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WHEN IS THE TANGENT SPHERE BUNDLE 

CONFORMALLY FLAT? 

Dedicated to Professor N. K. Stephanidis on his 65th Bir thday 

David E. Blair and Themis Koufogiorgos 

I I N T R O D U C T I O N  

In [2] one of the authors showed that  the s tandard contact metric structure on the tangent 
sphere bundle is locally symmetric  if and only if the base manifold is fiat or of dimension 
2 and of constant curvature +1. In this paper we show that  this structure is conformally 
flat if and only if the base manifold is a surface of constant Gaussian curvature 0 or -t--1. 
In the final section of the paper we give an additional result on conformally flat contact 
metric manifolds. 

2 PRELIMINARIES 

A differentiable (2n+l)-dimensional  manifold M 2=+1 is called a contact manifold if it 
carries a global 1-form r? such that  7/A (dq) ~ 5s 0 everywhere on M 2"+1. It is well known 
that  given q there exists a unique vector field ~ such that  dr/(~, X)  = 0 and r/(~) = 1 
called the characteristic vector field of the contact structure ~. A Riemannian metric g is 
an associated metric to  a contact structure 7/if there exists a tensor field r of type (1,1) 
satisfying 

r = - Z d  + ,7 | ~, ,7(x) = 9 ( x ,  ~), d,7(X, Y )  = g(X,  CY). (2.1) 
We refer to (r/,g) or ( r  as a contact metric structure. 

Denoting by s and R, Lie differentiation and the curvature tensor respectively, we define 
operators I and h by 

1 (2.2) Ix= n(x,o~, h= - ~ r  
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The  tensor  fields h and I are self-adjoint and satisfy 

h ~ = 0 ,  l ~ = 0 ,  Trh=O,  T r h r  h r 1 6 2  

A contact  metr ic  s t ruc ture  is K-contact if ~ is a Killing field; this is the  ease if and only if 
h = 0. If the s t ruc ture  is normal  it is Sasakian; a Sasakian s t ructure  is K-contact  but  not 
conversely for dimensions > 3. Also on a contact  metr ic  manifold we have the following 
general formulas (see e.g. [1,2]). 

V x ~  = - r  - ChX (and s o V ~  = 0) (2.3) 

~ ( - l + r 1 6 2  + (2.4) h 2 

v ~ h  = r - Ch ~ - r (2.5) 

V~r = 0 (2.6) 

where V is the Riemannian  connection of g. 

A Riemannian  manifold M n is said to be conformalIy fiat if it is locally conformalty 
equivalent to a Eucl idean space. On M n we denote by Q the Ricci opera tor ,  by R = TrQ 

the scalar curvature  and by P the tensor  field P = - Q  + @Id. It is well known tha t  a 

Riemannlan  manifold  M n is conformally flat if and only if 

R(X,  Y ) Z  = ~ _  2 (g(Y , Z ) Q X  - g(Z,  Z ) V Y  + g(QY, Z ) Z  - g(QX, Z ) Y )  

R 
(n - 1)(n - 2)(g(Y'  Z ) X  - g(X,  Z ) Y )  for n > 3 (2.7) 

and 
( V x P ) Y  = ( V y P ) X  for n = 3 (2.8) 

in which case (2.7) (with n = 3) holds. 

3 REVIEW OF THE TANGENT SPHERE BUNDLE 

Let M be an ( n + l ) - d i m e n s i o n a l  C ~ manifold and ~ : T M  ----* M its tangent  bundle, i[f 
( x l , . . . ,  z ~+1) are local coordinates  on M,  set qi = z i o # ;  then ( q l , . . . ,  q~+~) together  with 
the fibre coordinates  ( v l , . . . ,  v '~+1) form local coordinates  on T M .  If X is a vector field 
on M,  its vertical lift X v on T M  is the vector field defined by X V w  = a2(X) o # where cr 
is a 1-form on M ,  which on the left side of this equat ion is regarded as a function on T M .  
For an affine connection D on M,  the horizontal lift X H of X is defined by x H w  = D x ~ .  
The local expression for X g in terms of the connection coefficients of D is 

= x ' - - ~ -  9 - x ~ J r ~ j  00k~ (3.!) X .~I 
c~qi 
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The connection map K : T T M  - -~  T M  is defined by 

K X  H -~ O, K ( X  V)  = X, ( t ) ,  t E T M .  

T M  admits an almost complex structure J defined by 

J X  H : X V, I X  v = - X  H. 

Dombrowski [5] showed that  Y is integrable if and only if D has vanishing curvature and 
torsion. 

If now G is a Riemannian metric on M and D its Levi-Civita connection, we define a 
Riemannian metric ~ on T M  called the Sa~aki metric (not to be confused with a Sasakian 
structure), by 

~(X,  Y )  = a(~r,X,  9 , Y )  + G ( K X ,  K Y )  

where X and Y are vector fields on T M .  Since 9, o J = - K  and K o  J = ,~,, ~ is Hermitian 
for the almost complex structure J. 

On T M  define a 1-form /3 by f l (X) t  : G(t,  { , X ) ,  t 6 T M  or equivalently by the local 
expression fl = ~ Gijvidq j. Then dfl is a symplectic structure on T M  and in particular 
2dfl is the fundamental 2-form of the almost Hermitian structure (J, ~). Thus T M  has an 
almost K~hler structure which is K/~hlerian if and only if (M, G) is flat (Dombrowski [5], 
Tachibana and Okumura [II]). 

Let R denote the curvature tensor of G, ~7 the Levi-Civita connection of ~ and R the 
curvature tensor of ~. Then <7 and R are given by [8] 

( V x s y H ) t  = ( D x Y )  H - I ( R ( X ,  Y ) t )  V, 

(gx . yV) ,  = - ~- (R(Y,  t)X) H + (DxY)Y, 

(~,xv Z n ) ,  = _ I ( R ( X  ' t )y )H,  

~Tx V y V  = 0 

and 

(3.2) 

R(X V,Yv)ZV = 0 
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(R(XH,Y*')ZV), : (R(X,Y)Z + ~R(R(~,Z)Y,X)t - ~R(R(~, Z)X, ~"j%:~ 

+1 ((DxR)(t,  Z)Y - (DyR)(t,  Z)X)  H, 

(R(XH, y g ) z g )  t = 1 ((DzR)(X, Y) t )y  + (R(X,  Y)Z + 1R( t ,  R(Z,  Y) t )X  

t 
+�88 + ~R(t,R(X,V)t)z)~. (3.3) 

The tangent sphere bundle ~r : TIM --+ M is the hypersurface of T M  defined by 
Gijviv j = t. The vector field N = v i ~ ,  is a unit normal, as we1! as the position 

vector for a point t. The Weingarten map A of TIM with respect to the normal N is given 
by AU = - U  for any vertical vector U and AX = 0 for any horizontal vector X (see e,g. 
[1,p. 132]). Thus many computat ions on T1M involving horizontal vector fields can be done 
directly on TM. In particular let g' denote the metric on TIM induced from .~ on TM, R' 
its curvature tensor and a the second fundamental  form. The Gauss equation is then 

n ' (x ,  Y, z, w)  : R(x, Y, z, w)  + ~(Y, z )~(x ,  w)  - ~(x,  z)~(Y, w). (3.4) 

Define r  ( '  and r/ on T1M by 

~' = - j : v ,  J x  = r  + , / ( X ) X .  

7' is the contact form on TaM induced from the 1-form/9 on T M  as one can easity check. 
However g'(X, r  = 2drfl(X, Y), so strictly speaking (r  ( ' ,  r/, g ')  is not a contact metric 
structure. Of course the difficulty is easily rectified and 

1 p ! t r / =  ~r; ,  ~ = 2 ~ ' ,  6 = r  g = ~ g  

is taken as the s tandard contact metric structure on T1M. In local coordinates 

: 2~(b-~-;~ )". 
On T M  the vector field v i( 0 ~H is the so-called geodesic flow. Further results on T M  
and TIM, including other metrics and techniques may be found in [9]. For more on the 
tangent sphere bundle specifically see [6,15]. 

4 CONFORMALLY FLAT TANGENT SPHERE BUNDLES 

T H E O R E M  4.1: Let M be an (n+l)-dimensional  Riemannian manifold and T1M its 
tangent sphere bundle with the above Riemannain structure. Then T1M is conformally 
flat if and only if M is a surface of constant Gaussian curvature 0 or +1. 
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PROOF: Case 1: n >__ 2. Since coaformal flatness is invariant under a homothetic change 
of metric, we will work with the metric g~ described in the preceding section. Our com- 
putations will make use of the condition for conformM flatness (2.7), the Gauss equation 
(3.4) of TIM in TM and form of the curvature tensor on TM (3.3). For vertical vector 
fields U, V, W we have 

0 = (g'(V, W)g'(U, U) - g'(U, W)g'(V, U)) 

1 
2n - 1 (g'(V, W)g'(Q'U, u) - g'(U, W)g'(Q'V, u) 

+g'( Q'V, W)g'(U, U) - g'(Q'U, W)g'(V, U)) 

R' 
2~(2n - 1) (g'(v, w)g ' (v ,  u) - g'(u, w)g'(v ,  u)). 

Thus for n > 3, choosing {U, V, W} orthonormai we see that 

g'(Q'V, W) = 0 (4.1) 

for any orthonormal pair {V, W}. Similarly computing R'(U, V, If, X)  for an orthonorma~ 
pair of vertical vectors {U, V} and a horizontal vector X, we get 

g'(Q'U,X) = 0 (4.2) 

for all n >_ 2. In particular for n > 3, we see that Q~V is collinear with V for any vertical 
vector V. 

Now let X be tar~gent to M and consider its horizontal lift xH; a~so let {U, V} be aza 
orthonormal pair of vertical vectors and t E T1M. Then computing RI(u, x H , v ,  xH)t  
using (3.3) and (4.1) we have for n > 3 

G(R(t,  KU)X, R(t, KV)X)  = O. (4.3) 

Similarly let {X, Y, Z} be tangent to M, U a vertical vector and t E T1M; then using (4.2), 
compute Rt(X H, yH Z H, U)t to  obtain 

G((DzR)(X, Y)t, KU) = 0, (4.4) 

i.e. M is locally symmetric. Taking {X,Y} tangent to M and {U,V} vertical vectors, 
computation of Rt ( U, V, X H, y H )t yields 

G(R(KU, KV)X,  Y) + 1G(R( t ,  KU)R(t,  KV)X,  Y) - 1G(R(t ,  KV)R( t ,  KU)X, Y) = O. 

(4.5) 

For n > 3 we first have from (4.3) that 

a(R(t ,  KU)t,  rt(t, KV)t)  = 0; 
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thus for {t, X, Y} orthonormal on M 

G ( R ( t ,  R( t ,  X) t ) t ,  Y) = 0. (4.6) 

Define f , :  [t] l It] • by 
L t X  : R( t ,  X)t .  

Lt is a symmetr ic  opera to r  on [t] • and by (4.6) 

L2tX : a tX ,  at >_ 0 

so the eigenvalues of Lt are •  

~Ve now consider the case tha t  M is irreducible.  By (4.4) M is locally symmetr ic ,  so for 
n = 2, M is 3-dimensional  and of constant  curvature.  For n k 3, note tha t  the sectional 
curvature  of an i rreducible locally symmetr ic  space does not change sign. Therefore Lt 
has only one eigenvalue and hence R( t ,  X) t  is collinear with X .  Thus G ( R ( t ,  X)t ,  Y )  = 0 
for any o r thonormal  t r iple  { t , X , Y }  and hence M is of constant  curvature.  So for M 
irreducible and n _> 2, M is of constant  curvature  c and  by a homothet ic  change we may 
assume tha t  c = +1,  0 or - 1 .  

Recall  tha t  the  contact  met r ic  s t ruc ture  o n / ' 1 M  is Sasakian if and only if the base manifold 
is of constant  curvature  +1 (Tashiro [15]) and that  every conformally flat K-con tac t  mani- 
fold is of constant  curvature  +1 (Talmo [12,13]). Moreover the contact  metr ic  s t ructure  on 
T1M is locally symmetr ic  if and  only if the base manifold is flat or is 2-dimensional  and of 
constant  curvature  +1 [2] We remark  here tha t  in dimension 3 a contact  metr ic  manifold 
is locally symmetr ic  if and only if it  is of constant  curvature  0 or +1 [4]; thus we have the 
converse direct ion of Theorem 5.1. Now we have tha t  for n > 2, c cannot  be +1 and since 
S n • E n+l is not conformally flat, c cannot  be 0. If c = - 1 ,  set {X = KV, Y = KU, t} as 
an o r thonormal  t r iple  on M; then (4.5) gives 0 = s - 7 ,  a contradict ion.  

Now suppose tha t  M is reducible. If M is flat we have a contradic t ion as above. So in (4.5) 
choose X = K V  o r t h o g o n a / t o  Y = KU tangent  to a non-flat factor and  t tangent  to a 
different factor. Then  the last two terms in (4.5) vanish and we have G ( R ( X ,  Y)Y, X)  = 0, 
a contradict ion.  

Case 2: n = 1. Since the condit ion for conformal flatness is given by (2.8), we first compute  
the Ricci opera to r  Q'  of 9' on T1M for a surface M.  Let {X1, X2 } be the  or thonormal  pair  
{t, KU} on M where U is vert ical  on TIM,  then summing on i = 1, 2 we compute  using 
(3.3) and  (3.4) as before, 

U" = R ' ( U , X ~ , X ~ , U ) t  - G ( 1 R ( R ( t ,  K U ) X , , X O t ,  KU) g"  "~' ~ , ) t = 

4 4 
= G(R(t ,  K U ) X i , R ( t ,  K U ) X i ) =  ]R(t, KU) t l2+ IR(t, KU)KU] 2 =  K 2 

where K is the  Gauss ian  curvature  of AI. Similarly for a horizontal  lift X H, 

g'(QW, x H) = - ~G((Dx, R)(t, KU)X. X) 
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= - 1 G ( ( X I K ) ( G ( X i ,  KU)t  - G(XI, t )KU),  X) .  

To continue our computa t ion  we introduce the following horizontal vectors on T]M.  Z will 
denote the geodesic flow, i.e. Z = �89 and Z • the horizontal vector  corresponding to KU, 

i.e. Z z = ui(o-Oir) H. It is well known that  for the geodesic flow V ~ Z  = 0 and similarly, 
using (3.1), (3.2) and differentiating GijUiv j = 0, one can show tha t  V ~ Z  • = 0. 

Now 

g'(O'U, Z)t = - K U K ,  9'(Q'U, Z•  = ~ t K .  

Continuing we have 

d(Q'Z, z) ,  = n ' (z ,  u, u, z),  + n ' (z ,  z • z • z) ,  

= -�88 G(R(~, KU)R(t, KU)t, t) 

1 
+ G ( R ( t ,  K U ) K U  + 1 R ( t ,  R( t ,  KU) t )KU + ~ a ( t ,  a ( t ,  KU)t)KU, t) 

= 1 K 2 + K _  3K2  = K _  1K2" 

Similarly we obtain  

g'(Q'Z, Z• = o, g'(Q'Z • Z• = K - 1K2. 

Thus the Rice• opera tor  Q'  is given by 

Q'U = 2 (K2)U - I ( K u K ) Z  + I ( tK)Z  • , 

Q ' Z : - I ( K u K ) U  + ( K  - 1 K 2 ) Z ,  

1 ~7%Z• Q'Z • = I ( t K ) U  + ( K -  ~__ , _  , 

and the scalar curvature  is 
1 2 R'  = 2K - ~ K  . 

Since 2"1M is conformally fiat, 

( V ~ Q ' ) Z  • - ( V ~ Q ' ) Z  = �88 • - (Z•  

(4.7) 

(4.8) 

~7 ~ Z • and our proof  will be to expand this equation. For this we first need to compute  z , 
V'~• Z, V ~ U  and V~j_U. Since the second fundatmenta l  form of TaM in T M  vanishes on 
horizontal vectors, we may  use (3.2) to compute  these. The  results are 

K V I Z =  K VIzU = K • t K v'z z •  = T U, z~- --~cr, - T z  , Vz~_U : --$z. (4.9) 
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Now expanding (4.8) using (4.7) and (4.9) and taking the U-component  we obtMn 

! 2 _ I K 3 + I K u K U K = O .  l t t K  + K ( K -  ~ K  ) (4.10) 

Similarly both  the Z and Z•  yield 

(1 - 3 K ) t K  = 0. 

From this we see tha t  K must be a constant and then (4.10) simplifies to K 2 - K 3 = 0 
giving K = 0 or 1. 

5 IMPLICATION OF Qr = f Q  

On a Sasakian manifold the Ricci tensor satisfies Qr = r but  in general Qr  # r 
[7]. Some results concerning the Ricci and scalar curvatures of a conformal!y fiat contact 
metric manifold have been obtained in [10,14]. Moreover in [3] it is shown that  the critical 
point condition of the integral of the scalar curvature over a compact  contact manifold 
considered as a functional on the space of all associated metrics is tha t  Q commutes  w-ith 
b when restr icted to the contact subbundle {77 = 0}. In this section we prove that  every 
conformaIly fiat contact  metric  manifold M 2'~+1 on which Q commutes  with r is of constant 
curvature.  

First f rom (2.2) and (2.7) we have 

1 R 
lX = 2 n ~ l  ( Q Z - g ( X ,  ~)Q~+g(Q~, ~ )Z-g (QX,  ~ ) ~ ) -  2n(2n -- 1 ) (X  -g (X ,  ~)~). (5.1) 

Since g(r Y)  = -g(X,  f Y ) ,  r = 0 and Qr  = r we obtain from (5.1) r = tr This 
together  with equations (2.4) and (2.5) yields - l  = r + h 2, and ~7~h = 0 Differentiating 
- I  = r + h 2 with respect to ( and using (2.6) we have 

v d  = 0 (ann so ~TTZ = 0). (5.2) 

Since r = _Q~ + g(Q{, ~)~ and r = r162 = 0 we get Q{ = g(Q{, ~)~ giving 

Q~ = (TT0~. (5.3) 

Now differentiating (5.3) and using (2.3) we have 

( V x Q ) ~  - Q(r + fhX)  = (X Trl)~ - ( T r 0 ( r  + f h X )  (5.~) 

from which using the commuta t iv i ty  and (2.1), we have 

g( (V xQ )X, 4 ) + g( QAX, r  ) = ( Trl)g( X, Ar ). (5.5) 
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Now Iet Xi,  C X ,  {, (i = 1 , . . . , n )  be a C-basis. Since Trhr = 0 and g(QhCX, r  = 
-g(QhX,  CX) we get f rom (5.5) 

• g((Vx,  Q)Xi + (Vox, Q)r ~) = O. 
i = 1  

(5.6) 

Now from (5.6) and the contraction of the second Bianchi identity, we have g((V(Q)~,  ~) = 
}~R. But differentiating (5.3) with respect to ~ and using V ~  = 0  and ~Trl = 0, (5.2), 
we have (V~Q)~ = 0 and hence 

~.R = o. (5.7) 

For X orthogonal  to ~, (5.1) becomes 

1 R 
lX = - ~2n-'-'-'7(QX + ( TrI)X) 2n(2n - 1,X.) (5.8) 

Differentiating (5.8) and using (5.2) and (5.7) we have 

1 R 
IV~X = 2n~_ l (QV~X + ( Trl)V~X) 2n(2n - 1)VEX" 

Thus (V~l)X = 21-~_l(VcQ)X. So from (5.2) and (V(Q)~ = 0 we get 

v~Q = o. (5.9) 

L E M M A :  On any conformally flat contact metric  manifold M 2n+l with Qr  = CQ we 
have (V~R)(X, Y, Z) = 0 and 

2n [g(r Z)( (VxQ)Y - ( V y Q ) X )  - g(Y, Z)(VxQ)(  + g(X, Z ) ( V y Q ) ~  

+g( (V xQ )(, z ) Y  - g( (VyQ )(, z ) x  - g( (V xQ )Y - (VyQ)X, Z)(] 

= (XR)[g(~,  Z ) y  - 9(V, Z)~] - (YR)[g(~,  Z ) X  - 9 (X,  Z)~]. ( 5 . 1 o )  

P R O O F :  The  proof  is a s traightforward computat ion,  differentiating (2.7) with respect 
to ~ using (5.7), applying (2.7) to R(V~X,  Y)Z, etc., and then combining using (5.9). Now 
from the second Bianchi identity we have 

(VxR)(Y,  ~, Z) = (Vyn)(X, ~, Z). (5.11) 

Calculating the terms (VxR)(Y,  ~, Z) a n d ( V y R ) ( X ,  ~, Z) and subst i tut ing into (5.11) we 
obtain (5.10). 

T H E O R E M  5.1: Let M 2n+1 be a conformally fiat contact metric  manifold. If Qr = CQ, 
then M 2~+1 is of constant  curvature +1 if n > 1 and 0 or +1 if n = 1. 



64 Blair and Koufogiorgos 

P R O O F :  Case 1: n _ > 2. For X,Y,Z mutual ly  orthogonM aaad normal  to ~, v~,.,,,j (~ ~ a~ gives 

g( (VxQ)Z ,~ )  = 0. (5.12) 

Taking the inner product  of (5.4) with X and using (5.12) we have 

g(Q(X + h X ) , X )  = ( rr l )g(X + hX, X) .  (5.13) 

Using CX instead of X and simplifying we also have 

g(Q(X - ,~X), X )  = ( TrOg(X - hX, X) .  (5.!4) 

Adding (5.13) and (5.14) we have 

g(qx ,  x )  = ( TrOg(X,X). 

Linearization yields for X normal  to ~, QX -- (Tr l )X  which with (5.3) shows that  M 2~+z 
is a conformally flat Einstein space and hence of constant curvature; but  a contact met~c  
manifold of constant  curvature and dimension > 5 is of constant curvature +1 [10]. 

Case 2: n = 1. From l~ = 0 and r = Ir we have for X orthogonal to ~, g(IX, ~) = 0 aaad 
g(lX, CX) = 0. Thus IX is parallel to X for any X orthogonal to ~. Let IX = a X  for 
such X .  Using (5.8) for n = 1 we get 

R 
Q x  + ( T~l - y - ~ ) X  = O. (5.1~) 

Comput ing  the scalar curvature both  directly and using (5.15) yields a = �89 Tri. Therefore 

1 T~0( x g(X,~)~).  (5.16) t x  = ~ (  - 

Moreover by virtue of (5.15) and (5.3) we have 

Q X  = I (R - TrI)(X - g(X, ~)~) + ( Trl)g(X, ~)~. (5.17) 

Now using (5.16), (2.7) and (5.3) we calculate for X ,  Y orthogonal  to ~, 

r r l ) ( V x Y  - g ( V x Y , ( ) ~ )  
1 

V x R ( r ,  ~)~ = ( (X  TrOY + ( T r I ) V x Y ) ,  R ( V x Y ,  ~)~ = ~( 

and R(Y, Vx~)~  = 0 since ~ is unit. Also using (2.3) we have 

R 
R(Y, { )Vx~  = ( TrI)g(Y, CX){ + g(QY, CX)(  - ~g(Y ,  CX)~ 

+( TrI)g(Y, ChX)~ + g(QY, ChX)~ - Rg(y ,  ChX){. 
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Thus 
1 

R y 
+ ~ g (  , e X  + e h X )  - g(QY, r  + ehX)]( .  (5.18) 

From (5.18) and (5.11) with Z = ~ we get X T r I  = 0, but ~Trl = 0 by (5.2) and so 

Trl = constant. (5.19) 

Since M 3 is corfformalIy flat the tensor field P = - Q  + -~Id satisfies (2.8). Using (5.17) 
and (5.19) and differentiating we get for X, Y orthogonal to (, 

( v x P ) y  = -4(xR)v + �89 3 rz) (Y, 

So by (2.8) we get (R - 3Trl)(g(Y, V x ~ )  - g(X, Vy~)) = 0, and hence 

( R - 3TrI)d?( X,  Y )  = O. 

Thus R = 3Trl and by (5.17), Q X  -- (Tr I )X  i.e. M 3 is Einstein and hence of constant 
curvature. However a 3-dimensional contact metric manifold of constant curvature is of 
constant curvature 0 or +1 [4], completing the proof. 
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