
p-adic numbers [3, 4]. This approach seems to be the most fruitful. At least, it was 
the only one which allows to obtain some non-trivial results and to compare them 
with the archimedean ones. For example, Freund, Olson and Witten [3, 4] have 
interpreted bosonic string amplitudes at the tree level of perturbation theory over 
the non-archimedean local field ~p (p is a prime number) as integrals of some 
combinations of multiplicative characters on ll)p (it is very close logically to the 
definition of the corresponding amplitudes for the usual open string over the real 
field). They discovered a remarkable property of the theory, namely, the so-called 
"product formula" (see also [11 ]). That is, they have calculated the 4-point tachyon 
amplitude, A(4 v), which is given in the archimedean case by the Veneziano formula 
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for A4 (~)" 

= f dxt 1 ,1 211 -xl  , (1.1) 
% 

where Zl are d-dimensional vectors, ~fi~fj denote the corresponding scalar products, 
4 

and the condition ~ Zz = 0 is implied, together with the constraints y2 = 2. Then 
i = t  

it was demonstrated that (with appropriate regularization involved) 

A~°~) I-I A~V)=l , (1.2) 
p 

where p runs over all prime numbers. Some non-trivial extensions of this formula 
also have been obtained [7]. 

Now some questions arise: 

1. Whether it is possible to obtain thep-adic amplitudes (1.1) within the Polyakov 
approach ? 
2. Whether there exist any more formulas like Eq. (1.2)? 
3. Whether there exists some formulation of the string theory taking into account 
the adelic (or arithmetic) structure of Eq. (1.2), i.e. the formulation which includes 
string theories over all p simultaneously? 

The first question was answered at the tree level of perturbation theory. That is, 
the non-local action was proposed 
amplitudes: 

p ( p -  1) ~ dxdx' S(P)[q~]-4(p+ I)lnp % 

[8] which reproduces the Freund-Olson 

(x)  - ( x ) ] 2  

Ix-x'l 
(1.3) 

Here dx is the additive Haar measure on ~p and we only write the single scalar field 
cp(x) for the simplicity. We know a similar object in archimedean string theory. It is 
"the effective action" governing the field dynamics on the boundary of the open 
string world sheet. Actually, this object is a secondary one, as it originates from the 
world sheet local action upon integrating out the field fluctuations in the interior of 
the world sheet. 

It turns out that the situation is just the same in the non-archimedean case. 
Indeed, a natural analog ofthep-adic world sheet was proposed by one of us [9, 10]. 
There was demonstrated that a discrete homogeneous space T (the so-called 
Bruhat-Tits tree) whose boundary is Qp, yields the correct analog of the interior of 
the open string world sheet. It was shown too that there exists a simple "lattice" 
local action (a kind ofgaussian model) on the tree which produces the correctp-adic 
string amplitudes. 

In this paper we propose a multiloop generalization of the above results. We 
consider the Bruhat-Tits tree which is an infinite homogeneous graph without 
cycles, each vertex being connected with exactly p + 1 neighbours by edges of unit 
length, as p-adic zero genus Riemann surface. (We use the term "surface" in the 
Bruhat-Tits construction as it is a direct non-archimedean analog of the open string 
world sheet.) To produce p-adic Riemann surfaces of higher genera we should 
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factorize the tree by some discrete (Schottky) groups. The surface obtained is the 
graph with cycles (their number is equal to the genus of the surface), the properties 
of this graph can be described by means of the so-called reduced graph, which is the 
finite subgraph containing only the cycles with crosspieces between them. It permits 
us to introduce the p-adic counterpart of the Jacobian, period matrix etc. All this 
machinery as well as the detailed description of the Bruhat-Tits tree is contained in 
Sect. 2. 

Having a local action on the tree we can calculate the p-adic string amplitudes. 
This action turns out to be the discrete analog of the usual quadratic one. Thus in 
order to find the amplitudes one needs to construct the solutions to the Neumann 
problem. The Neumann boundary condition is imposed by the following reasons: 
The archimedean case teaches us that an algebraically non-closed local field plays 
the role of a boundary of an open string world sheet. We know that the open string is 
characterized by the Neumann boundary condition. The situation in the non- 
archimedean case is to be quite similar with the exception of one point: there exist a 
number of algebraic extensions of the field II)p in contrast to the field IR, each 
extension corresponding to a different type of the open string. 

The problem of finding the Green function with the Neumann boundary 
condition can be solved by two methods. The first is to find the solution to the 
Laplace equation. One of us followed this way in [12] where slightly modified (in 
comparison to this paper) notations have been used. The second way to calculate 
the Neumann function is to use the path integral approach. This method was 
developed in the general case of arbitrary lattice theory by Zinov'ev [13], and we 
apply it to produce the tachyon string amplitudes in Sects. 3.2 and 3.3. 

The obtained results appear to have a very natural structure, Namely, the 
archimedean answer turns out to be just the same, with the usual norms, abelian 
differentials, period matrix, etc. being substituted by their p-adic counterparts 
(Sect. 3.3). Certainly, it is consistent with precedent predictions for genus 1 [14]. 

In this paper we calculate only the tachyon p-adic amplitudes, with no 
accounting of corresponding determinants which are to be introduced for the 
correct normalization. The way to correctly determine them as well as the p-adic 
amplitudes for the emission of the states with higher spins is unknown at this 
moment. The difficulties appearing here are discussed in Sect. 4. In particular the 
crucial role ofthep-adic analog of the closed string (given by a string model over the 
complete algebraically closed field ~)  is pointed out. 

We know that the archimedean Riemann surfaces, parametrized by the 
Schottky groups (over IR or C) uniformize all algebraic curves over archimedean 
fields (IR or 112). This is not the case in p-adic theory. That is, the p-adic Schottky 
parametrized Riemann surfaces uniformize only some class of algebraic curves over 
the p-adic field, namely, the so-called Mumford curves. These curves are placed 
close (inp-adic sense) to that part of the moduli space boundary which corresponds 
to highly degenerate algebraic curves. This fact is of great importance and it is not 
caused by unfortunate parametrization (indeed, the Schottky parametrization is in 
a sense unique). Certainly, such a situation should be clarified anyway. A sketch of 
the resolution of this issue is also contained in Sect. 4. Finally, we briefly discuss a 
possible way to integrate over the moduli space of algebraic curves in order to 
obtain a kind of "arithmetic string partition function" and correctly normalized 



678 L.O. Chekhov, A. D. Mironov, and A. V. Zabrodin 

amplitudes. We formulate a conjecture in the spirit of  the adelic string viewpoint 
and the product formula [6]. Indeed, by this consideration we tried to answer 
partially the third question above. 

At last, it is interesting to generalize the relation (1.2) to the string amplitudes at 
higher levels of the perturbation theory proposed in this paper. It would answer the 
second question on the above list of problems. The work on this topic is in progress 
now. Some comments on these problems with several concluding remarks can be 
found in Sect. 5. 

There are also two Appendices. The first contains the necessary facts about 
identification of the tree boundary with p-adic numbers. Appendix B is devoted to 
some analytic objects over ~p-fields like 0-functions. The properties ofp-adic  0- 
functions and associated Prime forms for the Schottky groups are briefly reviewed. 

This paper is though of as the second one in a series which began with the 
publication [10]. The rapid version of  this work was presented [15]. 

2. Schottky Parametrization of the String World Sheet 

In this section we briefly describe Riemann surfaces over the ll)p field. We only 
formulate the statements with some comments. The reader can easily find the 
necessary proofs and more material concerning this subject in Refs. [15-19]. We 
begin with the description of the Riemann surface over IR in order to work an 
insight, as this case appears to be logically close to the II)p one. 

2.1. Schottky Groups 

To begin with, we describe "real Riemann surfaces" (IRRS for brevity) which are 
closely connected with algebraic curves over IR. The word "surface" may seem to be 
inadequate in this context, because here we deal with one dimensional objects over 
IR. Nevertheless, we shall use such terminology in order to attain an unification 
when working with different number fields. Besides it, the word "surface" refers to 
the algebraic curve uniformized by a Schottky group in an analytic domain. To 
obtain IRRS one has to start with natural action of the SL(2, IR) group on the real 
axis (we always imply the compactified real axis IR, or equivalently, projective line 

ax+b (: ~) 
p1 (IR)) : X - , c ~ ,  being SL(2, IR) matrix, ad-bc = 1. We call p1 (IR) the 

zero genus IRRS; it determines all properties of the string model in the zero loop 
approximation. For  example, one easily obtains correct expressions for the string 
amplitudes using the well-known non-local action (throughout this paper we 
consider for the simplicity the single string coordinate): 

1 [e ( x )  - q, Cy)]2 S=~ S~ dxdy (2.1.1) 
R (X __y)2 

However, a more fruitful approach exists: we would obtain these amplitudes 
from a local action on some extended object which we call extended IRRS (EIRRS), 
the IRRS being EIRRS boundary. The terms IRRS and EIRRS are not standard and 
are introduced in this paper for convenience. We shall also use the notations QpRS 
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and Eq)pRS in a similar sense. To obtain EIRRS one has to extend the SL(2, IR) 
_ az+b 

action to upper half plane by clear means: ~ c z + d ,  z ~ ,  I m z > 0 ,  
/ T N  

(~ d)~SL(2,1R). Then the upper half plane is just EIRRS (the open string world 
N / 

sheet). To make this subject more evident one can provide EIRRS with SL(2, ]R)- 
invariant hyperbolic metric and treat it as homogeneous space of SL(2, IR) 
factorized by its maximal compact subgroup SO(2). This object is called the 
hyperbolic plane. The local action on E]RRS generating (2.1.1) is written as 

S =1 ~ 63~)~d2z, z E hyperbolic plane . (2. •.2) 

The same technique works for a genus one Riemann surface. In fact, one needs 
to fix two arbitrary real discs D 1 and D 2 at first stage. We choose them to be: 

Ol ={x:  Ixl <lfqlxe0,}, O2={x:  Ixl > l / ~ l x  ~ 0-}, O<lql<l,q>O, qelR . 
(2.•.3) 

Another choice of these discs corresponds to another fundamental domain of the 
Schottky group (see below). The complement of these discs to the whole IR: 
IR\{D 1 wDz} (L) 2 is closure of D2) is a fundamental domain for the subgroup of 

q 
SL(2, IR) generated by the matrix ~ SL(2, IR), which multiplies x by 

q and is the simplest example of the Schottky group F. So the coset space N/F 
consists of two segments, both with identified endpoints, or, equivalently, of two 

circles S 1 whose lengths are equal to l ~ - ] / / q  and are related to the moduli space 

parameter q. This set is just an example of  IRRS. In this case EtRRS having this IRRS 
as a boundary is a cylinder. The extended fundamental domain of  F is depicted in 
Fig. 1. (In fact, one has to identify the boundaries of  fundamental domain, resulting 
in the cylinder.) Indeed, the EIRRS is the coset of hyperbolic plane by F, so SL(2, IR) 
acts naturally on EIRRS. 

Now we generalize the above construction to higher genera. At first, we define 
the Schottky group over a local field IK (for convenience we don' t  specialize the field 
at this moment). Instead of SL(2, II~v) we would like to consider a slightly modified 
group, namely PGL(2,1K) which is determined to be equivalence classes of 
GL(2, ~)  matrices with respect to multiplication by a non-zero element. (This 

L ql,2/q ,2 / 
o lr, l / \ 

Fig. 1. Fundamental domains F(F1), c~F(F1) and the half-toms (ENRS) in the archimedean case 
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extension corresponds to a pair of uncoupled planes in the archimedean case and 
doesn't affect the results.) Certainly, we can consider the SL(2, IK) construction as 
well, but we prefer PGL(2, lK)-group as a more natural one from the Bruhat-Tits 
viewpoint. 

The natural PGL(2, X) action on p1 (X) (which is just zero genus IKRS) is given 

inholnogeneouscoordinates(xo,xOby(X°~-,(abd)(X°~,(~d)~PGL(2,1K), 
az + b \Xl j \C \X I/I 

or, equivalently, Z ~ c ~ ,  zclK. Note that PGL(2,1K) exhausts all possible 

automorphisms of p1 (IK). 
An abstract Schottky group F is, by definition, a free discrete subgroup of 

PGL(2, IK) with a finite number of generators Yl e PGL(2, $2), i = 1,..., g. In fact, all 
non-unit elements of F are hyperbolic, i.e. corresponding PGL (2, ]K)-matrices have 
to have different moduli of their eigenvalues. Each generator yi is defined by three 
parameters. We choose them to be two (distinct) fixed points u~, v i (7~ (u~) = u i, 7i (v~) 
= vi) and the coefficient • i .  They define 7(z) by the equation: 

7~(z) - ui = 5((i z - u i (2.1.4) 
~i  ( z )  - v ,  z - vi 

Explicit parametrization of 7~ is 

1 (v~JY~-u, v,u~(1- X~)~ 

~i=l)i__bli ~ ~'~i 1 Vi--bli~i J " 

For any local field IK one can extend the PGL (2, lK)-action on IK ~ Pt  (IK) to the 
homogeneous space ~f  = PGL (2, IK)/G, G being the maximal compact subgroup of 
PGL(2, IK). For example, PGL(2, 112)-action can be extended from 112 to the upper 
half space (see for ex. [18]). A fundamental domain for the Schottky group F acting 
on the "extended" space ~g~ is denoted by F(F) and a corresponding fundamental 
domain on S - p I ( I K ) \ Z ( F )  is denoted by OF(F), Z(F) being the set of all limit 
points of F, i.e. the closure of limit points of all non-unit elements 7 e F. These 
fundamental domains are imbedded into the covering spaces J f  and ~ respectively. 
We shall deal with the coset spaces F~ ~F/F and OF-Z/F which can be produced 
from F(F) and OF(F) by an appropriate glueing. The notation 0Frefers to the fact 
that OF can be realized as the boundary of F (see the above example for the 
archimedean case and the constructions of  Subsect. 2.2 for non-archimedean local 
fields). 

Let us present an explicit construction of the so-called classical Schottky groups 
acting on IK. Consider 2 g open discs ff~ i, ff2~ e IK (i = 1 ..... g) such that their closures 
~ and ~2~ do not intersect and have the same radius r v Then we can construct a 
Schottky group F_ with g generators ),i corresponding to the pairs ffai, ~2~ as 
follows: 7/-1(]K\~2i)=~1i, ~)i(N\~li)=ff2i, r1= l/[J{'il/2- 2/f i-1/2[ and ui~ffli, 
vi~ffzi. Then 

or(ro)=l~\ ~) {~2 /U, (~1 i}  , (2.1.5) 
i ~ 1  

is a fundamental domain of the classical Schottky group Fg. For  g > 1 we suppose 
that the discs do not contain the point Go. Throughout this paper we only deal with 
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groups of this type, though we know that non-classical groups could be important in 
the uniformization problem when IK is specialized as 112. 

Thus any KRS is represented by 0F. In particular, IRRS is a collection of g + 1 
disconnected circles S 1, the connection between those and moduli space being far 
from obvious. In fact, in the cylinder case we have observed that two circles are 
described by a unique moduli parameter q. But one can cut the cylinder in its middle 
part by a proper closed curve (the so-called invariant axis [21], see also below), 
which immediately describes moduli space. Such a procedure can be easily 
generalized to higher genus extended Riemann surface. In Qp case we shall 
introduce a "reduced graph" (1-chain complex) corresponding to the moduli space 
in a more direct way, this graph being just the analogue of the cut described above. 
Now extend the action of F from IR to the upper half plane, the boundaries of ~1i, 
N2i being extended to half circles on it. Then we produce the fundamental domain 
F(F) which is just EIRRS (after glueing) and it can be interpreted as the coset of the 
hyperbolic plane by F. 

From the one hand, the life on EIRRS has an essential advantage, namely, the 
locality of  the string action which has the form (2. ] .2) on EIRRS. But EIRRS itself is 
a rather complicated object. On the other hand, IRRS, being the simple one- 
dimensional object, should be provided with non-local action in order to reproduce 
the correct string amplitudes [22]. In Sect. 4 we shall present some more arguments 
in favour of an "extended" viewpoint. It seems to be quite natural since it is the 
extended object that is analogous to the string world sheet in the archimedean case. 

2.2. Riemann Surface Over Qp and Bruhat-Tits Tree 

It is just the time to describe the construction of the Riemann surfaces over Qp field. 
To obtain the extended zero genus QpRS one has to factorize PGL(2, Qp) by its 
maximal compact subgroup, that is PGL (2, 77p), being determined as 2 x 2 matrices 
with p-adic integer entries and invertible determinant in Zp. It is this homogeneous 
space that is called the Bruhat-Tits tree T. It is manifestly determined to be the 
connected infinite graph with no loops; each vertex of Tbeing connected withp + 1 
neighbour vertices by edges. Obviously, any two vertices zl,  z 2 in the tree are 
connected by exactly one path z I -*z 2 . We define the distance d(zl, z2) between these 
vertices to be the number of edges in the path z~--*z z. 

There are half-axes in the tree which are infinite subtrees with no branch points 
but with a single starting point (Fig. 2). We introduce an equivalence relation for 
half-axes : two half-axes given by an infinite sequence of vertices {zl, zz,.. } and 
{z'l,z ~ .... } are equivalent if 3~,n~2g: zi=zj+,Vj>~f. We call the equivalence 
classes the rays. Then the tree T can be compactified by adding the set of"infinitely 
far points" ~Tdefined as the set of all rays. In fact, 0Tcan be canonically identified 
with p1 (Qp). On the other hand, the PGL(2, Qp)-action can be naturally extended 
to OTfrom the tree T, so we shall consider OTas the boundary ofa  compactified tree 
Tw OT with PGL(2, Qp)-action on it. 

In order to "coordinatize" P1 (Qp) we fix a point C (the "origin") in T. This 
vertex corresponds to three half-axes starting at C whose endpoints in OT~ P~ (Qp) 
are (0, 1, oo), by definition. Then we can identify p1 (Qp) with (~p and after fixing C 
only PGL(2, ~p)-freedom remains (for details see [16, 17] and Appendix A). Now C 



682 L.O. Chekhov, A. D. Mironov, and A. V. Zabrodin 

U 

half- axis 

Fig. 2. Subgraphs in the tree: half-axis, axis v~u and branch B~ 

is the fixed point ofPGL(2, Zp) and we describe the PGL(2, Qp)-action on Tmani-  
festly as follows: PGL(2, Qp) acts on T =  PGL(2, Qp)/PGL(2, 7Zp) transitively and 
isometrically (i.e. the distances d(., ')  are conserved); vertices correspond to 
gPGL(2, Zp)g -1 subgroups, g~PGL(2, Q1,), and edges correspond to 8Hg -1 

subgroups, H=(~) ,a ,b ,c ,d~Zp,  c~J/tandad~g, whereJgistheunique 

maximal ideal in the ring Zp (i.e. ~ = { x s Q p :  Ix[p< 1}). 
Let us define a branch B~ to be an entire subgraph of T with the only boundary 

point z in the interior of T. The graph B is called entire ifB\OB is a connected graph 
(Fig. 2) (this definition differs slightly from the one given in [10]). In what follows, 
we assume that the branches contain no cycles (in the case of the factorized tree 
also). Then the set of rays contained in Bz corresponds to an open domain ~B= in 8T 
and induce a natural topology on ~p. 

Thus we have described the zero genus EQpRS. Note that as above the correct 
string amplitudes may be produced from the non-local action on QpRS [8] (1.3) and 
from the local action on EQpRS [9] which shall be described in Sect. 3.1, see 
formula (3.J.12). It is also valid for higher genus surfaces [23]. 

Now introduce QvRS and EQpRS of higher genera. We consider a Schottky 
group F over Qp acting on 7". Then for any hyperbolic element ? s F the only ?- 
invariant axis in Texists which is called the v-axis (by definition, an axis is an infinite 
connected subtree with no branch vertices and terminating vertices inside T 
(Fig. 2)). Each element ? acts by shifts along the corresponding v-axis, and for any ? 

conjugatedtotheelement(;~),O<lq[p-p-°rd'q<l,theshiftisequaltoordpq. So 

the hyperbolic element has no invariant vertices and edges. Another description of 
the v-axis uses the fact that axis endpoints in 0T are fixed points of ?, and any two 
such points are connected by the only path in the tree. Obviously, this path is the 
invariant v-axis. More precisely, the action ofv on the whole tree is the shift along V- 
axes defined by [qlp with a simultaneous "rotat ion" around y-axes defined by the 
"phase" of q, i.e. by qlqlp. 
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We define the Schottky tree T(F),  which is a union of axes of all elements of F 
and crosspieces between them (crosspiece is the unique finite path which has 
common vertices but not edges with two chosen axes), or, equivalently, a minimal 
connected subgraph containing the axes of all elements of F (let us recall that the 
composition of any two hyperbolic elements ?'1, Yz ~ F is again a hyperbolic element 
unless Yl = ~:~- 1). Then T(F)  = T, 0 T(F)  = ~T and T ( F ) / F - -  F R is a f inite graph, 
which is called the reduced graph (sometines we add index g which labels the number 
of loops in the corresponding graph). Let us demonstrate a way in which the reduced 
graph permits us to construct E ~ p R S  from the Bruhat-Tits tree. As the first step we 
consider the simplest example, 
generating F 1 in the form'  

namely, the torus. We choose an element y 

 =(q0 
The y-axis passes through the origin C, the fixed points u, v ~ ~p = 0T are zero and 
infinity and any element of/'1 acts on the axis oo ~ 0  by A-shifts, A =0  mod ordvq 
(see Fig. 3a). So the Schottky tree is a single axis, F (  is a cycle (ring) consisting of 
m - o r d p q  edges. To obtain Eq2;RS  we factorize T b y  F 1 " F 1 - T /F  1 (Fig. 3b). The 

b 

u Y Y T Y  o v 

2 2 2 2  
= OF(~)  

Y 

rn = o r d  p q 
F - -  - - ' ~  

Fig 3 a-b. A typical fundamental domain of the Schottky group F 1 in the tree. b. The "extended" 
p-adic torus (in the case of p=3) 

result may be realized as a fundamental domain for F1 glued into a ring. 
Correspondingly, it induces the isomorphism ~F 1 - ~(T/F1) ~ O T / F  1 . So far we have 
seen that F~ can be produced from F t by truncating all branches with origins at the 
reduced graph. It appears to be the general procedure for the surface of arbitrary 
genus. The inverse operation is clear as well: to construct Eq).pRS F g - T / F  o it is 
necessary to draw the reduced graph with a given number of loops (this number g is 
equal to genus of the surface) and after that to add all the necessary branches with 
origins at the vertices of the reduced graph in an evident way (Fig. 4a and b). I f  one 
treats identity transformation as the trivial Schottky group F o, then Fo R is merely a 
single vertex (denoted above as C), and T/Fo = T. 

Now one can see that the reduced graph consists of 3 g - 3  or less segments 
[segment in F0 R is the line containing only 2-vertices and connecting two branching 
vertices in Fo R (see Fig. 4a)]. We denote s i the lengths of these segments. In fact, they 
are "the moduli" of the corresponding p-adic surface. Strictly speaking, these 
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2-vertex 

vertex 

p=3 \ / 
\ / F 

/ \ / \ 

o b 

Fig. 4 a-b. A reduced graph for g = 2. b. The whole factorized tree (g = 2, p = 3) 

parameters are p-adic orders of the moduli of an algebraic curve, but we shall call 
them merely moduli. Thus F~ provides a good description of  the moduli space of 
Riemann surfaces over Qv" The structure of F~ contains all necessary information 
about 0F o which consists of several different components, each of them being 
isomorphic to an open set in p1 ((l)p) (i. e. the boundary 0B, of a branch B z in Fo) 
which in turn is defined as a boundary 0B of some branch B in F o. So non-trivial 
dependence on moduli is gathered into Fo R, but all properties at small distances on 
pl (Qv)  (moduli space of the punctures) are determined by geometry of  a single 
boundary component. Thus if we wish to restrict string amplitudes produced from 
the local action on F to  0Fwe should take into account only the reduced graph when 
all points belong to different components of aF and, quite contrary, only structure 
of the boundary component is important in the case when points belong to one 
component of OF. In particular, for zero genus surface the reduced graph shrinks 
into the point and we deal with the boundary of  the whole tree (the non-local action 
of [8] is given on the whole (~v !)- 

To conclude this section we introduce some analytic constructions on E ~ p R S .  
Generally speaking, they are well-defined only over algebraically closed field ~ = Qv 
but we shall restrict them to Qv. Here we consider the simplest objects (as the period 
group and the Jacobi map) leaving 0-functions and Prime forms to Appendix B. 

Given a Schottky group F, we define the abelian group H=F/[F ,  F], where 
[F, F] is the commutant of F. Then the scalar product in H is given by: 

(Zi, Zj) = H {ul, vi, 7uj, 7vj} , i #:j , (2.2.2a) 
Yeai\G/aj 

(Xi, X~) = Ki ]-[ {ui, vl, 7ui, Vvi} . (2.2.2b) 
~ Gi\G/GI 

Here Zi, Xj are classes of 7i and ~j in H ((., .) depends only on classes of elements) 
and classes of equivalence Gi\G/G j can be parametrized by the elements 

a - e  b - d .  
? = ])/11 • • Jk " ... ~i~,J14:0, ii :~i, ik*j; {a,b,c,d}-- .--is the cross-ratio. Nowwe 

a - d  b - c  
can construct the period group B by the isomorphism: 

cp: H ~ B  , cp(Z)=(',X) . (2.2.3) 
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Here B is a discrete subgroup of the p-adic g-dimensional torus (1I)*) 0 (1I~* is the 
multiplivative group of Qv) and the elements of H are naturally identified with the 
functions on (Q,)o. The factor (Q*)g/B is the "p-adic Jacobian". One can check the 
correctness of these definitions [16]. 

At last, we observe the connection between H, B and the reduced graph F R. It is 
important that these objects depend only on F e. It again confirms the separating of 
moduli dependence from the dependence connected with the geometry of each 
component of 0F. Let us introduce on T the "Fa-restricted intersection index" of 
two paths (x  a ~ x  z, Yl ~Y2)R, where the notation x ~ y  denotes the oriented path 
from x to y. This index is merely the number of common edges (accounting for the 
orientation) which, besides it, belong to the reduced graph F R. Every Schottky 
generator 7 corresponds to a cycle ~ (7) in F e. Thus we have a natural scalar product 
(~e (Xi), ~ (Zj))a on the abelian group of l-chains which is just ordp (Zi, X j) and it is a 
direct analog of the imaginary part of period matrix Im ~j in the archimedean case. 
Note that the choice of Schottky generators 7i determines the basis of cycles { ~  (7~)} 
in F R and the period matrix as well: 

A,j= (~(yz),  ~(7i) )R • (2.2.4) 

(This definition differs from the one adopted in [15] by a sign.) 
Finally, we have to describe the Jacobi map. It can be written in the Poincar6 

product form like (2.2.2) and its manifest expression is not necessary for us. But the 
z 

p-adic order of this map, which is the counterpart of ~ co i in the archimedean case 
ZO 

({coi} is a basis of the holomorphic sections of canonical line bundle on the surface), 
will be important in Sect. 3. So consider EII)pRSFand fix a point z 0 e OFwhich maps 
into zero of the Jacobian. If {7~} are Schottky generators which define the basis of 
cycles ~(7~) in F ~ then the order of the Jacobi map is given by: 

ordvLo(z)i = (Z~Zo, Lr (7i))a , Z e 3F . (2.2.5) 

This definition is correct as (2.2.5) is defined up to the choice of cycles, which results 
intop-adic order of the element of the period group, and Jacobi map is defined up to 
the period group torus, as in the ordinary case. This ambiguity does not affect the 
amplitudes (see Sect. 3). It is easy to check that ordpjzo(z)i really depends 0nly on 
F a. Thus ordvB = ordv q~ () 0 = ordp(-, Z) = ( ' ,  Z)R [cf. (2.2.3)], the Jacobi map has the 
order given by (2.2.5). All these quantities are non-archimedean counterparts of the 
usual ones, and the string amplitudes are expressed in these terms. 

3. Tachyon Emission Amplitudes from the Mumford Curve 

In this section we obtain the N-point amplitude for arbitrary multiloop graph. The 
plan is the following: the section falls into three subsections. In the first one we fix 
notations and give general definitions, in the second one the l-loop case will be 
considered in detail; the third part is devoted to the mutiloop case and to the 
comparison with the archimedean case. 
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3.1. The Basic Definitions 

Passing in this section to unified notations we shall use the standard language of 
algebraic topology. Let us consider a factorized tree F =  T/F with the corresponding 
reduced graph F R. We introduce the space C,(n =0,  1 .... ) of  n-chains which are the 
formal linear combinations of  the oriented elementary n-symplexes ul ") in the graph 
F, ul °) being the vertices z~, @) being the edges e~ (generally speaking, one may 
consider symplexes of  higher dimension) : ~ ~iul "), ~i ~ IR. Further, one can define 

i 
the linear space C* ofn-cochains which are the functions on C,. We choose the basis 
{t/l ")} in C* such that (") - (") (") - t/i = t/~ (ui ) -  6q and define the scalar product" 

Now for arbitrary ¢ = y[ 7it/i ~ C*, )~ = ~ ~il,li E C n (we omit index n) one obtains 
by linearity: ~ i 

( 0 ,  z )  • (3.1.1) 
i 

Index i runs over all vertices in F for C o and over all edges for C 1 . Later we shall 
approximate the graph F by finite subgraphs, so these sums are well-defined. 
Having these scalar products we identify the spaces C* and C, and denote elements 
of Co and Ca as (p(z) and ¢(e) respectively. 

Note that Fg-restricted intersection index (see Sect. 2.2) is indeed restricted from 
the scalar product (3. t. 1): 

( 0 1 , 0 2 ) R  = ~ ¢ l (e i )¢2(e i )  • ( 3 . 1 . 2 )  
ei E F R 

To clarify this construction let us consider two examples: the first is the path 
x - , y  which we shall also denote f~y ~ C1, the corresponding function ¢(e) equals 
_+ 1 (the sign depends on the mutual orientation of the path x ~ y  and each edge) for 
the edges contained in this path, and zero otherwise. A cycle ~e(30 is a function 
(J~ C 1 which equals + 1 for edges contained in this cycle with, say, clockwise 
orientation, - 1  for opposite orientation and zero for edges outside of  the cycle. 
Obviously, for cycles the scalar products (3.1.1) and (3.1.2) are identical. 

For each vertex z ~ F we define the distance d(z, F R) (or simply d(z)) by the 
formula: 

d(z) = inf d(z, co) . (3.1.3) 
o ~ F  R 

In the case of  the trivial Schottky group F o d(z) coincides with d(C, z) of Ref. [10]. 
Further, we should define a measure on the boundary OF. This measure # will be 
defined completely as soon as the measure on the basis of open sets 0B~ in OF is 
given: 

#(~Bz) = p  -~(z)-I , (3.1.4) 

for any branch B z. 
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Example. For  g-loop g raph  F0 R ( g >  1) with the modul i  si, i =  1 . . . . .  3 g - 3  the full 
measure  of  the bounda ry  c~F o is: 

( ~ )  ( p l )  3g-3 
,(~F~)= 1 -  S -  1+ ( ~ - 1 ) ,  S - S ,  s , .  (3.1.5) 

i=1 
Consider  now the funct ion q~(z)~ C o. Suppose the limit 

~, q~ (x) = lim (q) (x) - ~0 (z))p a(~) (3.1.6) 
z-~x 

exists for a point  x ~ 0F. In this case we shall call ~, q) (x) the normal  derivative of  ~o at 
the bounda ry  point  x. 

N o w  we shall in t roduce more  nota t ions  originating f rom (lattice) chain 
complexes theory.  One can define the coboundary map 0" :  C 0 ~ C  1 such that  

0 * ~o (e,) = ~o (z~ r)) - (p (z~ r)) . (3.1.7) 

z[ ~) and z(2 r) are endpoints  o f  the edge er, the order in (3.1.7) depends on the 
or ientat ion of  the edge. The opera to r  conjugated to 0"  is the boundary map 
0 : C 1 ~ C o which is defined as follows : 

p+l 
(00)  ( % ) =  ~ ( +  1) ~,(el °~) , (3.1.8) 

i-1 
the sign is plus when ar rows on edges enter the vertex z o and minus otherwise, the 
sum runs over  all edges el °) terminat ing in %. For  any two functions with 
appropr ia te  bounda ry  condit ions imposed  (see below) we have:  

( c ~ ,  ~ o ) = ( ~ ,  ~*cp) , (3.1.9) 

so the opera tors  ~? and ~* are indeed conjugated to each other. 
The Laplace opera to r  on F acts locally as follows [20, 9] : 

p+l 
~q,(z)  = y ,  q,(z,) - 6 0 +  1) q,(z) . (3.1.10) 

i=1 
Here z i are all neighbours  of  the vertex z. We can rewrite this opera to r  s imply as 

A = - ~ *  (3.1.11) 

The string act ion on F (the free Gauss ian  model  action) is the following [9]: 

S[q~] =21--~p (~*q~' 0*q~) . (3.1.12) 

It  is natural  to impose  the N e u m a n n  bounda ry  condi t ion at infinity [see (3.1.5)]: 

c~,~o(x)=0 , x~OF , (3.1.13) 

as it should be expected in case of  the open string. Then  the act ion (3.1.12) acquires 
the fo rm:  

1 
S[~0] = - - -  ( %  A~o) . (3.1.14) 

2 lnp 
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Consider now the scattering process for N identical tachyons attached to the 
boundary of F. Let E~cF denote the "sphere", i.e. the set of vertices: E r 
= {z ~ FId(z)= r}. The definition of the amplitude under consideration is the direct 
generalization of the one from [10]: 

~Dqgexp{-S[qo]+i~fjqo(zj)}j=l 

AN(,(1,...,~fN)= lim Z ~Dqoexp {-S[q~]} 
r-+oo {zi} eE~ 

(3.1.15) 
where ,(j are momenta constrained by 

N 

Yj = 0 (momentum conservation law) (3.1.16a) 

and 
Af 2 = 2 (projective invariance condition) . (3.1.16b) 

The sum in (3.1.15) runs over all possible placements ofNpoints  z i on E r. There exist 
two slightly different methods for calculating the Gaussian integral (3.1.15). 
Consider the first one, the second method will be used in Subsect. 3.3. We should 
find a solution q0ol to a classical equation of motion which can be obtained from the 
exponential in (3.1.15): 

N 

A~0cl(z)=- i lnp ~ ~4j6~,zj , (3.1.17) 

here 3~, w = { 1, z = w; 0 elsewhere}. The Laplacian (3.1.10) has exactly one zero mode 
in C o : q)o = const. Integrating out this zero mode yields the infinite factor c5 (~  ~fj) 
which will be omitted in the following. Substituting q)cl into (3.1.15) gives: 

AN(~fl ..... ~(N)=limr-~oo {z,}~E~ ~ exp{i/2 j=l ~' ~J(~0el(ZJ)} " (3.1.18) 

[The condition (3.1.16a) ensures that zero mode dependence is excluded from 
(3,1.18).1 

The Neumann condition (3.1.13) being imposed, the solution q)~z exists only if 
the constraint (3.1.16a) is satisfied. Simultaneously, it guarantees that amplitudes 
do not depend on ambiguities in the determination of the Green function (see 
Subsect. 2). The limit r--, oo is correct and, moreover, does not depend on the order 
in which the points z i tend to the boundary if the condition (3.1.16b) is imposed. 
(The last proposition implies that we may consider a more general case: each 
tachyon may live on its own sphere Er, and the limits r~--,oo can be taken in an 
arbitrary order.) Let us write cpc 1 in the form: 

N 

( pa l ( z )= - i l np  ~ ,(~N(z, z j ) ,  (3.I.19) 
j = l  

where N(z, w) is a Neumann function for the graph F. This function is not uniquely 
defined but the answer (3.1.18) does not depend on its concrete form. In fact, we 
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define N ( z ,  w) as follows: 

N ( z ,  w) = N ( w ,  z) , (3.1.20a) 

6 , N ( z ,  x )  = 0 , x ~ OF , (3.1.20b) 

A ~ N ( z ,  w) = c5~. w + tc (z) , (3.1.20c) 

where ~:(z) is an auxiliary "source" depending only on z. It follows from (3.1.20b) 
that 

Z x ( z ) = - i  . (3.1.21) 
z ~ F  

If (3.1.16a) is valid tc (z) does not give a contribution to (3.1.18). In what follows we 
choose to(z) to be concentrated at the vertices of the reduced graph F e. We shall 
apply this method to the simplest case of one-loop graph. For  the general case of the 
9-loop graph this technique has been developed in [12] where the answer for the 
Neumann function for an arbitrary genus graph was presented. It expresses the 
Neumann function in terms of moduli s i so the answer is more complicated. The 
method we shall use further in Subsect. 3 is more geometric and it allows us to 
express the Neumann function in proper terms of  period matrix determinant and 
the Jacobi map. In fact, our formulas can be produced by integrating abelian 
differentials of the third kind [23, 24]. Moreover, the reader can find the answers for 
Green functions are very similar to Sect. 12 of the book [24]. They were produced 
there on absolutely different grounds. 

3.2. The One -Loop  Case 

In this section we treat the one-loop case in detail. This case is the simplest to deal 
with and it provides convenient tools for studying more complicated cases. The plan 
of this subsection is the following: given a Schottky group F1, we find the invariant 
expression for the N-point tachyon amplitude as an integral over ~3F1. After that, in 
order to compare our result with the archimedean one we transform the answer into 
an integral over the appropriate fundamental domain in Qp. This transformation 
will be done for an arbitrary choice of the generator y~. 

It was already pointed out in Sect. 2 that for an invariant description in terms of 
the graph F neither the position of  y-axis nor the detailed information about q in 
(2.1.4) are essential. The only information we need is the p-adic norm of q that 
defines the length m of the shift along the y-axis. So the reduced graph F (  is the ring 
consisting of m vertices and m edges. (Fig. 3b). 

The Neumann function for the graph F~ may be found by elementary methods 
[12]. The result is: 

[ n z ' w ( m - n ~ w )  O<n~ w < m  , 

N ( z ,  w) = ~ 2 m  ' " 

[ - l  . . . .  nz,w=0 (3.2.1) 

where nz, w is the minimal overlap of the path z ~ w  and the ring F (  (Fig. 5a), l~, w is 
the minimal distance between the shortest path z ~ w  and F (  (Fig. 5b). Obviously, 
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z 
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m-nz.~ 

z 

a /  

G b 

Fig. 5. The various mutual positions of the reduced graph F( and the path z--*w 

nz, w and Iz, w cannot be nonzero simultaneously. This follows from the fact that the 
correlation function for two points lying on the same branch of F i s jus t  the same as 
the Neumann function for the tree T. The properties (3.1.20) can be easily verified. 
The auxiliary source ~c (z) is nonzero only for the vertices of  the ring FIR and has an 
uniform density - m  -1. The answer (3.2.1) can be rewritten in a more convenient 
form: 

N(z, w) = ½ (:Y~,~, 1 - 1 

(3.2.2) 

Here Xw~ is an arbitrary path between the points w and z, and 5el e C~ is the cycle, 
A H is the only matrix element of  period matrix (2.2.4), Ala = (~ea, ~1 > = m. We 
define (not only for the l- loop but also for any multiloop case): 

d ( w ~ z ,  FR)=sup inf d(yov) . (3.2.3) 
,-~J'wz yeo%rwz 

v e F  R 

This "distance to reduced graph" is non-zero only when w, z belong to the same 
branch in F. Actually, the answers (3.2.1-3) make sense in the limit z, w~OF~. 
Namely, as r ~  ~ ,  the sum over E~ in (3.1.15) transforms into an integral over aF~ 
with the measure: 

~, ---,p~ dkt( B~) , 

B~)~B~ is the subset { w s B  z :d(z)=r}.  
For the Gaussian integral (3.1.15) we obtain the expression: 

AN(~ .... .  ~N) = lira ~dll(xl). . .dlz(xN)p~...p"~ 

• exp lnp 2 ~fi~fJ N ( x i , x J ) + ~ + ~ ) ~ "  (3.2.4) 
i , j = l  

i < j  

The pre fac to r sp~ . . .p~  should be cancelled by the singular terms in the exponential 
(q--, oo). The conditions (3.1.16) do ensure these cancellations and the final answer 
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has the form" 

where 

N N 
A~v(~', . . . . .  ~eN)= 5 IF] d#(xj) I-[ [O(xi,xj)] '~"~' , (3.2.5) 

Ofl j=l i<j  

nx 'y(m-n~'r)  0 < n  x y<rn 
l o g p O ( x , y ) = N ( x , y ) =  2m ' " (x, yeaFa).  (3.2.6) 

- l x ,  y , nx, y=O 

Let us rewrite this integral as the one over the fundamental domain aF(F1) c a T. 
We can continue ~o periodically to the whole tree boundary (or, to the complete set 
of integers nx,y): 

44x, ~(y))=~,(x, y) 

for any 7 E F 1 . The form (3.2.5) is invariant because it does not depend on the choice 
of the fundamental  domain. To compare o u r  results with p-adic 0-functions 
(Appendix B) it is necessary to choose some concrete domain aF(F1)c a T =  Qp. 
This is equivalent to the choice of  the generating element 7t for F 1 in PGL(2,  II)p). Let 
us begin with the canonical form (2.1.3) of  the generator. Then 

OF(F1) = {x ~ Qp[ - m < ordpx <_- 0} . (3.2.7) 

The invariant measure (3.1.4) transforms into 

d#(x)=dx/lxlp , (3.2.8) 

where dx is the standard Haar  measure on Qv" On the left-hand side of  (3.2.8) 

x e OFt and on the right-hand side x E aF(F1) c (l)v , the isomorphism being implied 
in what follows. For  pro. [y[p > [xlp > [YIv we have 

and for Ixlp= lyl~' 
p . . . . .  Ix/ylp , (3.2.9a) 

p - l  . . . .  1 - y  p (3.2.9b) 

(see Appendix A). In the second case the points x and y belong to the same branch 
growing from F 1 . Suppose 1 < Ix/ylv <pro, then (3.2.6) can be rewritten using (3.2.9) 
as follows: 

ord~(x/y) X 1/2 1 -y~ (3.2.10) 
~//(x,y)=p 2ord, q ; p  Xp 

This formula can be periodically extended to allvalues o f x  and y if one performs the 
infinite product '  

°rd2p(x/Y) x l / 2 1  y - . f i  1 - q " Y p l - q " y ,  
O ( x , y ) = O ( x / y ) = p  2ordpq Y p x p ,=1 

ord~(x/y) 
: p  2m ]O,(x/y,q)lp, ~p(qx)=~b(x).  (3.2.11) 
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Here m = ordp q > 0, q Ep2g, the periodicity with respect to x +  y (x) = qx being clear. 
Op({, q) is the one-dimensional odd p-adic 0-function (B.1). As for the amplitude 
(3.2.5), we obtain: 

AN(,q,..., &)= axj [O(x,/xj)] [. H axj 
,~F(r~) j=l  ~ i<j  l<=lxjlp<ll/qlp j=l  

,<, 2ordvq ord~(xi/x,)}] , (3.2.12) 

where E(x ,y )  is the Prime form for the genus 1 (B.5): 

( 1 - q " x / y ) ( l - q " y / x )  
E ( x , y ) = ( x - y )  ,=117 (1 _q,)2 , x, y e Q v  . (3.2.13) 

The exponential in (3.2.12) can be treated as the p-adic norm of the integral over 
zero modes which together with the Prime form give a contribution to the Green 
function for the open string. This integral in the archimedean case gives the 
following contribution (in standard notations [25]): 

lnZ(xi/xj))~ q = e  2~i~, I m + > 0  . (3.2.14) 
exp ( -  2 In q) J ' 

This expression may be identically rewritten as 

lo~(x,/x~) 
P---21ogpq • (3.2.15) 

The p-adic modulus of this expression can be correctly defined only in an algebraic 
extension of  ll~p (note however that it is always sufficient to consider finite 
extensions since the power value in (3.2.15) is a rational number). Thus, the p-adic 
norm in (3.2.15) being taken, we obtain the exponential term in (3.2.12). Therefore, 
in order to obtain the p-adic amplitudes one may simply perform the integration 
over ff~pRS with the additive Haar measure instead of the standard integration over 
IRRS and replace all real moduli by the p-adic ones. It confirms the proposal of the 
paper [14] in which this trick has been claimed ad hoc for g = 1. This important 
observation appears to be valid with slight modifications for higher genera as we 
shall demonstrate in the next subsection. 

Now let us consider for completeness the case of F 1 generated by arbitrary 
hyperbolic 7: 

7 (x) = ax + b = PGL(2, il)v ) (3.2.16) 
c x + d  

The attractive and repulsive points v, u together with the multiplier q can be easily 
found and we have for nx, y, lx, r: 

,+,  l ( x - u ) ( y - v ) J  - , x ,  J ( x - y ) C u - v ) l  
P ' = ~ p '  P ' = ( x - u ) ( y - v ) , "  
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Let y = e PGL(2, Qp) be an element transforming the axis v ~ u  into oe--->O 
8 

such that _(a 
Y c 

~ 1 
(A possible choice of 7 is y = ( _  1 

d/~(x) = dy _ Idet ~lpdx lu-vlp dx (3.2.17) 
lYlp l&+SllplSx+~lp I x -u lp l x -v lp  " 

b ~ -1  =(q0 0) 
- u ] ] .  Then the measure (3.1.4)transforms a s  

v i i  

X m bl 
Here y =~7(x)= . So we have 

/ ) - - X  

(u - v) 2 1/2 
P(@ " ' - l " ) = l x i -  xjlp (x i_u)  (xj ~ - _ v )  (x j_v)  p 

(Here nij=nx,,x j and lij=lx,,x~ for brevity.) Hence 

N N N N 

1-[ dl~(x~) IX p(~, , i -z ,s)~j~ [ I  dxj IX Ixi-xjl~p '~j 
j = l  i < j  j = l  i < j  

(Here the constraints (3.1.16) has been used). This relation is valid for a special 
fundamental domain [see (2.1.4-5)], which is in fact the @p with two discs removed. 
The Prime form is performed by the following infinite product: 

F (x - Y"(Y)) (Y -- Y"(x)) T/2 (3.2.18) E,(x,y)=(x-y) H.o . 

So the periodicity of the whole expression holds and we obtain: 

. . . . .  (3.2.19) 
OF(F1) j = l  i < j  k J 

where m = ordpq. 
In the case of general orientation this comparison teaches us one trivial but 

rather important lesson; the amplitudes do not depend on the orientation of the y- 
axis. It is also true for the multiloop case: the PGL(2, Qp)-transformations do not 
affect the structure of the answer, they change the fundamental domain only. Thus, 
it is more instructive to describe the scattering processes in invariant terms of the 
factorized tree F. 

3.3. The Amplitudes for Arbitrary Genus 

In this subsection we consider correlation functions for tachyons on arbitrary 
homogeneous space F o = T/Fg. The invariant description of Fg implies that we treat 
it as an infinite lattice of some special kind. In fact, any such lattice consists of: 
a) A finite closed g-loop reduced graph FoR; 
b) The branches Bz, , zi e f t ,  which should be added in order to fill allp + 1 bounds 
of any vertex zi. 
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Thus there arises a technical problem of finding the Green functions with the 
Neumann boundary condition (3.1.13) in the Gaussian (free) lattice field theory 
with the action (3.1.12). The general method for the solving of such a problem has 
been developed by Zinov'ev [14] who proposed the general geometric formulation 
based on chain complexes. (This issue has been also raised independently in [28]). 
Here we calculate the amplitudes using this method. 

We begin with the Gaussian integral (3.1.15) with the constraints (3.1.16) 
imposed. Consider now the regularized functional integral on a finite lattice :(ft. It 
consists of all vertices z E Fwith d(z) <= r and edges between them. For clarity we also 
assume, though it is not necessary, that all sources are attached to the boundary of 
the graph ~ r .  Using the operator 0" (3.1.7) we can rewrite the integral for 
AN(~fl ..... ~fN) (3.1.15) as 

Dbiexp{ - l ~ < b , b > + i  L '~j<W,~c,b>} 
A~( ' )= l im  ~ B, Orr) 21np j=t 

~g(~rn 21np <b, b)  

(3.3.1) 

This formula needs few comments. Firstly, we choose in graph ~(, some point C, 
"the center", but the answer does not depend on this choice due to the condition 
(3.1.a6a). Secondly, the integration goes over the space of functions 
0* q~ s Bg (c((r) c C 1 (X~). This space is called "the space of coboundaries", i.e. it is 
the image of the operator 8". This operator generates a short exact sequence: 

0* 0* 
0 ~ Co (~.~) --, C~ (J~#~) ~ Z , ~ O  . (3.3.2) 

Here Z o ~ {~e} is a space of cycles in F0 R. Moreover, the whole space of functions 
C 1 (~,U,) splits into a direct sum: 

C~ (Jgfr) = Bg(x((,) GZg . (3.3.3) 

So the integration in (3.3.1) goes over functions b(ei) which are orthogonal to any 
cycle ~ i  : for i = 1 ..... g <b, ~i> = 0. The quadratic form in (3.3.1) is very simple and 
the gaussian integral can be easily done. The answer has the form: 

AN(~fl,...,AfN)=lim ~ e x p I l l n p < ~ , P B ~ > t ,  (3.3.4) 
r ~  {zd~E~ 

N 

where M = ~ ~r~ c. PB is the projector to the space Bg(Fg). In fact Ps = I d -  Pz, P~ 
i = 1  

being a projector to the space of cycles Z~: 

g 

P ~ =  ~ ~A~I<~.j,~> . (3.3.5) 
i , j = l  

Here A~]' is the inverse period matrix (2.2.4). This answer can be rewritten in terms 
of two point Neumann functions [cf. (3.1.20), (3.2.1)]: 

lnp N 
2 <¢~'PBN>=lnp ~ ,(~,~jN(z~,zj). (3.3.6) 

i , j = l  
i < j  
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Here N ( z i ,  z j)  is the following: 

det (L1el ,. 5f~r). (:gel ,. ~ i )  --. (L;(i ,. ~S(~) 

N ( x , y ) =  I (:~eg,'2F~y) (~9 ,  ~fl)  ".  (~eg, ~eg) 

det (~fl,. ~aYa) .--(~1,. 2geg) 

(3.3.7) 

It is clear from this expression that the answer does not depend on the choice of the 
path 5Txy since any two paths differ by a linear combination of the cycles which does 
not affect the determinant (3.3.7). 

The answer (3.3.7) expresses the Neumann function in terms of period matrices 
determinants. Note that the upper matrix in (3.3.7) may also be treated as a period 
matrix for some reduced graph FoR+ 1- This graph can be obtained if one identifies the 
points x and y resulting in a 9 + l-loop graph, the path Y'xy being the 9 + 1 'th vector 
in the new basis of cycles {~i,  i = 1 .... , g, Y'xy}. The one-loop graph in Fig. 5a gives 
us the simplest example. The identification of the points z and w leads to a two-loop 
graph (Fig. 6). A question arises how one may express these determinants through 
the moduli s~ of the corresponding surfaces. ActtuaUy, the formula (15) of the paper 
[12] gives this answer. 

z 

car 

Fig. 6. The "auxiliary" cycle 

Now we present the tachyon amplitudes. Again we replace the sum in the limit 
r--.oo by the integral over OF with the invariant measure (3.1.4). The details are 
identical to the above consideration for the l-loop case (3.2.3-4) and we give only 
the final expression. For any two points x l ,  x 2 ~ OF we define d ( x  1 -...~x2, F R) by the 
formula (3.2.3) with z ~ x  1 and w ~ x  z. We also choose an arbitrary path 5fxlx2. 
Then one can define the function ~o(xl, x2): 

l°gv (P (x l  , xz )  = ½ ( X12,  Y'12 ) g  -- d(Xl ~ x z ,  FR) (3.3.8) 

and the function ~(xa, X2): 

1 g 
logp ~(Xl, x2) = - ~ ~,  

i , j= l  
(~ l z ,  ~ei) Ai] 1 (~fj,  Y'~2) • (3.3.9) 
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Here as above ~ " 1 2  = ~ x l x 2  for brevity. Certainly, the Neumann function N(z, w) 
(3.3.7) is connected with (p and q) by the relation: 

logp ((p (xl, x2) ~b (xl, x2) ) = lim N(z, w) - .~ d(z) - ~ d(w) . (3.3.10) 
z--+Xl 
w--+ x2 

The result for the amplitude (3.1.15) acquires the form: 

N N 

AN(~q .... .  ~eN)= I I-[ d,u(xj) I-[ [q~(xi,xj)¢b(xi,xj)] '~"~j • (3.3.11) 
OF o j = l  i < j  

In order to compare the result with the archimedean one we should "coordinatize" 
0F. For the canonical choice of the fundamental domain t?F(Fo) of the correspond- 
ing group F o the measure appears to be the additive Haar measure dx on Qp, and the 
final answer is the following: 

N N 

AN(,q ..... AN) = ~ I-I dxj ]-I [IE(xi, xj)lp~(x~, x~)] "h'~ . (3.3.12) 
O F ( r o ) ~  p j= l  i < j  

The E(x,y) is the p-adic Prime form ((B.5), cf. [29]). One can always choose the 
fundamental domain aF(Vo)= ~,, such that [E(x, Y)l, = [x-y[p (see Appendix B). 

We conclude this section by the comparison of the answer (3.3.12) with the 
archimedean one. The archimedean amplitude has the form [29] (up to normaliza- 
tion factors): 

AN(')OCaF!EO. j=l~I dxj i<j~I - ~  ,',s ~' (nr(Im z)~l ~'x~ ~ ;  ' 

(3.3.13) 

The Neumann function on the IRRS is expressed in terms of the real Prime form 
E(x, y) (x, y ~IR). The exponential in (3.3.14) being in fact the nonholomorphic part 
of the Neumann function resulting from zero modes integral. In the case of IRRS z~j 

Y 

is pure imaginary. We also have the analog of the Jacobi map f a) which is now 
x 

defined as the intersection index between the cycle basis {~e i } and the path x--*y. So 
in order to obtain thep-adic expression we should replace the real norm of the Prime 
form by p-adic one and besides it substitute new (p-adic) definitions of the period 
matrix and Jacobi map: 

x j  

2~zlmz,~A~, , ~ O ) r " ' ~ < ~ i j , ~ r >  . (3.3.14) 
Xl 

Thus we do reproduce the formula (3.3.12) from (3.3.13). 

4. The Mumford Curves and Other Issues 

In this section we intend to answer some more questions related to the mathematical 
background of our treatment. In particular, we discuss the role of algebraic 
extensions of Qp. Then we describe the Mumford curves and formulate a conjecture 
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about the general construction of the sums over moduli space which appear, 
for example, when calculating the p-adic string partition function for different 
values ofp.  

4.1. The Role of Algebraic Extensions 

The open string theory over N-field is well-known to be self-consistent only if closed 
strings (corresponding to the algebraically closed field ~) are included. More 
precisely, the open strings without closed ones are suitable to describe only tachyon 
amplitudes in higher loops (or arbitrary amplitudes at the tree level) [25]. The main 
reason for such a situation is the absence of a profound analyticity notion in 
algebraically non-closed fields. Generally speaking, the constructions of algebraic 
geometry are well-defined only over algebraically closed fields [28]. Just the same 
situation appears in the non-archimedean case. But there exist serious compli- 
cations connected with the involved structure of algebraic extensions, or, equiv- 
alently, with a huge Galois group. 

The field Qp has an infinite number of algebraic extensions, each finite extension 
corresponding to a proper type of the open string (in contrast to the statements of 
some earlier papers [3-6]). Therefore the "p-adic closed string" should be 
connected with the complete algebraically closed field O. Again the self-consistent 
"finite extension string" is possible only if ~ is included. In particular, the analytic 
expressions exist only on ~. 

The following interesting example is the determinant calculation [29]. We can 
easily obtain the part determined by zero modes, that is [det Aij] -1/2, which is just 
the same as in the archimedean case. This expression can be obtained using only the 
open string framework, but the rest should depend on the metric and diverges as for 
the archimedean non-compact hyperbolic domains due to the conformal factor 
(any natural regularization makes the answer rather complicated). The string 
partition function for a given surface is a finite combination, which does not depend 
on the metric, and is equal to det(A_0(det(Ao)) -13 where Aj is the Laplace- 
Beltrami operator acting on j-differential space. This definition requires the notion 
of metric, which can be hoped to exist only on ~. Thus, in contrast to the 
amplitudes, the determinant calculation can be done only over ~. To all 
appearance, the answer for the properly defined partition function should be equal 
top s [30] (for the multiplier connected with the non-zero modes), S being defined in 
(3.1.5) (see also below). 

As we have seen in the previous section, the Neumann function is natural in the 
Qv case in contrast to the Dirichlet one (though the latter can also be obtained [23]). 
It follows from the fact that the Dirichlet function corresponds to the semi-off-shell 
closed string amplitudes [31] (i.e. it relates to O, not to tl)p). 

At last we point out one more example when the necessity of algebraic 
extensions is obvious. Consider a Schottky parametrized Riemann surface over Qp. 
It is presented by II)p with a number of discs removed (see Sect. 2), whose radii may 
be equal top r, r being half-integer, which corresponds to a valuation on an extension 
of tl)p [17]. 

Now we would like to describe finite extensions manifestly in terms of the 
Bruhat-Tits tree [17]. Let IK be a finite extension of Qp of degree n with the 
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ramification index e. S e r f =  n/e. A Bruhat-Tits tree T(IK) can be drawn for any such 
IK by the following procedure: 1) insert into each edge of T e - 1  new vertices 
separated by equal distances; 2) draw new branches in such a way that each vertex 
has exactlyp I + 1 neighbours. All the constructions may be developed for such trees 
and the answers can be obtained with only slight modifications. However, T(O) 
gives us a less trivial example of  the tree which contains infinitesimal edges and 
vertices with an infinite number of neighbours. So the tree language seems to be 
adequate only if some limiting procedure is implied. In any case we expect that our 
answers for the amplitudes turn out to be the same for arbitrary extensions (up to 
slight modifications) with the lengths of reduced graph segments si(the moduli) 
being continuous in O-case. 

The only trouble we should note is the special case of Qp-tree with small p and 
s~ = 1. Let us consider the example in Fig. 7 for p = 2 and g = 2. Then the whole 
measure of  the boundary of this world sheet is zero [see (3.1.5)] because no branches 
go to infinity in this case. So we cannot define the important  quantities like the 
Jacobi map and so on. But the problem can be resolved if we turn to the proper 
finite extension. 

p=2 

Fig. 7. An example of EQvRS with the empty ff~pRS (g = 2, p = 2) 

4.2. The Schottlcy Parametrization and Mumford Curves 

The next problem to be discussed is the integration (summation) of  the amplitudes 
obtained in the previous section over the moduli space. The key question is the 
uniformization of algebraic curves. Namely, in the archimedean case one can 
uniformize any algebraic curve over ~2. To treat the open string theory it is 
necessary to uniformize the curves over IR. This problem can be reduced to the 
uniformization of the curves over C as follows. Given a Riemann surface with 
complex antilinear involution such that the fixed points of this involution form a set 
of circles (i. e. lR-points of  the curve, or IRRS) which divide the surface into two 
pieces (EIRRS) without handles. Then we manifestly describe the embedding of 
EIRRS into a Riemann surface over C, with the corresponding equation admitting 
the involution. Certainly, it is not an isomorphism. For  example, the curve given by 
the equation y 2 = (x 2 + i) I-I (x - c~), ~i E IR, has a handle which is not cut by the fixed 
contour since it lies in a non-real domain. 

A more complicated situation may be expected in the p-adic case since there 
exists a tot of  different algebraic extensions. But the general scheme seems to be the 
same, and the uniformization problem should be resolved for f2 and ~p  simul- 
taneously. In the non-archimedean case in contrast to the archimedean one, curves 
exist which do not admit any uniformization even over an algebraically closed field 
(2. Namely, only the so-called Mumford  curves admit the Schottky uniformization. 
Now we discuss these curves in more detail [17, 18]. 
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To begin with, let us concentrate on the elliptic curve case [32]. One can write the 
elliptic curve equation in Legendre form: 

yZ= x ( x - 1 )  ( x -  2) , (4.2.1) 

where the ramification points are placed in 0, 1, 0o and ~. (we can fix three of them by 
using of the global PGL (2)-invariance). There exists the relation between 2 and the 
modular parameter q = e2~i~: 

A (q) = 16 [2 (1 - 2)] 2 oc q 1-I (1 - q n ) 2 4  . (4.2.2) 
n>0 

Here A(q) is the Jacobi A-function, which is just the discriminant of Eq. (4.2.1). 
Such relations also do not depend on the number field. Since we are interested in the 
norms of both sides of relation (4.2.2) and the constant multiplier on the right-hand 
side has unit norm when p + 2, we shall consider (4.2.2) as the precise relation and 
suppose p 4:2 in the elliptic and hyperelliptic cases. Then we have 

]d(q)[p=]q]p=LX(1-;~)L 2 for ] q l p < l .  (4.2.3) 

The parameter q describes a Schottky parametrized Riemann surface. It is natural 
to consider Eq. (4.2.1) over a quadratic extension of Qp. Then ordp2 and 
ordp (1 - 2) may be half-integer, with ord v q being integer. If one wishes to consider 
odd ordpq, then it is impossible to represent the cubic Weierstrass equation [32] in 
the form (4.2.1) with 2 e Q  v. Consider two possibilities: I;~lv< 1 and ]1-;~]v< 1, 
which cannot be satisfied simultaneously. In both cases one can determine ordp q 
using (4.2.3) and it is a kind of modular parameter (see Sect. 2) with the condition 
o rdv q> 0  being analogous to I m z > 0 .  However, the case 121~>1 destroys this 
inequality. It is an illustration of Tate's well-known result [18]: only elliptic curves 
with non-integerj-invariants (asj  = 1/q + regular terms) can be uniformized. These 
"Tate 's  curves" are just the Mumford curves for genus 1. 

A less trivial example of a higher genus curve is the hyperelliptic curve defined by 
an equation of the form: 

20+2 
y2= I~ (X--O~i), (4.2.4) 

i=l 

where three arbitrary ramification points 0~i can be fixed. Again it is sufficient to 
work within a quadratic extension. Let us construct a concrete example of the 
hyperelliptic Mumford curve. Choose the set {0~} satisfying the following 
conditions: 

1. 1(~2i_l--~2ilp<l , i= l , . . . , g -+- l ;  
2. all other pairwise differences are nonzero modulop.  In fact, we can describe this 
"degenerating" curve in terms of the reduced graph F0 R. That is, pinch the handles 
corresponding to each pair {e2~-1,0~2~}. Then we obtain a set of zero genus 
Riemann surfaces (spheres) with punctures. Each sphere corresponds to a vertex 
in F0 R, and each pinching - to a segment with the length s~ = 2 ordp(e2~_ ~ -  e2~) 
[cf. (4.2.3)]. 

Now we are ready to define a general Mumford curve [18]. Let a set cg(ll~p) of 
Qp-points of a curve cg be given by a set of algebraic equations: 

Pk ({Xs}) = 0 , Xs S II)p . (4.2.5) 
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Here Pk({x~}) are irreducible polynomials in x~ withp-adic coefficients (we do not 
specialize them somehow). Strictly speaking, it should be "homogenized" to obtain 
the projective curve. By appropriately replacing ({xs})~({x;}) one can cause each 
coefficient of (4.2.5) to become a p-adic integer. There are many ways to do so; we 
choose a "minimal" way ("a minimal model," see below). 

Then one can immediately define a reduction of cg to be a curve ~ over a finite 
field IFp given by (4.2.5) modulo p. By definition, the Mumford curve is a non- 
singular curve of, whose reduction C is a set of components isomorphic to p t  (]Fp) 
and containing only double singular points with separated tangent lines (such 
curves are also called degenerating with split reduction). Obviously, the above 
examples fall under this definition. In the first case 2 = 0  modp  implies that a 
degenerate curve ~is jus t  the "sphere" [i.e. p1 (IFp)] with two punctures (Fig. 8a). In 
the hyperelliptic case condition 2) means that the cusp singularities (Fig. 8b) are 
forbidden. 

y2= x3+ x 2 
Y 

node 

Y y2= x 3 

cusp 

o b 

Fig. 8. Examples of singularities (elliptic curves over IR) 

Mumford has shown [18] that one can establish one-to-one correspondence 
between factorized Bruhat-Tits trees F(F)  and the Mumford curves (see Fig. 9). 
That is, 0F (all rays contained in the branches B~, z E F a) correspond to tl~p-rational 
points of the curve. All edges with the only endpoint belonging to F R correspond to 
the IFp-rational non-singular points of  the curve (in particular, the reduced zero 
genus curve is p1 (IFp), i. e. p + 1 edges with the common origin [17]). Each branching 

. . . . . .  8 F  

2 

F = T / F  

Fig. 9. The correspondence between rays in F= T/F and Qp-rational points of an algebraic curve 
(g = 2, p = 3). The dots correspond to Fp-rational points of the curve while the segments 1, 2, 3 
correspond to double singular points (stable reduction) 
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vertex in the reduced graph corresponds to a "sphere" p1 (IFv) in ~ and, eventually, 
all segments in F R correspond to double singular points in c~. Thus the map 
c~(Qv)~C~(lFp) is described by the natural map:  

~F---~ F R . 

A simple example is depicted in Fig. 10. 
Up to now we dealt with the so-called stable reduction of the curve (i. e. any 

@component  without self-intersections has more than two double points), when 
the map f :  

f :  {edges of fR}~{doub le  singular points} (4.2.6) 

pinching 

~/I/ll],l I' ........ .~ 

punctures 

pinching 

i 

I I 

punctures 

pioching__._ 

--t 
punctures 

- - - -  " C 6  

Fig. 10. Different types of degeneration for g = 2 and corresponding reduced graphs. In b an 
example of semistable reduction is depicted. Dots in the reduced graph refer to the irreducible 
components P 1 which are depicted schematically as lines at the last picture of each sequence. Their 
intersections correspond to the edges in the reduced graph 
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is surjective (but in general non-isomorphic). A finer reduction is the semistable one, 
when any Cg-component without self-intersections has at least two double points 
(Fig. 10). It makes the map f isomorphic and can be described as follows: Let us 
associate with the curve (4.2.5) a surface given by the equation: 

Pg({xs} ; {a~(t)}) -Pg({Xs}, t )=0 , (4.2.7) 

where all the coefficients a i are represented as formal polynomials in t, namely, the 
integer number a =  ~ aip i must be replaced by a =  ~ a~fl. Then the reduction 

i=>0 i > 0  
modp tends t to zero (t plays the role of" the  arithmetical coordinate" [33]). Thus we 
have a surface (4.2.7) with the singularities which should be resolved by a sequence 
of a-processes [28]. For example, the simplest singularity of the surface 

y2 = x(x  - 1) (x _ p ) ~  y2 = x ( x -  1) ( x -  t) 

at the point (x, y, t) = (0, O, O) can be resolved by the single a-process resulting in two 
components p1 (]Fp) of the section t = 0 of the surface (which is nothing else but the 
reduced curve). A stronger singularity of 

y2 = x ( x  -- 1) (x _p2)._,y2 = x ( x -  1) ( x -  t 2) 

requires one more a-process resulting in four components p1 (lFp). Given a curve 
one can choose the integer coefficients in (4.2.5) in many ways. We constrain them 
to give a "minimal model" of the curve. By definition, the minimal model should 
have a minimal number of irreducible components in any fiber of the surface (4.2.7) 
after resolving all the singularities [28]. For instance, the minimal model of an 
elliptic curve has the discriminant with the minimal p-adic order (for more details 
see [32]). In fact, the number of components originating from a singular point of the 
minimal model is equal to the length of the corresponding Fg-segment under the 
map (4.2.6). Thus, now all irreducible components are mapped to the edges of the 
segment bijectively. 

For elliptic curves this description is part of the Neron-Kodaira classification 
[32]. For higher genera, there are different patterns of degeneration corresponding 
to topologically inequivalent reduced graphs. See examples for genus two in Fig. 10. 
So the moduli space is naturally divided into distinct domains. 

Finally, note that the quantity S introduced in (3.1.5) is nothing else but the 
number of all components p1 (lFp) of the whole reduced curve, i.e. it coincides with 
the number 6p in Ref. [30], which is hoped to be closely related to the Mumford 
measure on the moduli space [29]. 

4.3. The Mumford Curves and the Moduli Space 

Thus we have observed that the main information about the moduli space is 
contained in the reduced graphs. Certainly, one would like to sum various quantities 
over the moduli space. Working with fixed p, it is natural to expect that this sum 
should go over only Mumford curves, since the Riemann surfaces but not algebraic 
curves provide an adequate description in the fixedp framework. So we introduce a 
sum Zp = Z fv(cg), where fp is a function on the "moduli space" J//RS of Riemann 

J/RS 
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surfaces over Qp. In particular, a proper density on the moduli space should give the 
p-adic string partition function (the notation Zp refers to this case). 

On the other hand, working with arithmetic surfaces [30] requires us to consider 
all the prime numbers simultaneously, i.e. this treatment implies summing some 
"adelic quantities" over the moduli of the algebraic curves: A = ~ ¢ adelic(cr~). 

Arithmetic 
surfaces 

The quantity ¢ adelic is expected to be the product like l-I Cp in analogy with Eq. (1.2). 
io 

The p-component @ of ¢ adelic is quite similar to fp. Moreover, these two quantities 
are supposed to be the same, when f~ is restricted to the subspace of the Mumford 
curves space. It should be noted that the idea of product formulas was proposed by 
Manin [l 1 ]. 

We would like to say some words about the notion of arithmetic surfaces [30, 
34]. Let a curve cg be given over a global field, say, the rational number field Q (for 
simplicity we consider the curve embedded into IP 2 here): 

P ( x , y ) = O  , x,  y e Q  , Pe77[T1 ,  T2] . (4.3.1) 

Here 77 [T1, T2] is the ring of polynomials with the integer coefficients [cf. (4.2.5)]. 
Then one can consider the reductions ("fibres") ~(P) of Cg at each placep of the field 
Q. In order to "compactify" this construction Arakelov has introduced [30, 33, 34] 
a "non-existing" fiber over the archimedean place { ov }. The number of degenerate 
fibres ~(P*) over p* is always finite, with the archimedean fibre assumed to be 
highly degenerate (in a rather sophisticated sense). Such p*'s are called the places 
of bad reduction of the curve. All these data can be arranged into the "arithmetic 
surface" G: 

~ ,  (4.3.2) 

B-Spec77u  {oo} . 

Here Spec 77 denotes the set of all prime ideals of the ring 77, with the maximal ideals 
being generated by the prime numbers (i. e. the non-archimedean places of Q). This 
construction may be considered as a fibre bundle over the base B (spread in an 
arithmetic direction) with the fibres over p c B being the reduced curves ~(P). There 
exists also a generic fibre which is the initial curve over Q. It grows over zero ideal in 
Spec 77. 

After these preliminaries are done we are ready to formulate our conjecture 
(only this conjecture can justify the summing over moduli space under fixedp [35]): 

Conjecture. 

A =  ~ l~I @((g)~l-I  Zp=/-I  ~ fp(cg) . (4.3.3) 
Arithmetic p p p d4'Rs 

surfaces 

At the present time we are not able to give any precise meaning to the quantities 
entering this formula. In particular, we hope that the arrow should imply an 
equality provided all the quantities are correctly defined. We would like to consider 
the formula (1 .l) as a very special case of(4.3.3). The left-hand side of(4.3.3) is also 
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reminiscent of the proper adelic expression for the string measure [ I  #p - l - I  e~P 
P P 

(up to possible zero mode factors) which can be extracted from [30, 35]. 
We immediately observe from (4.3.3) that non-Mumford curves give the unit 

contribution to Zp. It follows that the expression for Op is non-trivial only at the 
places of split reduction; this makes both sides of (4.3.3) consistent. 

The first problem to be resolved is to check the above conjecture for genera 1 and 
2 when a convenient parametrization in terms of ramification points exists. In these 
cases the sums in (4.3.3) can be transformed into the sums over integer numbers. 

5. Concluding Remarks 

Thus we have demonstrated the considerable resemblance of the p-adic strings and 
the usual ones. The underlying reasons of this similarity can be only guessed at this 
moment. For instance, it is rather favourable to think about both p-adic and 
archimedean strings as two faces of the unique object associated with the arithmetic 
surface [30]. This viewpoint is rather close to the adelic formulas like (1.2) (see e.g. 
[3-7 ]). It is likely that further investigation of the conjecture (4.3.3) will be helpful in 
clarifying this point. 

In any case a number of important questions remains beyond the scope of this 
paper [23, 29]. In particular, it is not evident how one should define a string model 
over O, and, moreover, it seems that there is no adequate language for the 
description of D itself. A related question is to obtain thep-adic analog (if any exists) 
of the usual conformal metric. 

There are some more questions; we point out the following: 

1. A natural formulation of the p-adic string is expected to be given by using the 
moduli space for all genera (an universal moduli space, or grassmannian [36]). So 
questions arise whether a maximal unification exists which is a grassmannian 
related to arithmetic surfaces? Should one sum in (4.3.3) over the universal moduli 
space or over the moduli for a fixed genus ? 

2. It is an absolutely unclear question how we can describe a fermionic string on 
EQpRS (in contrast to the archimedean case). Its formulation on QpRS provided 
with the corresponding non-local action was proposed by A. Marshakov and one of 
us (A.Z.) [37], but the extension to EII)pRS remains an open question. 

To all appearance, all these problems are connected with the absence of an 
analyticity notion on the tree. Probably, a good understanding of (2 should clarify 
these points. 

All the above refer to the tree with a fixed prime p. But there exists another 
viewpoint which naturally incorporates the tree into the arithmetic surface 
approach of Sect. 4.3. That is, besides of the reductions ~(P) of the curves cg one can 
investigate the curves cgp over the completions II~p of II) at the placesp. They have a 
Schottky uniformization in place of the split reduction (see Sect. 4). Given the 
arithmetic surface ~, one can using a-processes "blow up" all these points, after 
blowing up the points produced before, etc. This process repeated infinitely many 
times leads to A-surface ~ (a "foam space" [41]). In particular, if cg=p~, 
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@cp) = p~ (]Ffl has exactly p + 1 points over the finite residue field •p, then one can 
blow up each point to the whole branch of the Bruhat-Tits tree [i.e. paste p1 (lFp) at 
each point of p1 (lFp) and then repeat this process infinitely many times]. One 
eventually obtains the Bruhat-Tits tree. Just the same, if the curve cg has a split 
reduction at p*, then cg(p*) is described by the reduced graph, and the points of this 
graph can be blown up to produce the branches of the factorized Bruhat-Tits tree 
(see Fig. 11). In the case ofCg = P1, the corresponding A-surface ~1 is a union of the 
Bruhat-Tits trees growing over all places p together with the Poincar6 disc over the 

. . . .  

_,___,\> 
(split 
reduction I 

P 

reduction) 

/ 
co 

Fig. 11. Maximally blown up arithmetic surface \ 

C- 2 

C-1 

. . . .  ~ c ~  

--i 
p-2 p-1 po pl p2 

Fig. 12. The correspondence between rays and numbers 



706 L.O. Chekhov, A. D. Mironov, and A. V. Zabrodin 

archimedean place oo. So this Poincar6 disc is analogous to the "maximally blown 
up" fibre over a finite place of A-surface. The general ~ is a union of trees over places 
of good reduction (Fig. 11) and a finite number of "singular fibres". Roughly 
speaking, the whole family ~ can be given by its singular fibres. 

This "arithmetic catastrophe theory" viewpoint seems to be rather natural. We 
hope that such an approach can be more suitable for the further development in 
non-archimedean physics. 

Appendix A 

In this Appendix the basic results on the coordinatization of a Tare briefly reviewed. 
We follow [10]. 

One can introduce a coordinate function on p1 (Qp)~aT,  i.e. to identify the 
boundary of the tree T with the field ofp-adic numbers. In terms of the tree this 
amounts to choosing three rays leading to the points of the boundary which are to 
be identified with 0, 1 and oo. Any three distinct points on aT  (i.e. three rays) 
uniquely define a point inside T, namely, it is the common starting point of the 
corresponding three rays, the rays being chosen to have no common edges. We shall 
denote such a point for the rays 0, 1, oo as C. 

In order to clarify the rules of coordinatization, it is useful to interpret the tree in 
a somewhat different way (Fig. 12). Let us write down the number x e  • ,  in the 
form: 

x = p "  "u , u = a o + a l p + a 2 p 2 +  . . . .  (A.1) 

where the coefficients a i take values in the residue field IFp and % # 0. Then the ray 
C--+x corresponding to (A.1) coincides with the path o0--,0 until the vertex C, is 
encountered and, further, goes within the corresponding branch. The direction to 
be chosen at the ith step when moving inside this branch is determined by the 
coefficient ai_ 1 in (A.1). So we have an identification (non-canonical) a T ~ p ,  
where Qp = Qp to { oo }. 

The p-adic norm has a nice interpretation in terms of the "coordinatized" tree. 
For  X l , X 2 , y  I and Y2 e a T  let ( x l ~ x z , y l - - + y 2 )  be defined by Eq. (3.1.1). (In the 
notation of [10] this quantity was denoted as 6 (x 1 ~ x  2 , yl-+Y2); it is the length of 
the common part of the oriented paths x 1 --,x2, Yl --+Y2 with the negative sign when 
the orientations are opposite.) Then the p-adic norm of the cross-ratio of the four 
points is 

(XI(xl --Yl)_ Y2) (X2 (x2 --Y2)_ Yl ) p =p  - (x, ~x2,y,--'y2 ) (A.2) 

In particular, we have 

la - x /y lp  = p -  <~-~0,,-~ ~> . (A.3) 

Appendix B 

In this Appendix we present analytic constructions over II)p used in the main body of 
the paper. They are well-defined only over ~ but we shall restrict them to q)p. 
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At first, let us consider a formal Laurent series over O : f ( z ) =  ~ a,z  ~, which 
- o o  

converges in a point z 0 s ~ if and only if lim [a, zg[p = 0. The point t is called critical 
n-~o9 

for f if 3i, j(isej):lailivt= [ajlJvt=max [aklpt k. Then an arbitrary function f (given 

on a finite segment) has the following properties [16]: 

1. The set of critical points {ti} is finite, ti~lf~lp and If(z)lv may vanish only 
when Izlp = tl. 

2. If Izl~ ~ {ti}, [f(z)[p is the function of [zip only. Then ordpf(z) is a piecewise linear 
function of ordpz with the slope growing with ordvz. 

Now we define thep-adic one-dimensional 0-function which gives an example of 
converging Laurent series with the critical points t i = Iql~, i~ 2g, [qlp < 1 [16, 17]: 

O,(z,q)= I-[ (1-q"z)  1-[ (1 -q"z-1)  - (B.1) 
n > O  n > O  

It is a literal counterpart of the usual 0-function over CE [38]: 

011(z, q)=c(q)  zl/2 1-[ (1-q"z)  1-[ ( 1 - q  "z-l)  , (B.2) 
n > O  n=>O 

where we redenote e2~i~:-.-.>q and e2'~iZ~z; c(q) does not depend on z. The only 
difference between (B.1) and (B.2) is the factor z 1/2. It can be easily included as 
z~/2 =p½1Og, Z~p-~ordj.  One can see [16] that: 

f ordp Op = 0 for - ordp q < ordpz < 0 

ordp0p = - ordpz for 0 < ordpz < ordpq (B.3) 

ordp 0p = - ordp q -  2 ordpz for ordp q < ordpz < 2 ord v q , 

and so on. We can rewrite (B.3) as 

ordvOp = (ordvz) 2 ordpz ~-~ (B.4) 
2 ordp q 2 ' 

where ~ is a periodic function with the period ordp q, which can be obtained from the 
condition ordpOp = 0 for - ordpq < ordpz < 0. 

Now we shall restrict all formulas to tI~p. It is convenient to work in a special 
fundamental domain: - o r d p q < o r d p z < 0 .  Then ordpOp is zero in non-critical 
points (ordpz =# 0). 

This technique we apply to 0p-functions of many variables. That is, define a 
formal Laurent series f(z~ .... ,z,)  like 0p-function as in [16]. Then the above 
statement is valid with the only change that the critical points should be replaced by 
critical subspaces of unit codimension. They form a complex, which in fact is the 
Voronoj decomposition, and it results in the skeleton which is a visualization of the 
period lattice. Consider the simplest nontrivial example of n = 2. Then the possible 
Voronoj decompositions together with the corresponding reduced graphs are 
depicted in Fig. 13. Moving along the critical line corresponds to moving along a 
cycle in the reduced graph. When two cycles do not overlap, the Voronoj lattice 
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Fig. 13. The Voronoj decomposition in two dimensions 

evidently is square (two axes giving this lattice are independent). The elementary cell 
corresponds to a fixed choice of  the fundamental domain. We may again choose 
such a fundamental domain that ordp 0v is zero outside the critical points. (It can be 
done due to the above theorem, see the proof  below.) One can write the product 
formula for 0p-functions analogous to (B.1) [39], but we omit it here, as we need a 
slightly different object, namely, the Prime form E(x, y). In the archimedean case it 
is defined to be 

h(x)h(y) 

[ ;I  's any 0 c a ac eri   c  saUasi o  o'omo p  c d  f r  tia's 

h(z) is the holomorphic 1/2-form: 

h2(z)= ~ ogi(z)g,iO[ 9~] 
i=1 /~ (0). 

Though the abelian differentials and other objects in (B.4) are rather complicated in 
the Schottky group terms [39, 40], the infinite product expansion for E(x, y) has a 
simple form [27]: 

E(x, y) = ( x - y )  1-[' [ x -  y (y)] [y - 7 (x)] (B.5) 
~ r  [x -7 (x ) ]  [Y-7(Y)] 

The product goes over all elements of the Schottky group (except the unit element) 
with ~ and 7 -1 elements counted only once. Thep-adic formulas should be obtained 
simply by replacing the variables x, y e 112 by x, y e II)p. 

Now we demonstrate that for any Schottky group F 0 it is possible to choose such 
a fundamental domain 8F(Fo) c ~; that IE(x, Y)Iv = ]x --y[p for x, y E 8F(Fo), i.e. the 
infinite product term in (B.5) gives no contribution. Let us consider the Schottky 
tree for F 0. It is in fact the universal covering space for the reduced graph Fo R. (The 
example of  such a covering for F2 is depicted in Fig. 14a). Given the graph Fo g 
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OF(F2 I 

--)>> 

o b 

Fig. 14. An example of the Schottky tree T(Fz). The choice of the connected fundamental domain 
F(F2) leads to trivialization of the Prime form (B.5) 

containing R segments 5:~, i = 1,..., R. Any segment 5: k is replicated infinitely many 
times in the Schottky tree. We denote these copies as 5:} ~. Any appropriate 
fundamental domain F(Fg) c T m a y  be determined by the set of  R arbitrary copies of  
these R segments 5Q ~l~ u 5°z ~2/u. . .  u 5°~ ~R~. The fundamental domain ~F(Fo) is the 
collection of points at infinity of  all branches growing from the vertices belonging to 
this union. The "good"  choices of such domains are subtrees F(Fo) which are 
eonnectedin the tree T. It  is easy to show that such domains do exist for an arbitrary 
Schottky tree. (They can be obtained if one cuts all g loops of  F~ by exactly g cuts, 
the obtained graph being connected without loops and any of its connected replica 
in the Schottky tree gives us a connected graph F(Fo) ). It  means that for any two 
points x, y e ~?F(Fg) the path x ~ y  cF(Fo). (The example of such a choice for F 2 is 
depicted in Fig. 14b.) 

Consider now the action of an element y on the subdomain F(Fo). I t  follows that 
7 (F(Fo)) c~ F(Fo) = 0 and the path 7 (x)--,7 (Y) c 7F(F0)). Let us calculate the cross- 
ratio (A.2), 

(x  - ~ ( y ) )  ( y  - ~ (x ) )  

(x  - ~ (x) )  ( y  - ~ (y ) )  ~ = p -  < ~ "  '(~) ~ ~(')> 

It  is clear f rom the above that for connected F(Fo) and any V e Fg the intersection 
(x---,y, y ( x ) ~ v ( y ) ) =  0. Thus for this fundamental domain the infinite product in 
(B.5) gives no contribution. 
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