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Summary -- Zusammenfassung 

On Eleetromagneto-Thermoelastic Plane Waves. The propagation of harmonically 
time-dependent eleetromagneto-thermoelastic plane waves of assigned frequency in an 
unbounded, homogeneous, isotropic, elastic, thermally and electrically conducting medium is 
considered. The theory of thermoelasticity recently proposed by Green and Lindsay is used 
to account for the interactions between the elastic and thermal fields. The results pertaining 
to phase velocity and attenuation coefficient of various types of waves are compared with 
those of Nayfeh and Nemat-Nasser who have dealt with a theory of thermoelasticity having a 
thermal relaxation time. 

Elektro-magnetothermoelastische ebene Wellen. Die Fortpflanzung yon harmonischen, 
zeitabh~ngigen, elektro-magnetothermoelastischen ebenen Wellen yon gegebener Frequenz in 
einem unbegrenzten, homogenen, isotropischen, elastischen, w~rme- nnd elektrisch leitendem 
Material wird behandelt. Die Wechselwirklmg zwischen den elcktrisehen und thermischen 
Feldern wird durch die kiirzlieh vorgesehtagene Thermoelastizit/itstheorie yon Green nnd 
Lindsay beschrieben. Die D~mpfungskoeffizienten der verschiedenen Wellentypen werden 
mit denen yon Nayfeh und Nemat-Nasser verglichen, welche schon frfiher eine Thermo- 
elastiziti~tstheorie mit thermischer X~elaxationszeit behandelt hatten. 

1. Introduction 

The classical theory of thermoelasticity is based on Fourier 's  law of heat 
conduction, and, consequently, permits disturbances to propagate at  infinite 
speed. This situation is physically unacceptable and many  new theories have 
been formulated to remedy it (see [1]). Paria [2], [3], Willson [4], and Purusho- 
thama [5] have used the classical theory of tbermoelasticity along with electro- 
magnetic theory when considering the propagation of harmonically time- 
dependent plane waves of assigned frequency in a homogeneous, isotropic, and 
unbounded solid. Nayfeh and Nemat-Nasser [6] used a theory of thermoelasticity 
having a thermal relaxation time [7], [8], and which in contrast to [2], [3], [4], [5] 
includes the electric displacement current in the electromagnetic field equations. 
Perturbat ion techniques are used in [6] to s tudy the effect tha t  small thermo- 
elastic and magnetoelastic coupling parameters  have on the phase velocity and 
at tenuation coefficient of plane electromagneto-thermoelastic waves. Explicit 
solutions are obtained in [6] for two cases which are shown to include the results 
obtained by  the other authors [2], [3], [4], [5]. 

In  this paper  we consider the problem of the propagation of electromagneto- 
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thermoelastic plane waves within the context of a theory of thermoelastieity 1 
proposed recently by Green and Lindsay [9]. The latter theory has certain im- 
por tant  features tha t  contrast with the theory having a thermal relaxation 
time : 

The Fourier law Of heat conduction remains unchanged while the classical 
energy equation and the stress-strain-temperature (Hooke-Duhamel-Neumann) 
relations are modified. 

Two constitutive constants ~ and ~*, which also have the dimension of time, 
now appear in the governing equations instead of one relaxation time r. 

In  the absence of electromagnetic effects, the writer has shown [1] that  all 
the results pertaining to phase velocity, at tenuation coefficient, behaviour of 
amplitude ratios, and the stability of thermoelastie waves for the theory of Lord 
and Shulman [11] are recovered as a special case of the results of Green and 
Lindsay's  theory, and the structure of the two theories remains distinct. 

~Ioreover, in the theory of Green and Lindsay the specific loss and the at tenu- 
ation coefficient for the quasi-elastic waves are both increased at  low frequencies. 
I t  thus also yields results which are qualitatively different [1]. 

Ignaezak [12] has proved a domain of influence theorem which asserts that  
thermoelastic disturbances produced by the data of bounded support propagate 
with a finite velocity; a uniqueness theorem was established earlier by  Green 
[10]. 

In  Section 2 the basic equations governing the electromagnetic, thermal, 
and elastic fields and the interactions between them are recalled. The propagation 
of t ime-harmonic plane electromagneto-thermoelastic waves of assigned fre- 
quency is considered in Section 3. The solutions for the phase velocity and the 
at tenuation coefficient are obtained for small thermoelastic and magnetoelastic 
couplings by perturbat ion technique for two important  eases similar to those in 
[6]. The results are compared with those of Nayfeh and Nemat-Nasser,  and, in 
order to facilitate this comparison, the notation of Nayfeh and Nemat-Nasser  
is retained as far is possible. I t  is shown tha t  many  of the results in [6] form a 
special case (where cr = ~* = r) of the present results. Some results obtained 
here, however, do not agree with the results of Nayfeh and Nemat-Nasser.  This 
appears to be due to certain errors in the calculations and conclusions of [6]. 

2. Basic Equations 

The electromagnetic equations are taken as 

8D 8B 
c u r l H  = j  q- --~-, cu r lE  - -  ~t '  (2.1) 

div B = 0, div D = ~o e, (2.2) 

B ---- tt~H, D ~ sE ,  (2.3) 

and the modified Ohm's law 

[ auA ] au J = ~  ~+-5-/- B +oe-ST--~oV0. (2.4) 

1 We consider only the linearised form of this nonlinear theory (see Green [10]). 
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The equations of motion are 

t~i,~ + (j ^ B)~ + ~E~ = ~//~. 

The equations of thermoelastieity are [10] 

e i i =  ul, i -~ uL~, 

-q~.~ = ec,(O + ~,*0) + rOoe, 

ti~ ~ 2ec~it~ ~- 2#eik -- 7(0 -~- cr 61tr 

where all the terms have their usual 
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(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

e = u~,~, (2.10) 

(3~ + 2~) ~ ,  (2.1~) 

meaning (see, for example, [2]--[6]), a super- 
posed dot denotes ~/~t, ( ),k : ~( )/~xk; i, ], k : 1, 2, 3, and the summation 
convention is used for the repeated subscripts. 

Combining (2.7) and (2.9) we obtain 

~cv(0 + ~*0) + yOo~ = k O ,  - -  ~o]~,i. (2.12) 

If  D, B, ~e, J are eliminated from the above equations and the resulting equations 
are then linearised by taking 

H = H o + h ,  

where H o is the primary magnetic field (constant in space and time) and h is a 
small perturbation, we obtain 

9cv(O + o~*0) + ?Ooe : kO,,  + ~oe(V" E ) ,  (2.13) 

eii = V T  + ~ ,a (E  ^ Ho) d-/u,2a(~t ^ Ho) A 1to - -  #6ko(VO h Ho),  (2.14) 

V2E -- V(V. E)  = #~a[/~ + #~(/i ^ Ho)] - -  #~koVO + #~eE. (2.15) 

In  order to nondimensionalise (2.13)--(2.15) we follow Nayfeh and Nemat-Nasser 
in defining 

~, = eccl 2 hA- 2# ? 
]~ ' ~ 1 2  - -  _ _  , g = - - ,  

Q ~c 

A2 , ~ §  2~ 1 8 = G 1 2 E # e  ~ V : - -  

# a~te 

bg ~t eF[ o ~ v~ * 
~o = A'--'~, eE - -  , Y = - -  

~612  c l  2 ' 

XogeSe~* Ho gkoOo 
g~COo Ho 2 ' 

H o = ITon, n = (hi, n2, na), a unit vector, (2.16) 

and in keeping the same symbols for nondimensional dtuantities. Thus in what 
follows, u~, t, 0, xi, Ei, a, c~* will represent u~/(cl/9o~*), tw*, 0/00, xd(c l /w* ), E d 
([fo#ecl/g), ~w*, ~*~*, respectively. 

13 Acta Mech. 34/3--4 
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Assuming t h a t  all the field variables are funct ions of x ( =  xl) and t only, 
it is a s t ra ight - forward  m a t t e r  to obta in  f rom (2.13)--(2.15) the  following cases, 
referred to in [6] as Sys tems Ia ,  I I a ,  I b  and I I b :  

C~se (a): n~ ---- n8 = O, n~  = 1 .  

~sE1 q-/~1 - -  ~ 0 '  = 0, (2.17) 

/ / =  u"  - -  %0'; 

IIa: ~sP 4- F 4- r = ~F", 
(2.18) 

~fl2O = ~G" - -  fl2eEF - -  fi2eEG, 
where 

F = E 2 - -  Ea, G = w 4- v, 

u, v, w are the  displacements  and  El ,  E2, Ea are components  of the electric 
field in the  xl, x2, and  xa-directions of the Cartesian coordinate system. The 
pr ime indicates differentiat ion with respect  to x ( =  xl). 

Case (b): ~ e = 0 ,  e ~ 0 ,  ~ = 0 .  

[b: ~/~2~ = ~v" 4 - / ~ . [ ~ E ~  - -  (1 + ~ ' )  r 
(2.19) 

~sE3 4-/~a - -  n~i) = ~Ea" ; 

I I b :  0 4-  o~*0 - -  0 "  4-  4 '  = O, 

~8E2 4- .E~ 4- nigh - -  n a i i =  ~E2" , 
(2.20) 

~ii = ~ u "  - -  ~%(0' + ~xO') ~ eEna(E 2 4-  nlgv - -  na4) 

~fl~4]; = ~ w "  - -  eEn~fi~(E~ 4-  nlzb - -  na~). 

Two fur ther  special cases are also needed and  ~re recorded below. 

I c ( s p e c i ~ l c a s e o f l I 0 ) :  o ~ = o r  

~ -  0" + , z '  = O, 

pig = ~U" - -  ~%0' 4-  e~na(E  ~ 4-  n~d) - -  na~), 
(2.21) 

~fieih = ~ w "  - -  n~fi~s~(E= q-  n ~  - -  nag), 

I I ~  (special c a s e o i I b ) :  s : O, n a = O. 

t)~'i; " = i;" 4-  t~eEn.lEa ' '  , 
(2.22) 

Ea - -  n ~  = ~Ea".  

In  the present  formula t ion  I I a ,  I~,  Ic ,  I I c ,  are exac t ly  the same as (28a, b) ~, 
(aaa, b), (4aa--d), (44a, b), respect ively of [6], b u t l a  a n d I I o  differ f rom (27a, b, c) = 
~nd (34a, b). 

(27c) and (28u) have some minor misprints. 
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3. P lane  W a v e s  

We assume t h a t  each of the field variables  in (2.17)--(2.22) is of the  fo rm a 
exp [ i (qx  %-cot)], where co, the  prescr ibed frequency,  is the  same real n u m b e r  
for all var iables;  q, the wavenumber ,  poss ibly  complex,  is to be de te rmined  
and  a, also an unknown,  is the  ampl i tude  associated with  each variable.  Then  
we obta in  the  characteris t ic  equat ion and  analyse  it for low and  high frequencies 
for each case. 

Ia  (Eq. (2.17)): The characterist ic  equat ion is 

--q~o (ico - -  ~*co~ + q2) ~qco 

det  0 ~kqr (--~sco ~ + ico)] = 0. (3.1) 

(q~ __ cos) eoq(i--o~(o) 0 

We note  t h a t  if 

= 0, or ~ = 0, or k = 0 (3.2) 

in (3.1), the  characterist ic  equat ion becomes 

(q2 __ cos) (ico - -  o~*(o 2 + q~) -~ eoq2co(i - -  o~o) = 0, (3.3) 

which is the same as in generalized thermoelas t ic i ty  [1]. Therefore,  all the results  
of [1] mus t  be recovered for I~ whenever  (3.2) holds. Now,  for ~ =~ 0, we define 

i = ~ ,  i 8* i ~1" : ~ , ~2" - - - - ,  = 8 - -  - -  (~ ~: 0). (3.4) 

The  case of ~ = 0 is t r ea ted  separa te ly  in what  follows. 
The use of (3.4) in (3.1) yields 

(0)8 _ q2) [(q~ _ ~ ,co2) s* + =~q2] + q%~%*oq*eo = 0 ,  (3.5) 

which upon  sett ing ~1" = ~2" : 3" becomes 3 Eq.  (30) of [6]. Eq.  (3.5) can be 
p u t  in the fo rm 

q4 _ (A  - -  i B )  q2 + ~o(C - -  i D )  : 0 ,  (3.6) 
where 

A ---- {7(s + ~k) [s7(1 + cr + ~e0) -~ ~zTk] co4 

A- [(1 + cr -+- O~so) - -  ~ k ( 1  -}- s0)] o~}/Den. 

B = {~(s + 7~/c) [(1 -}- ~* -~ ~e0) + s~(1 -}- so)] co a 

- -  [s~(1 + ~* + cr + ~ k ]  coa + (1 + e0) eo]/Den. (3.7) 

C = { s~( s  -}- ~k) ~.co5 _+_ (~.  _ ~7~) ~o3}/Den. 

D = {[~2sZ q- ~rgk(s~ + ~*)] co~ -? coZ}/Den. 

Den. : ~2co~(s @ ~ ) 2  + 1. 

~fcze in Eq. (30) of [6] should read fcz~. This error has been carried along throughout the 
paper, especially in (30a, c), (30f, g), (37a, b), and (41a, b). 

13" 
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I t  is easy to ver i fy  t h a t  (3.6) has the solutions 

2q1,~ ---- - / { A  + (2~o) ~/~ {(C ~ + D) ~/2 + (~}1/2 

- -  i [ B  + (2a)) 1/~' [ (r  -F D )  ~/~ - -  C}i/~]} ~/2 (3.8)  

:J:{A - -  (2o~) l/~ {(C ~ + D) ~i~ + C}il ~ 

+ i[--B + (20)) 1/z {(C 2 -~- D) ~1~ - -  C}i/=]} ~/~. 

One could now follow [1] and  proceed to examine  the  exact  solution (3.8) in 
the  limits of low and  high frequencies, and  small  values of thermoelast ic  coupling 
p a r a m e t e r  so. However ,  it is more  convenient  here to use the pe r tu rba t ion  tech- 
nique. The solutions of (3.5) for e0 = 0 are 

q~ = o~, q~__ a~* ~o~, (3.9) 

where 1 + k~* 

k~* = ~k (s* =~ 0). 
8* 

For  small  va]ues of so, the above solutions are modified to 

I ~i* SO] + O(SO~), (3.10) q 2 = c 0 a  1 +  l + k i * - - ~ *  

[ al* so I + 0(s02), (3.11) - -  a~*~-----h~ 1 + (1 + 4 * )  q02 1 + hi* a2* --  

which correspond to the modif ied quasi-elastic and  the  nlodified quas i - thermal  
waves,  respect ively.  The expressions (3.9), (3.10), and  (3.11) coincide 4 with 
(30b, c) ~nd (30f, g) of [6] for ~1" ---- c,2" ~- ~*. We now separa te  the real and  
imaginary  pa r t s  of (3.10) and  obtain  

~ + ~,1 Nr (3.12) 
where 

N~ = (c~s~w 2 - -  1) [{s~(1 - -  ~*) + n~k} w 2 + 1] - -  (~ + s~) o2[s~ - -  (1 - -  ~*)], 

N~ = - - ( ~  + s~) co[{8~(1 - -  ~ * )  + ~ }  a~ 2 + 1] - -  (as~o~ 2 - -  1) co[s~ - -  (1 - -  cr 

O~ : [{s~(1 - -  ~*) + ~ k }  ~2 + 112 + [s~ - -  (1 - -  ~,)]2 oj~. (3.13) 

As co -> ~ ,  (3.12) and  (3.13) yield the  following expressions for the phase  veloci ty  
and  the a t t enua t ion  coefficient : 

C~ Re(q~) T t0 (1 -- ~*) + k 1 ' 

1 ( 1 + ~ )  ~1 § (1 + ~ - ~ * )  
So = - - I m  (q~) = T ~0 

(1 - -  ~* + kl) u 

(3.14) 

(3.15) 

I t  should be noted that (30g) of [6] is incorrect even after accounting for an extra ~. This 
error causes (37b) and (41b) to be incorrect in the same manner. After the corrections are 
made (30g) agrees with (3.11) for al* = a~* = 3*. 
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where 

k I ----- - -  (8 + 0 ) .  
8 

Eq.  (3.14) is the same as (413) of [6] for c~ = cr = r. The subst i tut ion of 
= 0 or ~ = 0 in (3.14) and (3.15) gives 

1 
C~ = 1 - -  - -  e0~, (3.16) 

2 

1 
& = T ~0(1 + ~ + ~*), (3.17) 

which are consistent with the results in [1] and [13]. Nayfeh  and Nemat-Nasser  
neglected to calculate I m  (qu), and  ghus mis takenly concluded thug the modified 
thermoelastic waves 5 propagate  unat tenuated .  This conclusion is clearly incon- 
sistent with their own work [13] as well as the work of the writer [1]. 

I f  co-> 0, the phase veloci ty and the a t tenuat ion  coefficient are obta ined 
f rom (3.12) and (3.13) as 

( 1 ) (3.18) C , ~ =  l q- -~  so , 

" 1 Coco2( 1 @ o~ - -  vr (3.19) & -E 

which are the same as in generalized thermoelast ic i ty  [1]. The quasi-elastic waves 
are not  affected by the electromagnetic quantit ies ~, ~, and ~ at  low frequencies. 

A calculation similar to the above for the quasi- thermal waves corresponding 
to (3.11) results in 

( ~* ~lm[ 1 ~ ] (3.20) Re  (qo) =- co \~-@--~x] 1 4-  -~  eo ~ ,  _ (1 + kj) ' 

1 (1 + ~*) ~1 + 1 (3.21) 
- - I m ( q o ) =  2 1 / ~ ( l + k l )  a/2' 

as co --> oo. Eq.  (3.20) is in agreement  6 with (41b) of [6] for ~ = ~* = ~. Nayfeh  
and Nemat-Nasser  do not  have I m  (qo). For  [c = 0 or = = 0, (3.20) and (3.21) 
become 

Re (qo) = co l / ~  1 - -  T e0~ , ( 3 . 2 2 )  

1 
- - I m  (qo) - -  2 l / -~ '  (3.23) 

which are consistent with [1]. W h e n  co --> 0 we obta in  

( ' )  Me (Vo) = 1/77 /2 1 + 7- 

- - I m  (qo) = R e  (q0), 

(3.24) 

(3.25) 

The term thermoelastic waves is used for both the quasi-elastic and quasi-thermal 
waves [1]. 

Only after (41b) has been corrected. 
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results which are also obtained in generalized thermoelast ici ty [l]. The quasi- 
thermM are also not  affected by  k, ~, and ~ at  low frequencies. 

I I~  (Eq. (2.18)): Eq.  (2.18) is the same as (283, b) of [6]. The charac- 
teristic equat ion is 

det  [(--~s~o~ + i~o + ~q~) --~o ~ ] = 0. (3.26) 

= 0 satisfies (3.26) identieMly. For  ~ # 0 we use (3.4) in (3.26) to obtain 

~2(q~ --  s*o~ ~) (q2 ~ fl~o ~) + fl~eg~[o~ + i~(q ~ - -  s*~o~)] = 0, (3.27) 

which is the same 7 as (31) of [6]. One can now obtain the exact  solution (3.8) of 
(3.27) by  recasting it in the form (3.6). However,  we look for the per turba t ion  
solutions. For  @ = 0 (3.27) gives 

q~ = s ,o~,  q~ __ f12~, (3.28) 

which are modified, for small values of eE, to 

qf i  = s*oJ ~ 1 + @ r~s*@ --_ ~*) o~; + O(e~2) (s* # f12), (3.29) 

[ t~@-s) ] o~[ t~ ~ ] 
~{r2(fl ~ -- s) ~" ~o 2 -F li  (3.30) 

+ 0(~E2), 

qg 2 = fl2o)2 1 4:- eE r~(S, _ fi2) ~ ~-uJ + O(eE2), (S* =4= f12) (3.31} 

( 3 . 3 2 )  

Eqs. (3.29), (3.31), and (3.30), (3.32) coincide with (31a, b) and (38a, b) of [6]. 
For  high frequencies, e) ~ e~, we obtain the phase velocity, C ( =  m/Re (q)), and 
the a t tenua t ion  coefficient, S ( =  - - I m  (q)), as 

1 1 
= - 2 f;' ( 3 . 3 3 )  

1 sEfi (3.34) 
C G = - F '  SG- -  2~'  

and for low frequencies, co -+ 0, 

1 

SG = O. (3.36) 7 1 -  7 

7 There is ~ minor misprint~ in (31) of [6]. 
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Ib (Eq. (2.19)): Ib is the same as (333, b) of [6]. The characteris t ic  equat ion 
(for ~ 4= 0) is 

(q~ _ s ,~2) (q2 _ ~2~2) + 82 ~E~I 2 [ iF 7 o)2 + __ (1 + n82) w(q 2 - -  s*o)2)] = 0, (3.37) 
n l  2 

which becomes the same as (3.27) if we replace sen12 and ~(1 + na2)/nl 2 by  eE and 
respectively.  

I I b  (Eq. (2.20)) : The characteris t ic  equat ion for  this case is 

~(q2 _ ~2o)2) (q2 _ s,o)2) [(q2 _ c , 2 * o ) 9  (q2 _ co~) _ , o q ~ o , , , o ) ]  

_ ifl~nx%o(q2 _ so)2) [(q2 _ o~2,~o 2) (qZ _ o)2) _ eoq2oh,o)] eE (3.38) 

+ in32o)(q2 _ _  0~2.(D2) (q2 __ fl2o)2) ( q 2 -  8o)2) SE = 0, 

which agrees with [6] for 0r = g 2 *  = T*. When  ez = 0 we obta in  the  solutions 

q2 = fl~o2, q2 = s ,o)2 ,  (3.39) 

(q2 _ ~2,o)2) (q2 _ o)2) _ eoq2ocx*o)2 = O. (3.40) 

Eq.  (3.40) is the  characterist ic  equa t ion  obta ined  in generalized thermoelas t ic i ty  
[1]. Fo r  e~ ~ 0 the  solutions (3.39) and  (3.40) are modified. Following Nayfeh  
and  ~Temat-Nasser we obtain,  for small  values of eE, the  following solutions, 

qw2 : fl2o)~ _ io) n12fl~(s --f12) eE + 0(e~2), (3.41) 

i ~ ( s  * - 8) q2 = s * ~ o  2 + ,E E~ 

N - + (3.42) 

~-~* 1 + ~ z0 + 0(~E~), (3.r qo 2 = ~2"(o 2 1 1 - 32* ~(~2" -- 8") (1 -- ~*)  

[ in3~(1--s) ] 
: ~ - - *  so ~ - _ % ~ ]  ~, + 0 ( ~ ) ,  (3.44) q2  0) 2 1 + 1 -- a~* 

Eqs.  (3.41)--(3.44) agree with (36 i - -  l) of [6] for  cq* : a2* : z*. An interest ing 
feature  of the  results (3.41)--(3.44) is t h a t  t hey  help ident i fy  the  roles of ~ *  and  
0~2" in compar ison with v*. 

One can now separa te  the  real and  imaginary  par t s  of the  above expressions 
and  de termine  ~he phase  veloci ty  and  a t t enua t ion  coefficient in each ease, as has 
been done for Ia  and I I ~ .  We are interested in pursuing a special case of I I ~ .  

The subs t i tu t ion  of ~ = 0 in the sys tem of Eqs. (2.21) gives 

O - -  o "  + ~ '  : o ,  

E 2 + n ~ - n ~ : 0 ,  

which are not  sufficient in n u m b e r  to solve for four  unknowns  0, u, E2, and  w. 
However ,  Nayfeh  and  Nemat- Iqasser  obta in  [6, p. 112] the  di la ta t ional  wave  



190 V.K.  Agarwal: 

speed 
( 1 + n ~ % ~ )  ~1~ as ~ - ~ 0  and  c o - + ~ .  

I~ (Eq. (2.21)) : We  recall f rom Section 2 t ha t  Ic is a special case of IIb, where 
= cr = s = 0 in (2.20). Since a and ~* now drop out,  all the  results deduced 

f rom (3.41)--(3.44) are the  same as (45a- -d )  of [6]. We rewrite the  expressions 
for wavenumbers  of the displacement  components  af ter  separa t ing the real and 
imaginary  par ts .  Thus  

q ~ - - - - ~  1 l + t o  ~ 

q,~=fl2co~[{1 

and 
1 + i_____~ l - -  

qo 2 = - - i (o  1 + 1 + ~2 (1 ~ ( 1  + to ~) eE eo , (3.47) 

E, - -  v (i~co#~ - li + 1 + v2co -~ (1 - ~) (1 + ~ 2 )  to n3~eE �9 

The results given below then  follow for the l imiting cases co -+ ~z and  co ~+ 0. 

High ]requeney (co --> oz) 

R e  (qD = co 

--Ira (qu) = ~ so + T ss 

R e  (q.) = fl~ 

- - I m  (qw) - -  

2 

V; 
--Ira (q~,) = ~ - ~  

Low/requency ((9 -~ O) 

( ) 
502 

- - I r a  (q~) = -~- (so + ~%%s) 

1 nl~#~sEco2 - - I r a  (qw) = -~ 

Re  (q0) = V 2  [1 + 1 ( 1  - - -  

- I r a  (qo) = Re  (qo) 

~32 

(3.49) 

(3 .50 )  

(3.51) 

+(1 + ]-~-- s,) ~ }  ~] 

- - I r a  (q~) = Re  (q~). 

(3.52) 

Clearly for e~ ---- 0, (3.49)--(3.52) agree with [13]. :For ez ~= 0 they  agree with the 
results of [6] except  for the  a t t enua t ion  coefficients of the  displacement  compo-  
nents ,  given b y  - - I r a  (qu) and  - - I m  (qw). :Nayfeh and  Nemat -Nasser ,  however,  
s ta te  t h a t  the  waves  corresponding to the displacement  components  p ropaga te  
una t t enua t ed  [6, p. 113]. 
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I I t  (Eq. (2.22)): As Nayfeh  and Nemat-Nasser  have noted, (2.22) follows 
directly f rom (2.21)s,4 if we subst i tute in the lat ter  v, E3, - -n l  for w, E2, nl, and  
n3 0. The expressions for qv ~ and  q2 = s~ can then  be obta ined by  making the same 
changes in nota t ion  of (3A6) and (3A8). They  are recorded as (46~, b) in [6]. 
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