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Summary — Zusammenfassung

On Electromagneto-Thermoelastic Plane Waves. The propagation of harmonically
time-dependent electromagneto-thermoelastic plane waves of assigned frequency in an
unbounded, homogeneous, isotropic, elastic, thermally and electrically conducting medium is
considered. The theory of thermoelasticity recently proposed by Green and Lindsay is used
to account for the interactions between the elastic and thermal fields. The results pertaining
to phase velocity and attenuation coefficient of various types of waves are compared with
those of Nayfeh and Nemat-Nasser who have dealt with a theory of thermoelasticity having a
thermal relaxation time.

Elektro-magnetothermoelastische ebene Wellen. Die Fortpflanzung von harmonischen,
zeitabhingigen, elektro-magnetothermoelastischen ebenen Wellen von gegebener Frequenz in
einem unbegrenzten, homogenen, isotropischen, elastischen, wiirme- und elektrisch leitendem
Material wird behandelt. Die Wechselwirkung zwischen den elektrischen und thermischen
Feldern wird durch die kiirzlich vorgeschlagene Thermoelastizititstheorie von Green und
Lindsay beschrieben. Die Dampfungskoeffizienten der verschiedenen Wellentypen werden
mit denen von Nayfeh und Nemat-Nasser verglichen, welche schon frither eine Thermo-
elastizititstheorie mit thermischer Relaxationszeit behandelt hatten.

1. Introduetion

The classical theory of thermoelasticity is based on Fourier’s law of heat
conduction, and, consequently, permits disturbances to propagate at infinite
speed. This situation is physically unacceptable and many new theories have
been formulated to remedy it (see [1]). Paria [2], [3], Willson [4], and Purusho-
thama [5] have used the classical theory of thermoelasticity along with electro-
magnetic theory when considering the propagation of harmonically time-
dependent plane waves of assigned frequency in a homogeneous, isotropic, and
unbounded solid. Nayfeh and Nemat-Nasser [6] used a theory of thermoelasticity
having a thermal relaxation time [7], [8], and which in contrast to [2], [3], [4], [5]
includes the electric displacement current in the electromagnetic field equations.
Perturbation techniques are used in [6] to study the effect that small thermo-
elastic and magnetoelastic coupling parameters have on the phase velocity and
attenuation coefficient of plane electromagneto-thermoelastic waves. Explicit
solutions are obtained in [6] for two cases which are shown to include the results
obtained by the other authors [2], [3], [4], [5].

In this paper we consider the problem of the propagation of electromagneto-
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thermoelastic plane waves within the context of a theory of thermoelasticity!
proposed recently by Green and Lindsay [9]. The latter theory has certain im-
portant features that contrast with the theory having a thermal relaxation
time:

The Fourier law of heat conduction remains unchanged while the classical
energy equation and the stress-strain-temperature (Hooke-Duhamel-Neumann)
relations are modified.

Two constitutive constants « and «*, which also have the dimension of time,
now appear in the governing equations instead of one relaxation time 7.

In the absence of electromagnetic effects, the writer has shown [1] that all
the results pertaining to phase velocity, attenuation coefficient, behaviour of
amplitude ratios, and the stability of thermoelastic waves for the theory of Lord
and Shulman [11] are recovered as a special case of the results of Green and
Lindsay’s theory, and the structure of the two theories remains distinet.

Moreover, in the theory of Green and Lindsay the specific loss and the attenu-
ation coefficient for the quasi-elastic waves are both increased at low frequencies.
It thus also yields results which are qualitatively different [1].

Ignaczak [12] has proved a domain of influence theorem which asserts that
thermoelastic disturbances produced by the data of bounded support propagate
with a finite velocity; a uniqueness theorem was established earlier by Green
{10].

In Section 2 the basic equations governing the electromagnetic, thermal,
and elastic fields and the interactions between them are recalled. The propagation
of time-harmonic plane electromagneto-thermoelastic waves of assigned fre-
quency is considered in Section 3. The solutions for the phase velocity and the
attenuation coefficient are obtained for small thermoelastic and magnetoelastic
couplings by perturbation technique for two important cases similar to those in
[6]. The results are compared with those of Nayfeh and Nemat-Nasser, and, in
order to facilitate this comparison, the notation of Nayfeh and Nemat-Nasser
is retained as far is possible. It is shown that many of the results in [6] form a
special case (where & = «* = 1) of the present results. Some results obtained
here, however, do not agree with the results of Nayfeh and Nemat-Nasser. This
appears to be due to certain errors in the caleulations and conclusions of [6].

2. Basie Equations

The electromagnetic equations are taken as

. oD oB
curlH—]—{—Et—, ourlE~——at—, 2.1)
div B =0, div D = g,, (2.2)
B=uM, D=:¢E, 2.3)
and the modified Ohm’s law
; — o gy :
]_U[E+ . AB] RN (2.4)

1 We consider only the linearised form of this nonlinear theory (see Green [10]).
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The equations of motion are

tiji + (J A B)i + 0.l = oii;. (2.5)
The equations of thermoelasticity are [10]
ey = Ui,; + Ui, (2.6)
—qi,i = oop(0 + a*0) + y04é, (2.7)
tix = Jediy + 2pey — (0 + ob) Sy, (2.8)
9 = —k0,; + 7o, (2.9)
e =, (2.10)
y= (34 -+ 2u) —'zr, (2.11)

where all the terms have their usual meaning (see, for example, [2]—[6]), a super-
posed dot denotes 8/, (), = a()/0x; %, k=1,2,3, and the summation
convention is used for the repeated subscripts.

Combining (2.7) and (2.9) we obtain

0o (0 4 a0 + B¢ = k0 5; — mofis ;. (2.12)

If D, B, o, j are eliminated from the above equations and the resulting equations
are then linearised by taking
H=H,+h,

where H, is the primary magnetic field (constant in space and time) and h is a
small perturbation, we obtain

ocp(0 + o) + pBot = k0,55 + mee(V - B), (2.13)
ot = VT + uoo(E n Hy) + poto(u n Ho) A Hy — poko(V0 A Hy),  (2.14)
V'E — V¥ - E) = u,olE + u,(ii n Hy)] — pekV0 - uoski. (2.15)

In order to nondimensionalise (2.18)—(2.15) we foliow Nayfeh and Nemat-Nasser
in defining

cc,2 A+ 2
w* = ¢ = A=t g:l,
k 0 oc
2,
gt ’ § = ¢y%H,, p— L
um Ole
b 2 _ yo*
&g = Zis = E%‘ V=
gy ¢y
U ﬂoﬂgﬁw*ﬁo T — gk0y
g0cty e’
Hy=Hm, n-=(n,mny, ny), a unit vector, (2.16)

and in keeping the same symbols for nondimensional quantities. Thus in what
fql_lows, wis &, 0, x;, By, «, o will represent u;/(c,/gw™), to*, 6/6,, z;/(c,/w*), E;/
(Hopecr/9), xw®, a*w*, respectively.

13 Acta Mech. 34/3~4



184 V. K. Agarwal:

Assuming that all the field variables are functions of # (= z,) and ¢ only,
it is a straight-forward matter to obtain from (2.13)—(2.15) the following cases,
referred to in [6] as Systems I,, I1,, I and I1,:

Case (a): ny = ny = 0, n; = 1.
I,: b+ oa*) — 0" + o' = all’,
vk, + B, — kb’ = 0, (2.17)
t=u" — gb’;
I1,: wF - F +G=3F",
. s a=a, (2.18)
702G = G — BRepl — Pley(,
where
F=E, - K, @=w-+w,

u, v, w are the displacements and E,, H,, E; are components of the electric
field in the #,, x,, and zj-directions of the Cartesian coordinate system. The
prime indicates differentiation with respect to z (= ).

Case (b): 0,=0, e+ 0, ok == 0.

Iy: % = 7"’ +",328E[”‘1E3 — (1 + ny% 9], (2.19)
vsly + Hy — n,0 = 3E,;";
II,: 0+ o*h — 0" +a' =0,
vsky - By + nlw — ngt = ¥H,", (2.20)
7ii = 7" — ve,(0" + b)) + egng(By + nytb — ngi)
%0 = vw' — egn fE(Ey + nyh — ngi).
Two further special cases are also needed and are recorded below.
I, (special case of IT;): a« =oa* =s=m =%k = 0.
6—06"+a' =0,
Pl == U’ — Ve 00 + egng(By -+ nyb — nga), 2.21)
0% = "’ — nyflep(Hy -+ b — ngit),
By 4 nyto — ngii = vy
II, (special case of I): s =0, ng =0.
0% = "' + Blegm Ey", (2.22)

By — nd = vHy"",

In the present formulation IZ,, Iy, I,, II,, are exactly the same as (28a, b)2,
(33a,b), (43a—d), (44a,b), respectively of [6], but I, and 11, differ from (27a, b, c)2
and (34a, b).

2 (27¢) and (28a) have some minor misprints.
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3. Plane Waves

We assume that each of the field variables in (2.17)—(2.22) is of the form a
exp [Z(gx + wt)], where o, the prescribed frequency, is the same real number
for all variables; ¢, the wavenumber, possibly complex, is to be determined
and @, also an unknown, is the amplitude associated with each variable. Then
we obtain the characteristic equation and analyse it for low and high frequencies
for each case.

I, (Eq. (2.17)): The characteristic equation is

—qo (1w — x*w? + ¢?) AGqW
det 0 kg (—7sw? 4 10) | = 0. 3.1
(@ — 0®)  &q(l —aw) 0
We note that if
=0, or w =0, or k=0 (3.2)
in (3.1), the characteristic equation becomes
(@ — 0% (lo — o*w? 4+ ¢*) + g’w(l — aw) =0, (3.3)

which is the same as in generalized thermoelasticity [1]. Therefore, all the results
of [1] must be recovered for I, whenever (3.2) holds. Now, for 7 &= 0, we define

oel*:oc——i, (x2*:oc*—i—, s’“:s—i (@ = 0). (3.4)

w w W

The case of 7 == 0 is treated separately in what follows.
The use of (3.4) in (3.1) yields

(@* — ¢%) [(¢ — o*0?) s* + akq?] + gPois*a*s, = 0, (3.5)

which upon setting o;* = xy* = % becomes® Eq. (30) of [6]. Eq. (3.5) can be
put in the form

gt~ (A —iB) ¢ + o(C — iD) = 0, {3.6)
where

A = [F(s + k) [s7(1 + o* + xeg) + 79k] ot
+ [(1 + o* 4 aeg) — a9k(1L + £4)] 0?)/Den.
B = {5(s + ak) [(1 + o* + aep) + 51 + &5)]
— [9(1 + o* + aep) -+ 2k] 03 + (1 + 25) w}/Den. (3.7)
O = {(s7%(s + ak) a*ew® + (a* — 2vk) w3}/Den.
D = ([#s 4 avk(sv + &*)] w* - w?}/Den.
Den. = #w2(s + k)2 + 1.

3 5kx in Bq. (30) of [6] should read L. This error has been carried along throughout the
paper, especially in (30a, ¢), (30f, g), (37a, b), and (41a, b).

13*
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It is easy to verify that (3.6) has the solutions
212 = {4 + Qu)2 ((C* 4 Dy  Cpi2
— 4B 4+ ( 200)1/2 {(C? 4+ D)1/2 _ 0}1/2]}1/2
i{A (2w)V2 {(C2 4~ D)V2 4 Q)12
+ =B + (@) ((C+ D2 — Oy,

(3.8)

One could now follow [1] and proceed to examine the exact solution (3.8) in
the limits of low and high frequencies, and small values of thermoelastic coupling
parameter g5 However, it is more convenient here to use the perturbation tech-
nique. The solutions of (3.5) for g5 = 0 are

2 2 % . %2 2 3.
q w=, q T+ 6" [ ( 9)
where _
Bt =% (et 4+ 0).
S*

For small values of &4, the above solutions are modified to

2 2 2
02 = o [1 + g,,] + O(es?), (3.10)
2 — “2*602 061 2
7" =TT X [1 + ST 86] + O(ee®), (3.11)

which correspond to the modified quasi-elastic and the modified quasi-thermal
waves, respectively. The expressions (3.9), (3.10), and (3.11) coincidet with
(80D, ¢) and (301, g) of [6] for oy* = ay* = v*. We now separate the real and
imaginary parts of (3.10) and obtain

¢ = Re (g,) + i Tm () = o [1 + e N—};—ﬂ] (3.12)
where
N, = (asvw?® — 1) [{s7(1 — a*) + a9k} w? + 1] — (x + s7) 0}sv — (1 — &*)],
Ni= —(& + 9) o[{s7(1 — a*) -+ a7k} w? + 1] — (asF0? — 1) o[s¥ — (1 — a*)],
D, = [{s3(1 — o*) + avk} w? 4- 12 + [s7 — (1 — &®)]2 w?. (8.13)
As w — o0, (3.12) and (3.13) yield the following expressions for the phase velocity
and the attenuation coefficient:

w i &«
O Rew ™ [1 Ty ({:m] (3.14)

N S LRGeS
8¢ = —Im (g,) = — & e

2 . (1 — o* 4 ky)? ’ (3.18)

4 It should be noted that (30g) of [6] is incorrect even after accounting for an extra 7. This
error causes (37b) and (41b) to be incorrect in the same manner. After the corrections are
made {30g) agrees with (3.11) for a,* = a,* = 7*,
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where _
k=" (s+0).
S
Eq. (3.14) is the same as (41a) of [6] for & = &* = 7. The substitution of
k= 0orz = 0in (3.14) and (3.15) gives

C,=1-— -;- _y (3.16)

S, = é— eoll - o + %), (3.17)

which are consistent with the results in [1] and [13]. Nayfeh and Nemat-Nasser
neglected to calculate Im'(g,), and thus mistakenly concluded that the modified
thermoelastic waves® propagate unattenuated. This conclusion is clearly incon-
sistent with their own work [13] as well as the work of the writer [1].

If w — 0, the phase velocity and the attenuation coefficient are obtained
from (3.12) and (3.13) as

0, = (1 4 —;- 50), (3.18)
S, = -;- es0(1 - o — a¥), (3.19)

which are the same as in generalized thermoelasticity [1]. The quasi-elastic waves
are not affected by the electromagnetic quantities k, 7, and @ at low frequencies.

A calculation similar to the above for the quasi-thermal waves corresponding
to (3.11) results in

a* \l2 1 o«
Re (g0) = (1 " 761) {1 + 5 e m}, (3.20)
—Im (g =~ LNk 1 (3.21)

2 Va1 4 k)32 ’

as w — co. Hq. (3.20) is in agreement® with (41b) of [6] for x = «* = 7. Nayfeh
and Nemat-Nasser do not have Im (g;). For k = 0 or @ = 0, (3.20) and (3.21)
become

Re (g5) = o Va* (1 — % Satx), (3.22)
—Tm (g5) = ——, (3.23)
2 'l/oc*
which are consistent with [1]. When o — 0 we obtain
Re (q) = Joo/2 (1 - —;— 89), (3.24)
—1Im (g5) = Re (gs), (3.25)

5 The term thermoelastic waves is used for both the quasi-elastic and quasi-thermal
waves [1].
¢ Only after (41b) has been corrected.
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results which are also obtained in generalized thermoelasticity [1]. The quasi-
thermal are also not affected by k, , and 7 at low frequencies.

Il, (Eq. (2.18)): Eqg. (2.18) is the same as (28a,b) of [6]. The charac-
teristic equation is

—Tew? F0> 0t
det( Psw? + 1w + 79%) ) . _o.
BPex (—7pw® + 7g* + 1fwep)
7 = 0 satisfies (3.26) identically. For 7 == 0 we use (3.4) in (3.26) to obtain

(3.26)

g — §%0?) (¢ — PPo?) + Begolw + 7(g® — sFw?)] = 0, (3.27)

which is the same” as (31) of [6]. One can now obtain the exact solution (3.8) of
(3.27) by recasting it in the form (3.6). However, we look for the perturbation
solutions. For ¢z = 0 (3.27) gives

P = s, ¢ = B2, (3.28)

which are modified, for small values of ¢z, to

0t = 50 [t o ol ) 0, (3.29)
_ BHp* — s) . &
= se? [1 + &g S — 8P w? + 1}] v [1 + &g PR — 82wt - 1}] (3.30)

+ O(eg?),

g* = pro? {1+eE{ ! i}]+0<eE2>,_ (% = p) (3.31)

P* — ) 0 o

_ g o e=py 1 Pel t
= fw? [1 -+ &g e Pret F J 1eg - [1 1_)_———-———2(8 T 1} + 0(eg?).
(3.32)

Egs. (3.29), (3.31), and (3.30), (3.32) coincide with (31a, b) and (38a, b) of [6].
For high frequencies, @ — co, we obtain the phase velocity, C (= w/Re (q)), and

the attenuation coefficient, § (= —Im (g)), as
1 i
Cp=—, Sy = ) 3.33
= e (3.33)
1 enp
Cs = ik Sg = ~2E; ; (3.34)

and for low frequencies, @ — 0,

R S R SN (i) _ 1 1 B—9 <
OF~V;[1 5o ] SF—%V;{UFSEW{; - H (3.35)

[1 — -;- epls — 52)], Sg = 0. (3.36)

L

OG:ﬁ

7 There is & minor misprint in (31) of [6].
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I, (Eq. (2.19)): I, is the same as (33a, b) of [6]. The characteristic equation
{for 5 &= 0) is

(g> — s%0?) (g2 — o) + [w + Z 0+ mh ol — fah] =0, (337)
which becomes the same as (3.27) if we replace ggn,% and #(1 + ng%)/n,% by ¢z and 7
respectively.
I » (Bq. (2.20)): The characteristic equation for this case is
wg® — fPo?) (¢* — *0?) [(? — x:*0%) (@ — 0?) — eg’n o]
— B*nlo(g® — s0°) [(§° — 0p*0?) (¢ — w?) — g’ *wl ey (3.38)
+ gl — ap¥w?) (¢ — fPo?) (¢ — sw?) &g =0,
which agrees with [6] for oy* = x,* = 7*. When ¢z = 0 we obtain the solutions
g? = fw?, ¢ = s*w?, (3.39)
(@® — %*0?) (¢® — o) — &g’ *0® = 0. (3.40)

Eq. (3.40) is the characteristic equation obtained in generalized thermoelasticity
[1]. For &z == 0 the solutions (3.39) and (3.40) are modified. Following Nayfeh
and Nemat-Nasser we obtain, for small values of &z, the following solutions:

Gt = Pro? — i ”—f[—‘Tﬁ)’ &5 + O(es?), (3.41)
P L T

(s* —p%)

{nf{(s‘"" o) (5% — 1) — g5t} - mgd{s* — ag¥) P

i ] F 0@ (342)

(B — ) {(s™ — og®) (8% — 1) — gps™ox,*}

Ed

0t = wpto? [1_ o {1+ iy oy — o) } se]+0<eE2>, (3.43)

— Oy Foo(oe, - §%) (1 — o)
2 __ 2 o * _ing(1 — 3) o m
02 =021+ 72 e~ M= e 406, (3.44)

Eqgs. (3.41)—(3.44) agree with (36 ¢ — I) of [6] for &,* = x,* = 7. An interesting
feature of the results (3.41)—(3.44) is that they help identify the roles of «;* and
oo™ in comparison with 7*.

One can now separate the real and imaginary parts of the above expressions
and determine the phase velocity and attenuation coefficient in each case, as has
been done for I, and II,. We are interested in pursuing a special case of I1,.

The substitution of # = 0 in the system of Egs. (2.21) gives

b — 6"+ =0,
By, + mw — ngu = 0,

which are not sufficient in number to solve for four unknowns 6, u, H,, and w,
However, Nayfeh and Nemat-Nasser obtain [6, p. 112] the dilatational wave
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speed

(1 + ny%e5)2 as 70 and o — co.

I, (Eq. (2.21)): We recall from Section 2 that I, is a special case of II,, where
x = o* = ¢ = 0 in (2.20). Since x and &* now drop out, all the results deduced
from (3.41)—(3.44) are the same as (45a—d) of [6]. We rewrite the expressions
for wavenumbers of the displacement components after separating the real and
imaginary parts. Thus

2= o? S T 2 ) L ng ey _
9 = @ Hl 14+ o0? 1+§w2} z{1+wz+_—“—1+ﬁ%ZH’ {(3.45)

2 __ P22 . ”121328E - nlzﬂxL;wEE
Qu” = /3 (4] [{1 1+ iszﬁQ} ? 11 Pt ’ (346)
and
2 . 1+ iw _ M ]
qe” = zw[1+1+w2{1 (1~17)(1+co2)8E €41, (3.47)

= — 2 [1 — ity LT {1 +g 80} n] (3.48)
v

wofE —1) 1+ 72wl 1—75) 1+ 72w?)
The results given below then follow for the limiting cases w — co and w — 0.

High frequency (w — o0) Low frequency (w - 0)

Re () = o Re () = o (1 L nsst)
. iy . ? (3.49)
—Im (¢,) = E(&‘g -+ —;‘—sE) —Im (¢,) = 3;— (89 + Pmg2eg)
Re (g,) = fo Re (g,) — ﬁw (1~ me)
1 m®Be (3.50)
—Im(g,) = . 5 ] —Im (gy) = = n1255V8E602
e (gg) = ]/_Z_ Re (go) = E 14+ L 1— n?’z_eE &g
B hese]
—Im (g5) = l/— —1Im (gs) = Re (gs)
= — ; 1 24, 2
Re (gz,) = 22} Re (¢z,) = V??_’ {1 + *2—{43 701
+ ( d ee)ngz} SE] (3.52)
~TIm(gg) =]/ —Im (gz,) = Re (qs,)-

Clearly for e = 0, (3.49)—(3.52) agree with [13]. For &z <= 0 they agree with the
results of [6] except for the attenuation coefficients of the displacement compo-
nents, given by —Im (g,) and —Im (g,). Nayfeh and Nemat-Nasser, however,
state that the waves corresponding to the displacement components propagate
unattenuated [6, p. 113].
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I1I, (Eq. (2.22)): As Nayfeh and Nemat-Nasser have noted, (2.22) follows
directly from (2.21), , if we substitute in the latter v, B3, —n, for w, B, n;, and
ny = 0. The expressions for ¢,2 and ¢% can then be obtained by making the same
changes in notation of (3.46) and (3.48). They are recorded as (46a, b) in [6].
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