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Abstract. We generalize the classical notion of a K-system to a non-commutative 
dynamical system by requiring that an invariantly defined memory loss be 
100%. We give some examples of quantum K-systems and show that they 
cannot contain any quasi-periodic subsystem. 

1. Introduction 

There seems to be general agreement [1-4] that classical K-systems exhibit those 
mixing and chaotic properties which are necessary for the foundation of statistical 
mechanics. Classically they can be characterized by the existence of a subalgebra 
d c ~ = the algebra of observables with 

(i) a " d  ~ d V n ~ Z  +, 

(ii) v ~ " d = ~ ,  
n>O 

(iii) A a - " d  = e l .  
n>0 

Here a is the time evolution and v and /x mean union and intersection of algebras. 
These conditions are met in particular if there exists a generating subalgebra 

d o C s ~ w i t h  V o - " d o = J / ,  ~ ~/ o - - " - J d o = c l .  The difficulties of gene - 
- co <n< co n = l  j = l  

ralizing this for non-commutative algebras J/Z comes from the fact that then even 
two finite-dimensional isomorphic subalgebras may generate algebraically an 
infinite-dimensional tit. For instance, if x and p satisfy Ix, p] = i and Z is a 
characteristic function of [ -  1,1] and ~ r : ( x , p ) ~ ( p ,  - x) ,  then d o = (X(X), 1 - X(x)) 
and a d  o generate the algebra W =  l ~ ® M  2 and d 0/x O-do = c l .  Nevertheless, 
Emch [2] has proposed a notion of a non-commutative K-system and an associated 
dynamical entropy starting with the algebraic characterization given at the 
beginning (see also [3, 4]). We have recently [5] given an alternative definition 
of the dynamical entropy of a non-commutative system and we propose a 
corresponding notion of a quantum K-system. We start with the classically 
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equivalent characterization of a K-system by requiring that the tail ~, ~/ o - - " - Jd  
n = l j = l  

of any finite partition (finite subalgebra) s / i s  trivial ( = cl). The triviality of the 
tail can be rephrased in terms of the entropy 

lim lira S - S a - k d  = S(d), 
n ~ o o  j--*m k n 

and this can be used as a starting point for a non-commutative theory. In [5] we 
have introduced entropy functionals H(sgl , . . . ,~¢, )  which have the desired 

properties and reduce to S (  ~ d ~ )  in the commutative case. They have 

intuitive meaning of the maximal information to be gained about the subalgebras 
~¢i by a measurement of the total system. Using H(s¢ z . . . .  ,s¢,,) instead of 

S( ~=ld") in the ab°ve criteri°n and ;-+oolim by the mean we get a 

characterization of quantum K-systems which roughly says the following: The 
maximal information obtained about any ~¢ at previous times can never give the 
full information about ~¢ at present, in fact if these times were too far in the past 
all information gets lost. 

In this note we will explore the consequences of such a definition of quantum 
K-systems. They show features which contradict what one is used to from finite 
quantum systems. Firstly, K-systems are ergodic in the sense that the only 
time-invariant elements of the algebra of observables are multiples of unity. Thus 
the Hamiltonian H which generates the time evolution cannot be an element of 
this algebra. Even more strikingly Zermelo's recurrence objection is completely 
rejected in the sense that there are no quasi-periodic elements ¢ cl. 

We shall show that some infinite quantum system which are generalizations of 
classical K-systems do indeed have our K-property. Our examples of K-systems 
are of the type studied by Emch [2], Kiimmerer and Schr6der [3, 4] but we have 
the advantage that we are not obliged to exhibit the expanding subalgebra sO. If 
one adds the assumption of strong asymptotic abelianess one can show [14] that 
the K-systems in the sense of Schr6der [4] are also K-systems in our sense. 
Hopefully also the systems relevant for physics, namely bosons or fermions 
interacting with pair potentials are of this class, but we are far from having 
investigated all potentialities of this notion. 

2. The Entropy Functionals 

Our theory is based on finite-dimensional unital *-subalgebras and we shall 
abbreviate this cumbersome construction by "finite subalgebra." The theory 
can also be extended to nuclear C*-algebras without finite subalgebras, but 
for simplicity of exposition we shall restrict ourselves to UHF-algebras Jr .  
Furthermore, we shall only consider faithful states over ~ (which means 
co([al 2) > Ico(a)lZVa~J¢,a ~ cl). 

Before we embark on the theory of general K-systems we shall first recall the 
general definitions and deduce some useful estimates. Let co be a faithful state over 
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an UHF-algebra J¢  and 

COi~ . . . . .  i~ ~ O~ Z (/)it . . . . .  i .  ~ CO, 
i t , . . . , i n  

a decomposition• For  the multi-index ( i t , . . . , i , )  we shall use the 
I and define 

shorthand 

O)!k) ~- Z ('0il . . . . .  in" Zk 
i l , . . . , in  
ik f ixed 

Furthermore let us denote the entropy function - x l n x  by t/(x),cold=the 
restriction of co to d c J/C, S(q~l ~') = the relative entropy of ~0 and ~b, S(q~ldl~jd ) -- 
S(q~t~)d- NOW we are all set for 

Definition (2.1). 

H~,(d D d . ) =  sup [Zr/(co/(1))+ ~ ~S(oI  "~(k)'~ ] • " " ~ ~ i k  2 d k  " 
E~l=~k I k=l ix 
I 

Remarks (2.2). 

1. Denote by dim ~ k  the linear dimension of a maximal subalgebra of dk .  Given 
M = max dim s¢ k and e there is a number 6(e, M, n) > 0 such that sup is reached 

l<_k<_n 
within e by a decomposition with co,0) > a v I  and thus #I < 1/8 [5]. 
2. In general a decomposition can be written cox(a ) = co(x}a)= (o(o-~/2(xl)a) with 
x',~JY, x I ~ J l " , ~  ~' the modular automorphism of co. Since Ho, is strongly 
continuous in co it is sufficient to take the sup over co, with x~ from a strongly 
dense subalgebra of J£". Thus if ~tg is a quasi-local algebra we may assume the 
x I to be strictly local. 

Properties of H (2.3). 

(i) H(a¢~,. . . ,  ag,) > 0 and is symmetric in its arguments. 
(ii) Monotonicity: a¢~ ~ ~ Ho,(xg,,..., sg,) > Ho,(~,,..., ~ ) .  

(iii) Subadditivity: Ho,(s¢~,...,ag,) < Ho,(agz ..... agk)+ Ho,(dk+ ,,.. . ,d~) V1 <_k<<_n. 
(iv) Invariance under repetitions: 

H r o ( ' 5 ~  1 ,  ~ 1 , "  " ' ,  ~ 1 ,  ~ 2 , "  • " ,  J ~ ' n )  --- H~,(agx, J ~ / 2 ,  • • " ,  5~ 'n)"  

Lemma (2.4). 

H o ( . ~ l ,  d 2 , . . . ,  ~ n -  1 ,  g~ ' )  - H t o ( g ~ ' l ,  d 2  . . . .  , g ~ ' n -  1,  ~ )  

< sup ~ (S(co[coi) d - S(colco,)~) - H~(WI~'). 
~C0i= a I i 
i 

Proof. Use a decomposition which gives, within e, H,o(agl, ~¢2,..-, d , _  1, ag) as a 
decomposition for H,o(~¢ t, ag2, . . . ,  d , _  1, ~)- Then in the difference all terms cancel 
except the term k = n in the last sum of (2.1). 

Remarks (2.5). 

1. If a¢ and ~ are abelian, H(WI~)  equals the corresponding classical quantity, 
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i.e., H,o(~cI~)=H~(~'  v~) - -H~ , (~ )  (see Appendix 1). Classically H and S 
coincide, and we shall use both notations S~o(~¢) - S(~ol~). If only one state co is 
involved we might skip the subscript co. 
2. (2.3, iv) implies 

H(~¢1, • • •, ~¢,- 1, ~¢,) - H ( d D . . . ,  ~ ' , -  1) 

= H ( ~ ¢ 1 , . . . , ~ n - l , ~ n )  - -  H(~¢1,..., ~¢,_ a, ~4._ j < H ( d ,  l d , _  ~), 

thus 

and 

n-1 
H(~¢1 . . . .  ,~¢,) <= H(dg j  + ~ H(d ,+ ,  Idi) 

i=l 

H(~ff I . . . . .  d.)- H ( ~  . . . . .  ~ , )  < ~ H(~¢il#)i). 
i=i 

To complement these upper bounds by lower bounds we need more information 
about the possible decompositions cot: 

Lemma (2.6). Suppose that x1~J¢ give, within e, Ho(~  1 . . . . .  ~ , )  and that there exist 
~//g~yj> O, ~y~ = 1 such that 

3 

(i) [xt, y J  = 0 V I, j, 

¢O(xlYj) 
i 

(ii) 1] <~1VI, j. o~(x3o~(yj 
Then 

H A d , ~ I  . . . .  , & ) - H o ( &  . . . .  , & )  

! 2  1 < 
> SUPa~d 2 i laffyj)oo(a)--~o(ayj)[aco(yj) e - - l _ e l .  

Ilall= 1 

I f  the yj give, within e, H~o(d) then 

i --81' 
Proof. Consider the decomposition 

ahd(a ) = og(aa~/2(xi yj) ). 

We have 

2 ~ 1 , j  = ¢0('0-~/2(Yj) ) ~ 09j, 20Jl,j = ~o, and og(xiyj) = ~oIo(1 ). 
i j 

Thus, if we use cot, j as decomposition for H ( d ,  N1, . . . ,N , )  all but the first term 
of the ~, in (2.1) can be used to form H~,(~ 1 . . . .  ,N,) and we get 

k 

H,o(d, ~1 . . . . .  ~J.) -- H,o(~>.. . ,  ~2,) 

> ~, rl(m(xzyj) - ~ it(co(x,)) - ~ t/(c~(yj) + ~ co(yj)S(co I o3j)~, - e. 
I , j  I j j 
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Here ~bj(a)= coj(a)/(coj(1)) is the normal ized functional  and we used the scaling 
S(~o12~) = 2(S(~o1~)+ O(1)ln 2). The  first three terms can be writ ten 

- V c o ( x r y j ) l n  co(xIY~) > -  e ~  
co(xz)co(yj) = 1 - e l '  

since ~ co(xlyj) = 1 and I ln (1 + x) l < Ix I/(1 - Ix[), F o r  normal ized functionals one 
I , j  

knows [6] 

S(¢pl~,) >½1[ ~o - ~ II 2 
and 

II~j~ll = sup I~(a)l .  
aEd 

Ila]l=l 

This est imate for the last term gives the first pa r t  of  the claim (2.6). The  second is 
immedia te  f rom 

Ho,(d)  = ~. co(yj)S(col~j)d + 8. 
J 

Corollary (2.7). I,f s /  # cl,  then Ho,(d)  > O. 

Proof. Take  in (2.6) ~ = c l ,  I = {1}, x~ = 1,0 < Yl = aES/ ,  Y2 = 1 - a. HO,(S/) = 0 
would imply co(a 2) = co(a)2 V a e s / .  But for a faithful state 

co(a 2) -- o)(a) 2 = co((a - co(a)) 2) = 0 ~ a = co(a). 1. 

Let  o- be an a u t o m o r p h i s m  of ~ / w h i c h  leaves co invariant ,  cooo-= co. 

Definition (2.8). 

ho~(a, S/) = lim 1 ,~  co ~ H~(S/ ,  a s /  . . . . .  o_~- 1 d ) .  

Remarks (2.9). 

1. Because of (2.3, iii) we have lim = inf, and since H ____ 0 we know that  the limit 
k~oe k 

exists. 
2. If  ~¢/is abel ian 

and 

k-1 ) 
H o , ( ~ ,  o-s/  . . . . .  o'k- 1 ~ )  = So, V o'JS/ 

\ j = o  

h o , ( a , d ) =  lim So, d d  - S o ,  d d  . 
k-~oo j 0 j 0 

Thus  (2.8) is a general izat ion of the classical definition and our  results also cover  
this situation. 

Properties of  h (2.10). 

(i) l_ ho, (a,, d )  =< ho , (a ,d )  =< h~,(a",s/), 
n 



570 H. Narnhofer and W. Thirring 

(ii) h~,(o- ~, d )  = ho)(o-, d ) ,  
(iii) ho)o~-, (~o-c~- 1, c~d) = h~,(o-, d )  V c~EAut Ml. 

P r o o f .  

(i) From (2.3, ii) we deduce H(s¢, ~ )  >__ H(~a', 1) = H(~a') and by iteration 

ho~(o- , sO) = lim 1 H ~ , ( d ,  o -d , . . . ,  o - "d , . . . ,  o -k"- ls¢) 
k--* oo 

> -  lira Ho,(d,  o-"~ . . . . .  o-,(k- 1) 4 ) = ho)(o-", d ) .  
n k ~ o o  n 

Conversely, (2.3,iii) tells us 

1 o-.k - 1 d )  lira ~ n H o ~ ( d ,  o - d  . . . .  , o-" d ,  .. . , 
k---~ co 

1 1 < -  lim {H~o(~C,o -n~C, . . . , o -n (k -1 )~C)+Ho~(o-~C,o -n+ld ,  o-n(k- 1)+ 1~¢) 
~ n k ~ o o  k " ' ' ~  

+ . . .  + H~,(o-"- ls¢, o-2,- i s /  . . . . .  o-k,- a d )  } _-- ho~(o-", ~a'). 

,o- d)=Ho~(o- d,o-  W . . . . .  d ) = H ~ o ( d , o - - l W  . . . .  , o - - "d)  (ii) H ~ ( d , o - d  . . . .  " , - , + 1  

by (2.3, i). 
(iii) Follows because sup is invariant under automorphisms of J / .  

~ a ) / =  a/ 

I 

3. Quantum K-Systems 

Proposition (3.1). B e t w e e n  the  p r o p e r t i e s  

(i) ho(o-,d) > 0 V d  ¢ cl, d c d/t. 
(ii) lim h~(o-", d )  = H o ( d )  V d ~ c l ,  d c d/ l .  

n--* oo 

(iii) lim lira [ / /~(~ ,  o - " + J l d  . . . . .  o -"+~kd)  - -  H ~ ( o - " + J l d , . . . ,  o-"+Jkd)] ---- H~o(~) V 
I/-~ oO k ~ o o  

d , g c JCl , j i > O. 

(iv) lira lira [H~(~ ,o-"+i ld  . . . .  , o - " + J ~ d ) - H o ~ ( a " + J ~ d  . . . . .  o-"+J~d)] -- 0 ~ - - c l  
. - + 0 0  k ~ o o  

V W c ~ ,  j i > 0 ,  

t h e r e  are  the  i m p l i c a t i o n s  

(ii) ~ (i) 

(iii) ~ (iv). 

In the commutative case they are equivalent. 

Proof. 

(iii)~(ii) By (2.3, iii) we have 
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[ H ~ ( d ,  a " d  .. . .  , ak"d) -- H~,(a"M . . . . .  ak"d)]  < H~o(d). 

If, for sufficiently big n, lim [ ]_->H,o(d)-~,  then also the mean 
k--* co 

(1/k)H~(d, a "d , . . . ,  a ¢k- 1)"d) has to approach H,o(d). 

(ii) ~ (i) follows from (2.10, i). 
(iii) ~(iv)  follows from (2.7). 
(iv)~(i) (iv) says that for d e e l  there is some n such that h~(a",d)> 0, thus 

h~(a, d )  > (1/n)ho~(a", d )  > O. 

For the converse implications in the commutative case, see Appendix 2. 

Remarks (3.2). 

1. It seems that for realistic quantum systems and a the time translation h~(o-, d )  
is more instructive than the dynamical entropy ho~(a) = sup h~o(a, d ) ,  since the later 

will be infinite in 3 dimensions. Only when combined with space translations one 
can get a finite dynamical entropy of a 3-dimensional abelian group. 
2. Generally h,~(o-", d )  =< H~o(d) (see (2.3,iii)) and not decreasing in n. Thus we 
know that lim in (ii) exists. On the other hand, we have neither a proof nor a 

n---~ ao 

counterexample for the strong subadditivity which would insure the existence of 
lim in (iii) and (iv). Thus we have to make do with the limit inferior. 

k--* oo 

3. We do not have a counterexample which shows that the conditions (3.1) are 
not generally equivalent but at present we do not venture a conjecture. 

We see that there are two possible generalizations of the positivity of h and two 
of the triviality of the tail, the latter implying the former. To us the condition (ii) 
seems the most suggestive one and we propose 

Definition (3.3). Let a be an automorphism of an UHF-algebra ~ and co a faithful 
invariant state. We define an invariant memory loss of ( ~ ,  a, co) by 

mo~(a)= inf limh~o(a",d)/Ho~(d). 
~ ' : ~  c l  n ~ c ~  

d i m d <  co 

Generally 0 < too(a) < 1. We call (J~, a, co) a K-system, if m~(a) = 1. 

Remarks (3.4). 

1. Remember that H~(d )  > 0 V d ¢ cl, (2.7), so that m~(a) is well defined. 
2. We cannot offer a non-commutative version of a theorem of Krieger [7] which 
implies 

h~(a", d )  
h~,(a) > 0¢:> sup lim - 1. 

de~a ,--'~ l n d i m d  
d i m . ~  ¢ < 

3. Intuitively speaking is m~,(o-) the minimal percentagewise information gain by 
measurements after long intervals. For K-systems every subalgebra has 100~ 
memory loss. 
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4. In contradistinction to h~o(a ) the invariant m~(a) depends on the completion of 
the embedding algebra J{. If dto is a a-invariant algebraic inductive limit of a net 
of finite subalgebras, J¢{ its norm closure and d/t" its weak closure in ~o then ho~(a) 
is the same for (-~o, a, col, J ,  ( ~ ,  a, co) and ( ~ " ,  a, (~21---{a'-2)) [5]. That  even in the 
abelian case this is not the case for m~o(o-) is shown by the following surprise. 
Classically all conditions (3.1) are equivalent to K-clustering if we consider the 
system (all", a, co) where J/d" is the yon Neumann algebra of co-integrable functions. 
Now one knows that clustering is lost by mixing of states. On the other hand, 

l k )  
h o ( d , ¢ ) =  lim - S o (  V a id  

is concave in co since So~ is. Thus 

h,o,,2(d, a) > 0 ~ hx,ol +(1 -x)~2( d ,  rr) > 0, 

and hence there can be only one invariant state. If we start with the algebra 
of continuous functions for which there are several invariant states the K-property 
cannot extend for all of them to the strong closure dk" but we only have the 
implications 

Jd is a K-system ~ / ~ "  is a K-system a d d "  is clustering ~=~/d is clustering. 

Nevertheless the K-property has some kind of stability which follows from the 

Covariance of the Memory Loss (3.5). 

m~,(a) = m~,(a-1)= mo,(a") = mo, o=-ffacro:-1), 

where c c e A u t ~  and neZ  +. 

Proof. (i) The first and the last equalities follow from (2.10,ii and iii) the other 
from the definition of m. 

The conditions (3.1) require that any finite subalgebra has to keep changing 
under the evolution a. This seems to contradict the usual situation where all 
observables converge towards their thermal expectation values. This puzzle is 
resolved by noticing that the convergence is weak and only strongly converging 
elements form converging algebras. In fact, in a faithful state co strong convergence 
of any a ¢ cl to co(a) is impossible because ¢"a--* co(a) implies a"a 2 -~ co(a) 2, but 
we have seen (for a* =a )  that co(aZ)>co(a) z. If the cyclic vector l~2)ew~o 
corresponding to co is the only invariant vector no a ¢ cl can converge strongly 
to any operator: Strong convergence of a"a = U - " a  U" requires that Y e > 0 3 N with 

][(g-"ag ~ -  U-maU'~lf2)tl-- N(U m - " -  1)a]~)]] <~ Vm, n> g. 

Thus ( U -  1)a]~)  = 0 or ( a -  cl)[~2) = 0 for some ceC. Since [ ~ )  is separating 
this implies a = cl. (The Fock vacuum is not separating for the CAR-algebra and 
there the annihilation operators converge indeed strongly to zero for the free 
time evolution [8].) Thus the absence of strongly converging operators is not 
characteristic for K-systems but implied by our general setting. For  K-systems 
also quasiperiodic elements are excluded and thus all finite quantum systems are 
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excluded too. But also llIx-factors with a their modular automorphism do not 
qualify as K-systems. 

Definition (3.6). Let Q be the set of finite subalgebras s¢ which are quasiperiodic 
in the sense that Ve > 0 3 n e Z  + and O e A u t d  such that 

I](a"Oa-a)lg2)ll==ellal[  Vaed. 

Theorem (3.7). For K-systems Q is trivial (i.e. Q = {{cl}}). 

Remarks (3.8). 

1. Q contains all a-invariant finite subalgebras and a K-system can have none 
of those. The adjective finite is essential, there may be infinite-dimensional 
invariant subalgebras. For  instance, in the CAR-algebra elements of the form 

a* f, ...a~ag, ...ao~,k > n are for all n eZ  + *-algebras. They are invariant under 
all evolutions which conserve the particle number and some of them lead to 
K-systems. 
2. We have to insist on *-subalgebras because the finite algebra generated by an 
annihilation operator a ,  in the Fock vacuum 1£2), afl f2)  -- 0 would qualify in (3.6) 
for any quasifree automorphism some of which may lead to a K-system. 
3. Since there are classical K-systems on compact manifolds (3.7) might seem to 
contradict Poincar6's recurrence theorem. However, as has been pointed out 
previously (see f.i. [9]), Zermelo's recurrence objection does not hold for L °°- 
functions as observables. Though almost all orbits in any neighbourhood keep 
coming back to it, they do it at different times such that functions never come 
close to their original form. 

For  the proof of (3.7) we need 

Lemma (3.9). Assume that for aeAut  Jg we have 

ll(a-a(a))i~)ii_-<~l[a[j V a e d ,  d i m ~ = d .  

Then there exists c(d) such that 

H~,(W IaW) _-< - c(d)~ ine. 

Proof. From the arguments which lead to (2.2, 1) we can also in the sup in (2.4) 
restrict ourselves to decompositions with co,(1)> 6 to get Ho~(dlad) within el- 
This number 6 depends only on d and e~ and with the continuity of S used in the 
proof of (2.6) we reach the conclusion as 

H ~ ( d l a d )  < S~(d)  - S~(ad)  + ~ o9,(1) [S~,(d) - S~i(crd)]. 
i 

Now cb~l,d = ~bioald and 

( . O l x i ( a  - o-a)ln) (OIx~ IO) 1/~ II ~,l~, - c5~o % ,  H < sup  < e < e l -  1/2 
= , . , = 1  (S?lx, IO) - (-Olx, IO) = 

as J/t '~x, < 1. Since ; co,(1) = 1 we can appeal to the continuity of S to complete 

the proof. 
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Proof of(3.7). First of all the H's depend only on the algebras. Thus for OieAut  d~ 
we have H ~ ( d ~ , . . . ,  ~4,) = H~,(Oa d 1 . . . . .  0 , ~ , )  and we might ignore O. Secondly 
the invariance of ~ under a says H~(akdl  ak+a ~ )  = H~(~ ' la~ ' )  and using (2.5, 2) 
we conclude 

1 
lim lim H(si ,  a " d  . . . . .  a " ' d ) <  lim H ( ~ 4 [ a " d ) = 0 .  

Thus a nontrivial Q would violate even the weaker condition (3.1, i). 
So far our theory is based on an invariant state o,  but in physics one considers 

the dynamical system (~/~, a) as the primary object and quantities appearing only 
in ~o(J/l)" as mathematical artefacts. To get a characteristic which does not refer 
to a particular state but depends only on the topological structure of (J~, a), we 
introduce 

Definition (3.10). The topological memory loss is re(a) = infmo(o-), where inf goes 

over all faithful extremal invariant states. We call (J{, a) a topological K-system, 
if re(a) = 1. 

Remark (3.11). For  a v o n  Neumann algebraic system (./~",a) there will be 
only one invariant state and there is no distinction between re(a) and too(a). 
However, in physics we have a C*-algebraic system (~t{, a) with many inequivalent 
representations and there the distinction makes sense. 

Invariance of the Topological Memory Loss (3.12). 

re(o-) = re(o-- 1) = m(~") = m(~o'~-~), 

where e e A u t ~ ,  neZ  +. 

4. Examples of Quantum K-Systems 

As in [5, 10] we shall first examine the generalization of the Bernoulli shift of the 
classical theory, i.e. the shift of the quasilocal CAR-algebra. 

Theorem (4.1). ( ~ ,  a) with ~/~ the C*-algebra generated by even powers of af and 
aa s = a~i,(~rf)(Y)= f ( Y  + ~), seR~\{0} is a topological K-system. 

Proof. Since for all faithful states co H,~(~') > 0 V d ¢ cl it suffices to verify that 
V e > 02n with h~(o-", d ) >  H o ( d ) -  e. According to (2.2, 2) we may choose the x i 
in ~oi(a ) = o(ai~/z(xi)a) strictly local such that [o-"kxi, xj] = 0V i, j, k > 0 for n suf- 

k 

ficiently big. Therefore xik = 1~ a"(~- 1)xz, is a candidate for x1 in the decomposition 
l=1  

for H~,(d, a " d  . . . . .  a,(k- 1)W). We estimate 

ho(o-", d )  = lira 1 ~co ~ H~(W, o-"W,..., o -"(k- z)W) 

1 
> lim ~ ~ ~/(~o(xik)) - ~ q(~o(x/)) + H o ( d )  - e, 

k~oo I ~  i 
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if the x~ give H,o(d) within e. Now consider the abelian algebra J/g, = + Jk, 
k =  - c o  

each Jk being {1,2 . . . . .  r}, r = #I~ < oo. The shift o , J  k = Jk+~ is an automorphism 
of ~¢/~ and og(x~) a state e), over J/g, with co, o o-~ = a) a. The quasilocal structure of 
J/¢ and the extremal invariance of co imply already the following clustering 1-11]: 
For  all strictly local a~JP{ and e > 03 A c R ~ such that 

I~o(xa) - eo(x)~o(a)l < e 11 x II ~ / X E ~  AC" 

This implies that (J{~, o-,, co,) is K-mixing (see (Appendix B, (iv)) and therefore a 
classical K-system. For  them the properties (3.1) imply 

lim lim 1 .~co k~co k ~ t/(a)(x,~)) = lim h,oo(a'~,I,) = H,o.( I , )  = ~rl(co(xi)). 
[ k t l  --+ CO i 

Corollary (4.2). (Jg, o~o-o~-1) is for  all 7~Aut J / a  topological K-sys tem.  

Proof.  Follows from (3.12). 

Examples  (4.3). 

1. Consider v =  1 and a quasifree time evolution z ° a y = a e , ,  f t ( k ) = e - i ' ( k ) f ( k )  
with f the Fourier transform of f.  If e is a strictly monotonic function with 
1/e'(k) integrable, this automorphism is conjugate to the shift which reads 

in Fourier space f(k)--+d~kf(k),  f (k ) - -+g(e)= 1/ ex /~f (k(e) )  is a unitary map 
L 2 (R, dk) ~ L 2 (R, de) and c~-, ay = a o is an automorphism of d¢ such that eot c~- * = z °. 
Thus (~¢¢, z) is a topological K-system. 
2. Introduce in example 1) an external potential such that the MOiler operator 

I2+ = lim emte  -iH°t 
t ~  CO 

exists and is complete. (Ho, H generate z °, respectively z). If H has no bound state 
then (J~, r) are a topological K-system since K2,e-m°tI2~ -~ = e -ira and thus z and 
z ° are conjugate. If there is a bound state fb then "(J{,'c, co) is for no co a K-system 
since af  b generate a finite invariant subalgebra. 

Unfortunately, so far we are not able to control the tail properties in this generality. 
We can show only in a special case that the strongest condition (3.1, iii) is not empty. 

Proposition (4.4). Le t  a be the shift on a quantum lattice system, z the tracial state 
and ~¢ strictly local. Then  

lim lim [H~(~, o" d , o n + Jl d . . . .  , o" + J~ d )  - H~( ~r" d , o ~ +il d . . . . .  a" + ~ d ]  = H~(~) 
n --~ CO k - ~ c o  

V j~ > 0, 2 any f ini te  subalgebra o f  Jig. 

Proof.  In the tracial state any subalgebra is invariant under modular auto- 
morphism and thus V f f c ~ '  exists the canonical conditional expectation 
7 : ~ ' ~ f f  which conserves z:z=z,~oT. Similarly in the decomposition for 

H ~ ( d l  . . . . .  d . )  one has X~E(k~/~/-\= d k ) " - - - ~  \/ since z~(a)=z(x~a)=~(?(x~)a)Va~s~  
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Thus in the decomposition for H,(o'n,~g,o'n+jl.~,...,o'n+J~'.~) w e  can take the 

( 0 )  x ~  a"+J~ ¢ . H(~)  can be obtained, within ~, by strictly local y;. Thus, for 
\ j = l  / 

sufficiently big n, xx and yj commute and z(xiyj)= z(x~)z(y~)VI, j. Then all 
condition of (2.6) are met and this proves Proposition (4.4). 

Appendix A 

In the classical theory one defines 

H , ( ~ J ~ )  = Ho~(d v ~ )  - n~(~).  (A.1) 

We have to prove that it coincides with 

Ho(dl~)  = sup ~(S(o~loi)d--  S(~l~i)~) (A.2) 
~¢01 = ¢0 i 

in the abelian situation. Using in (A.2) for the co i the minimal projectors Pj of 
d ,  o~j(a)= o~(Pja) the right-hand side becomes S~(d v ~ ) -  S,o(~). There only 
remains to show that no other decomposition c~f(a) = o~(Qia ) can give more. Now 

(S(co I c~i) d - S(co I w,)~) = ~ t/(c~(Pi)) - .~. rl(o~(PiQi) ) -  Z rl(o~(gk)) + ~, rl(o~(Rk Qi)) 
i j t,j k i,k 

= s ~ ( d )  - s ~ ( d  v c ) -  s ~ ( ~ )  + s ~ ( ~  v c) .  

Here R k are the minimal projectors in ~ and formally we considered (~(QiPjRk) 
as the state over the probability space (i, j, k) with C the elements depending only 
on i. Now monotonicity and strong subadditivity say 

S~(d)  - Sd~¢ v C) - S~(~) + S~(~ v C) 

:= S ~ ( d ) -  S~ (~  v c ) -  s~(~) + s ~ ( d  v ~ v c)  

_< s ~ ( d  v ~)  - s d ~ ) .  

Appendix B 

Classically a K-system (all, T, ~) is characterized by the following equivalent 
conditions [12] 

(i) 3JN o c J / w i t h  

1. T J l  o ~ ddo, 

2. ~ T"~t' o = J//, 
n = o ~  oo 

3. A T ~ J d o = c l .  
2 =  - - c o  

--CO 

(ii) A ~/ T k ~  = cl for all finite d c J~. 
n = 0  k = - co 

(iii) h(T,d) > 0 V d ,  1 < d i m d  < ~ .  
(iv) T is K-mixing. This means for all finite d c J///, A~Jd  and e > 03N such that 
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Ico(Z~rnB)--oo(Z)co(B)[ < elIBI[ VBE ~/ c ? d ,  n > N. 
k = O  

We add now some more  equivalences. ( d  and ~ are finite subalgebras.) 
(v) lim h ( T ' , d ) = H ( d ) ,  

n ~ o o  

(vi) l i ra  H T k d  = H(~), 
n ~ o o  tt 

(vii) l im  H -- 0 ~ N =  cl. 

To  show the equivalence we appeal to [12, 13] 

Lemma. 

(a) H ( ~ [  ~4) is continuous for monotonic limits in both arguments, 
(b) H ( ~ l d )  = 0 ~ - ~  = d .  

It says (ii)~(vii), (ii)=~(vi). Next we argue that (vi)~(v),  because 

H(ag) = lira H < H ag V T"'  = lim h(T", d ) <  H(d). 
n ~ o o  = n ao \ [ s = l  n--+ oo 

Finally (v)~(i i i )  because h(T,d) > (1/n)h(T", d) .  

Acknowledgement. We are grateful to T. Hudetz for useful suggestions. 

References 

1. Arnold, V. J., Avez, A.: Probl~mes Ergodiques de la Mecanique classique. Paris: Gauthier Villars 
1967 

2. Emch, G. G.: Commun. Math. Phys. 49, 191 (1976) 
3. Kiimmerer, B., SchrSder, W.: Commun. Math. Phys. 90, 251 (1983) 
4. SchrSder, W.: In: Quantum probability and applications to the quantum theory of irreversible 

processes, p. 340. Accardi, L., Frigerio, A., Gorini, V. (eds.). Berlin, Heidelberg, New York: Springer 
1984 

5. Connes, A., Narnhofer, H., Thirring, W.: Commun. Math. Phys. 112, 691 (1987) 
6. Verbeure, A.: private communication 
7. Krieger, W.: Trans. Am. Math. Soc. 149, 453 (1970) 
8. Narnhofer, H., Thirring, W.: Mixing properties of quantum systems, Vienna preprint UWTHPh 

1988-18 
9. Thirring, W.: Klassische dynamische Systeme (2.6.13,4), 2. ed. Wien: Springer 1988 

10. Narnhofer, H., Thirring, W.: Lett. Math. Phys. 14, 89 (1987) 
11. Powers, R. T.: Ann. Math. 86, 138 (1967) 
12. Cornfeld, P., Fomin, S. V., Sinai, Ya. G.: Ergodic theory. Berlin, Heidelberg, New York: Springer 

1982 
13. Rohlin, V. A.: Lectures on ergodic theory. Russ. Math. Surv. 22, (1967) 
14. Narnhofer, H.: Vienna preprint UWThPh-1989-3, to be published 
15. Hudetz, T.: Lett. Math. Phys. 16, 151 (1988) 

Communicated by Ya. G. Sinai 

Received December 15, 1988 


