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WHEN IS THE TANGENT SPHERE BUNDLE
CONFORMALLY FLAT?
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1 INTRODUCTION

In [2] one of the authors showed that the standard contact metric structure on the tangent
sphere bundle is locally symmetric if and only if the base manifold is flat or of dimension
2 and of constant curvature +1. In this paper we show that this structure is conformally
flat if and only if the base manifold is a surface of constant Gaussian curvature 0 or 4-1.
In the final section of the paper we give an additional result on conformally flat contact
metric manifolds.

2 PRELIMINARIES

A differentiable (2n+1)-dimensional manifold M?™*! is called a contact manifold if it
carries a global 1-form % such that 5 A (dp)™ # 0 everywhere on M?"*1, 1t is well known
that given 7 there exists a unique vector field £ such that dn(¢£,X) = 0 and n(€) = 1
called the characteristic vector field of the contact structure 5. A Riemannian metric g is
an associated metric to a contact structure 7 if there exists a tensor field ¢ of type (1,1)
satisfying

¢* = -Id+n®¢, n(X)=g(X,£), dn(X,Y)=g(X,¢Y). (2.1)
We refer to (1,9) or (¢,€,7,9) as a contact metric structure.

Denoting by £ and R, Lie differentiation and the curvature tensor respectively, we define
operators ! and h by

IX = R(X,0)6, h=3Leb (2.2)
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The tensor fields h and [ are self-adjoint and satisfy
hé =0, €E=0, Trh=0, Trh¢ =0, hé+ ¢h = 0.

A contact metric structure is K-contact if £ is a Killing field; this is the case if and only if

= 0. If the structure is normal it is Sasakien; a Sasakian structure is K-contact but not
conversely for dimensions > 3. Also on a contact metric manifold we have the following
general formulas (see e.g. [1,2]).

Vx€=~¢X — ¢hX (andsoV £ =0) (2.3)
%(«l + ¢lp) = h* + ¢* (2.4)

Veh = ¢ — ¢h* — ¢l (2.5)

Vep =0 (2.6)

where V is the Riemannian connection of g.

A Riemannian manifold M™ is said to be conformally flat if it is locally conformally
equivalent to a Euclidean space. On M"™ we denote by @ the Ricci operator, by B = TrQ

the scalar curvature and by P the tensor field P = —-@Q + -Z-Id. It is well known that a

Riemannian manifold M™ is conformally flat if and only if

R(X,Y)Z = ——(g(¥, D)QX - g(X, 2)QY + ¢(QY, 2)X — 9(QX,2)Y)
n—2

R
—m(g(lﬂ Z)X - g(X,2)Y) for n >3 (2.7)
and
(VxP)Y = (VyP)X for n=3 (2.8)

in which case (2.7) (with n = 3) holds.

3 REVIEW OF THE TANGENT SPHERE BUNDLE

Let M be an (n+1)-dimensional C* manifold and # : TM — M its tangent bundle. If
(z},...,z"*1) are local coordinates on M, set ¢' = z'o7; then (¢*,..., ") together with
the fibre coordinates (v!,...,v""!) form local coordinates on TM. If X is a vector field
on M, its vertical lift XV on TM is the vector field defined by X Vw = w(X) o 7 where w
is a 1-form on M, which on the left side of this equation is regarded as a function on TM.
For an affine connection D on M, the horizontal lift X of X is defined by X#w = Dxw.
The local expression for X in terms of the connection coefficients of D is
) ¢ 0

H _ vt
X7 =X ,]5'17‘:-.

- — XWT
¢’ v

(3.1)
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The connection map K : TTM — TM is defined by
KXH =0, K(X!) = Xz, t € TM.
TM admits an almost complex structure J defined by
JIXH=Xx", 7x" = -X*".

Dombrowski [5] showed that J is integrable if and only if D has vanishing curvature and
torsion.

If now G is 2 Riemannian metric on M and D its Levi-Civita connection, we define a
Riemannian metric § on TM called the Sasak: metric (not to be confused with a Sasakian
structure), by

3 X,Y) =Gz X,7nY)+GKX,KY)

where X and Y are vector fields on TM. Since 7,0J = —K and KoJ = 7., § is Hermitian
for the almost complex structure J.

On TM define a 1-form B by S(X), = G(¢,7X), t € TM or equivalently by the local
expression # = Y G;jv'dg’. Then df is a symplectic structure on TM and in particular
2dg is the fundamental 2-form of the almost Hermitian structure (J,g). Thus TM has an
almost Kahler structure which is Kahlerian if and only if (M, G) is flat (Dombrowski [5]
Tachibana and Okumura [11}]).

I

Let R denote the curvature tensor of G, V the Levi-Civita connection of § and R the
curvature tensor of §. Then V and R are given by (8]

(Txn¥ )= (DxV)F - SR, V)Y,

(Txn "), = ~3(R,OX) +(DxY)Y,

(Txv¥H) =~ (R(X OV,

VxvYV =0 (3.2)

and B
RxV,vyyz¥ =0

(R(XV,YV)ZH), = (R(X,Y)Z + i—R(t,X)R(t, V)2 - i—R(t,Y)R(t,X)Z);H,
(RXH Y2V, = —(éa(y, Z2)X + iR(t,Y)R(t, Z)X)f,

(R(XH,vV)zH)y, = (%R(X, 2)Y + %R(R(t,Y)Z,X)t):/ + ((DXR)(t,Y)Z)tH,

| =
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1 y
(RXH,Y™)ZY), = (R(X,Y)Z + %R(R(t, 2)Y,X)t - TR(R(, 2)X, Y)i),

= (
%((DXR)(t 2)Y - (DyR)(t, 2)X),,

(RIXE yHzH), = %((DZR)(X, Y)t)tv + (R(X,Y)Z + 2R(t, R(Z,V)t)X

+?41:R(t, R(X,Z))Y + éR(t, R(X,V))2) " (3.3)

The tangent sphere bundle = : /M — M is the hypersurface of TM defined by
S Gijviv? = 1. The vector field N = v‘é% is a unit normal, as well as the position
vector for a point . The Weingarten map A of T} M with respect to the normal IV is given
by AU = —U for any vertical vector U and AX = 0 for any horizontal vector X (see e.g.
[1,p.132]). Thus many computations on 71 M involving horizontal vector fields can be done
directly on TM. In particular let ¢’ denote the metric on T3 M induced from § on TM, R’

its curvature tensor and « the second fundamental form. The Gauss equation is then

R(X,Y,Z,W) = R(X,Y,2,W) + oY, Z)( X, W) = (X, Z)a(Y,W).  (3.4)

Define ¢', ¢’ and ' on T1 M by
£ =-JN, JX =¢'X +7(X)N.
n’ is the contact form on T3 M induced from the 1-form 8 on T M as one can easily check.

However ¢'(X,¢'Y) = 2dn'(X,Y), so strictly speaking (¢',£',n’,¢') is not a contact metric
structure. Of course the difficulty is easily rectified and

n“-n £=2¢, 9=4¢, g—%

is taken as the standard contact metric structure on Ty M. In local coordinates

i H
(o).
On TM the vector field vi(—é)%)H is the so-called geodesic flow. Further results on T'M

and 71 M, including other metrics and techniques may be found in [9]. For more on the
tangent sphere bundle specifically see [6,15].

4 CONFORMALLY FLAT TANGENT SPHERE BUNDLES

THEOREM 4.1: Let M be an (n+1)-dimensional Riemannian manifold and T7M its
tangent sphere bundle with the above Riemannain structure. Then T1M is conformally
flat if and only if M is a surface of constant Gaussian curvature 0 or +1.
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PROOF: Case 1: n > 2. Since conformal flatness is invariant under a homothetic change
of metric, we will work with the metric ¢’ described in the preceding section. Our com-
putations will make use of the condition for conformal flatness (2.7), the Gauss equation
(3.4) of i M in TM and form of the curvature tensor on TM (3.3). For vertical vector
fields U, V, W we have

0= (g'(V, T/V)g’(Uv U) - g'(Ua W)g,(vv U))

1
2n—1

+4'(QV,W)g' (U U) - ¢'(QU,W)g'(V,U))
R, ! ! [ !
+2—n(—2—n—‘_‘1—)(9 (V\W)g'(U,U) - g'(U,W)g'(V.U)).
Thus for n > 3, choosing {U,V, W} orthonormal we see that

(¢'(V,\W)g'(Q'U,U) — ¢'(U,W)g"(QV,U)

g QV,W)=0 (4.1)

for any orthonormal pair {V,W?}. Similarly computing R'(U,V,V, X} for an orthonormal
pair of vertical vectors {U,V'} and a horizontal vector X, we get

g(QU,X)=0 (4.2)

for all n > 2. In particular for n > 3, we see that Q'V is collinear with V for any vertical
vector V.

Now let X be tangent to M and consider its horizontal lift X ¥; also let {U,V} be an
orthonormal pair of vertical vectors and ¢t € Ty M. Then computing R'(U, X"V, X ),
using (3.3) and (4.1) we have forn > 3

G(R(t, KU)X,R(t, KV)X) = 0. (4.3)

Similarly let {X,Y, Z} be tangent to M, U a vertical vector and ¢t € T M; then using (4.2},
compute RN(XH,YH ZH U), to obtain

G((DzR)(X,Y)t, KU) = 0, (4.4)

i.e. M is locally symmetric. Taking {X,Y} tangent to M and {U,V} vertical vectors,

computation of R'(U,V, XH# YH), yields

G(R(KU,KV)X,Y) + %G(R(t,KU)R(t, KV)X,Y) - i«G(R(t, KV)R(t, KU)X,Y) = 0.
(4.5)

For n > 3 we first have from (4.3) that

G(R(t, KU)t, R(t, KV)t) = 0,
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thus for {¢, X, Y’} orthonormal on M
G(R(t,R(t, X)t)t,Y) = 0. (4.6)

Define L, : [t]* — [t]* by
L:X =R(t, X)t.

L, is a symmetric operator on [t]* and by (4.6)
L?.X' = atX, oy 2 0
so the eigenvalues of L; are +,/a;.

We now consider the case that M is irreducible. By (4.4) M is locally symmetric, so for
n = 2, M is 3-dimensional and of constant curvature. For n > 3, note that the sectional
curvature of an irreducible locally symmetric space does not change sign. Therefore L,
has only one eigenvalue and hence R(¢, X)t is collinear with X. Thus G(R(¢, X}t,Y) =0
for any orthonormal triple {¢,X,Y} and hence M is of constant curvature. So for !
irreducible and n > 2, M is of constant curvature ¢ and by a homothetic change we may
assume that ¢ = +1, 0 or —1.

Recall that the contact metric structure on 71 M is Sasakian if and only if the base manifold
is of constant curvature +1 (Tashiro [15]) and that every conformally flat X-contact mani-
fold is of constant curvature +1 (Tanno [12,13]). Moreover the contact metric structure on
Ty M is locally symmetric if and only if the base manifold is flat or is 2-dimensional and of
constant curvature +1 [2] We remark here that in dimension 3 a contact metric manifold
is locally symmetric if and only if it is of constant curvature 0 or +1 [4]; thus we have the
converse direction of Theorem 5.1. Now we have that for n > 2, ¢ cannot be +1 and since
5™ x E™1 is not conformally flat, ¢ cannot be 0. If ¢ = —1, set {X = KV,Y = KU, t} as
an orthonormal triple on M; then (4.5) gives 0 = —2, a contradiction.

Now suppose that M is reducible. If M is flat we have a contradiction as above. Soin (4.5)
choose X = KV orthogonal to Y = KU tangent to a non-flat factor and ¢ tangent to a
different factor. Then the last two terms in (4.5) vanish and we have G(R(X, ¥V, X) = 0,
a contradiction.

Case 2: n = 1. Since the condition for conformal flatness is given by (2.8), we first compute
the Ricci operator Q' of g’ on Ty M for a surface M. Let {X1, X, } be the orthonormal pair
{t, KU} on M where U is vertical on T; M, then summing on ¢ = 1,2 we compute using
(3.3) and (3.4) as before,

§(QUU) = R(U,XH X U = —G(%R(R(t,KU)X,-,Xi)t, KU)

KZ

DY e

1 1
= %G(R(t, KU)X;,R(t, KU)X;) = Z]R(t’ KUt|? + ZIR(L‘, KU)KUP =
where K is the Gaussian curvature of M. Similarly for a horizontal lift X7,

¢(QU.X™) = ~3G((DxR)(t, KU)X;, X)
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= —-%G((X.'K)(G(X.', KUt - G(Xi,)KU), X).

To continue our computation we introduce the following horizontal vectorson Ty M. Z will
denote the geodesic flow, i.e. Z = %f , and Z+ the horizontal vector corresponding to KU,

ie. Zt = Ui(é%;)H. It is well known that for the geodesic flow V;Z = 0 and similarly,
using (3.1), (3.2) and differentiating G;;U*v’ = 0, one can show that V/,, Z+ = 0.

Now

1
9'(Q'U,Z) = —%KUK, §(QU, Z4). = 5tK.
Continuing we have

g'(Q'Z,Z)t = R'(Z, UU2Z):+ R'(Z,Z‘L,Z‘L,Z)t
- —%G(R(t,KU)R(t,KU)t,t)

+G(R(t, KU)KU + %R(t, R(t, KU))KU + %R(t,R(t, KUY)KU,t)

3 1
2 K=K - ZK?
K°+K 4K K 2K.

|

Similarly we obtain
1
9'(Q2,24) =0, ¢(Q2+,2) =K - ;K%
Thus the Ricci operator @' is given by

QU= %(KZ)U - %(KUK)Z + %(tK)Z“L,

QZ= —%(KUK)U +(K - %K?)z,

1
QzZt = KU + (K — %Kﬁ)zi, (4.7)
and the scalar curvature is )
R' =2K ~ §K2.
Since Ty M is conformally flat,
, 1
(V2Q)Z* - (V3.Q)Z = Z((ZR')ZL ~(Z*R)z) (4.8)

and our proof will be to expand this equation. For this we first need to compute V', Z+,
V.2, V52U and V', U. Since the second fundatmental form of Ty M in TM vanishes on
horizontal vectors, we may use (3.2) to compute these. The results are

K K K K
Lzt = U, Vi Z = -5 U VLU = ——2-ZJ', iU = 52 (4.9)
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Now expanding (4.8) using (4.7) and {4.9) and taking the U-component we obtain

1 1 1
-2-ttK + K(K ~ EKQ) - %K”” +>KUKUK = 0. (4.10)

Similarly both the Z and Z1-components yield
(1 - 3K)K = 0.

From this we see that K must be a constant and then (4.10) simplifies to K* — XK* =0
giving K =0 or 1.

5 IMPLICATION OF Q¢ =4Q

On a Sasakian manifold the Ricci tensor satisfies Q¢ = ¢Q, but in general Q¢ # oQ
[7]. Some results concerning the Ricci and scalar curvatures of a conformally flat contact
metric manifold have been obtained in [10,14]. Moreover in [3] it is shown that the critical
point condition of the integral of the scalar curvature over a compact contact manifold
considered as a functional on the space of all associated metrics is that @ commutes with
¢ when restricted to the contact subbundle {n = 0}. In this section we prove that every
conformally flat contact metric manifold M2"*! on which @ commutes with ¢ is of constant
curvature.

First from (2.2) and (2.7) we have

1

X =
2n —1

(QX —g(X,§)QE+9(Q¢, é)X—g(QX,ﬁ)f)—é';@}f—_ﬁ(X—g(X, £)¢)- (5.1)

Since g(¢X,Y) = —g(X,9Y), ¢¢ = 0 and Q¢ = ¢Q we obtain from (5.1) ¢l = l¢. This
together with equations (2.4) and (2.5) yields —I = ¢* + A%, and V¢h = 0 Differentiating
—I = ¢* + h® with respect to ¢ and using (2.6) we have
Vel =0 (and so {Trl = 0). (5.2)
Since ¢2Q¢ = —Q¢ + ¢(QE, £)¢ and ¢*QE = $Q¢E = 0 we get Qf = g(Q¢, )¢ giving
0t = (Tr)E. (5.3)
Now differentiating (5.3) and using (2.3) we have

(VxQ)E — Q(éX + ¢hX) = (X Trl){ — (Tri)(¢X + $hX) (5.4

from which using the commutativity and (2.1), we have

—~
ot
[

e

d(VxQ)X,8) + 9(QhX, ¢X) = (Tri)g(X, ho X).
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Now let X;, 6X;, £, (i = 1,...,n) be a ¢-basis. Since Trh¢ = 0 and g(Qh¢X,4*X) =
—g(QhX, $X) we get from (5.5)

n

> d(VxQ)Xi + (Vox,Q)6Xi, ) = 0. (5.6)

i=1

Now from (5.6) and the contraction of the second Bianchi identity, we have g({VQ)¢,£) =
$€R. But differentiating (5.3) with respect to ¢ and using V€ = 0 and £Trl = 0, (5.2),
we have (V¢Q)¢ = 0 and hence

ER=0. (5.7)

For X orthogonal to €, (5.1) becomes

R

1
X = — o
! 2n—1 2n(2n — 1)

X. (5.8)

Differentiating (5.8) and using (5.2) and (5.7) we have

1 R
= Tri
IVeX — X+ (Trl)VeX) — T2 =) )
Thus (Vel)X = 52(VQ)X. So from (5.2) and (V¢Q)¢§ = 0 we get

Ve@ = 0. (5.9)

LEMMA: On any conformally flat contact metric manifold M?*"*! with Q¢ = ¢Q we
have (V¢R)(X,Y,Z) =0 and

2n[g(&, Z)(VxQ)Y — (VyQ)X) ~ 9(Y, Z)(VxQ)E + ¢(X, Z)(Vy Q)¢

+9((Vx Q)6 2)Y — o((VrQ)E. D)X — g(VxQ)Y ~ (V¥ @)X, Z)¢]
= (XR)[g(&, 2)Y - 9(Y, 2)¢] - (YR)[9(¢, 2)X - 9(X, 2)¢]. (5-10)
PROOF: The proof is a straightforward computation, differentiating (2.7) with respect

to £ using (5.7), applying (2.7) to R(V¢X,Y)Z, etc., and then combining using (5.9). Now
from the second Bianchi identity we have

(VxR)(Y,£,Z) = (VyR)(X,¢, Z). (5.11)

Calculating the terms (Vx R)(Y, £, Z) and(Vy R)(X, €, Z) and substituting into (5.11) we
obtain (5.10).

THEOREM 5.1: Let M?"*! be a conformally flat contact metric manifold. If Q¢ = ¢0Q),
then M?"*! is of constant curvature +1ifn >1and Qor +1if n = 1.
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PROOF: Case 1: n > 2. For X,Y,Z mutually orthogonal and normal to &, (5.10) gives

9(VxQ)Z,¢) = 0. (5.12)

Taking the inner product of (5.4) with X and using (5.12) we have

g(Q(X + hX), X)=(TrD)g(X + hX, X). (5.13)
Using ¢X instead of X and simplifying we also have

9(Q(X - hX),X)=(Trl)g(X — RX, X). (5.14)
Adding (5.13) and (5.14) we have

§(QX, X) = (Trl)g(X, X).

Linearization yields for X normal to £, QX = (Trl)X which with (5.3) shows that M2*+*

is a conformally flat Einstein space and hence of constant curvature; but a contact metric
" manifold of constant curvature and dimension > 5 is of constant curvature +1 [10].

Case 2: n = 1. From £ = 0 and ¢! = l¢ we have for X orthogonal to £, ¢(IX,£) = 0 and
g(IX,$X) = 0. Thus [X is parallel to X for any X orthogonal to £. Let [X = aX for
such X. Using (5.8) for n = 1 we get

QX+(Tr1—§—a)X=o. (5.15)
Computing the scalar curvature both directly and using (5.15) yields & = 1 Trl. Therefore

X = S(TrI)(X - (X, £)6). (5.16)
Moreover by virtue of (5.15) and (5.3) we have

QX = 5(R — Tri)(X — g(X, )6) + (Tr)a(X, £)6. (5.17)
Now using (5.16), (2.7) and {5.3) we calculate for X, ¥ orthogonal to ¢,
VAR(Y, € = S(XTrDY +(Tr)VxY), RVxY,€)6 = 5(TD(VxY = g(Vx¥,6)6)

and R(Y,Vx£)¢ = 0 since £ is unit. Also using (2.3) we have

R(Y,€)Vx6 = (Tr)g(Y, 6X)€ +9(QY, 6X)E ~ oY, X)g

R
+(Trl)g(Y, $hX)E + 9(QY, $hX)E — Zg(¥, ghX L.
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Thus
(VXR)(Y,6,6) = HXTDY + [(Tr)(G9(VxY:8) — g(¥, 6X + $hX))

R
+59(Y; 86X + 0hX) —g(QY, X + $hX)]E. (5.18)
From (5.18) and (5.11) with Z = ¢ we get X Trl = 0, but (¢ Trl = 0 by (5.2) and so
Trl = constant. (5.19)

Since M? is conformally flat the tensor field P = —Q + £1d satisfies (2.8). Using (5.17)
and (5.19) and differentiating we get for X, Y orthogonal to ¢,

(VxP)Y = —%(XR)Y + %(R —3Trl)g(Y, Vx€)E.

So by (2.8) we get (R —3Trl)(g(Y,VxE) — g(X,Vy€)) =0, and hence
(R—3Trl)dn(X,Y) = 0.

Thus R = 3Tr! and by (5.17), QX = (TrD)X i.e. M3 is Einstein and hence of constant
curvature. However a 3-dimensional contact metric manifold of constant curvature is of
constant curvature 0 or +1 [4], completing the proof.
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