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Abstract. A method of general perturbations, based on the use of Lie series to generate approximate 
canonical transformations, is applied to study the effects of gravity-gradient torque on the rotational 
motion of a triaxial, rigid satellite. The center of mass of the satellite is constrained to move in an 
elliptic orbit about an attracting point mass. The orbit, which has a constant inclination, is free to 
precess and spin. The method of general perturbations is used to obtain the Hamiltonian for the 
nonresonant secular and long-period rotational motion of the satellite to second order in 
n/coo, where n is the orbital mean motion of the center of mass and coo is a reference value of the 
magnitude of the satellite's rotational angular velocity. The differential equations derivable from the 
transformed Hamiltonian are integrable and the solution for the long-term motion may be expressed 
in terms of Jacobian elliptic functions and elliptic integrals. Geometrical aspects of the long-term 
rotational motion are discussed and a comparison of theoretical results with observations is made. 

1. Introduction 

Since the advent of artificial satellites, there has been renewed interest in obtaining 
analytical theories for the rotational motions of rigid bodies about their centers of 
mass when the centers of mass are constrained to orbit attracting primary bodies. 
Earlier works, dealing with natural bodies, include Laplace's (1829) and Tisserand's 
(1891) investigations of the rotational motions of the earth and the moon. 

Among the many recent works on the subject are those of Colombo (1964), Beletskii 
(1965) and Holland and Sperling (1969). However, the studies most closely related to 
the one discussed here are those made by Crenshaw and Fitzpatrick (1968) and Hitzl 
and BreakweU (1969). 

Crenshaw and Fitzpatrick developed a first-order, gravity-gradient theory for the 
complete rotational motion of a rapidly spinning, uniaxial, rigid body, the center of 
mass of which was required to move in a uniformly precessing, circular orbit about an 
attracting point mass. They used the theory of canonical transformations to obtain a 
solution to the unperturbed, free-Eulerian motion, derived a set of differential equa- 
tions analogous to Lagrange's planetary equations, and integrated these to first order. 
Hitzl and Breakwell used canonical transformation theory to study the rotational 
motion of a rapidly tumbling triaxial, rigid satellite, the center of mass of which was 
constrained to move in a fixed elliptic orbit about an attracting point mass, by applying 
an averaging procedure to the perturbing Hamiltordan. They studied the nonresonant 
and internally near-resonant effects of the gravity-gradient perturbations. 

Celestial Mechanics 6 (1972) 127-150. All Rights Reserved 
Copyright �9 1972 by D. Reidel Publishing Company, Dordreeht-Holland 



128 JOHN E. COCHRAN 

The mathematical model used in the current study extends that of Hitzl and Break- 
well to include effects of orbital evolution. That is, the plane of the orbit of the satellite's 
center of mass is constrained to precess and spin (movement of apsidal line) at con- 
stant rates ,(2 and e3, respectively. This problem will be called the 'triaxial problem' 
henceforth. 

The triaxial problem is studied using a slight modification of a new theory of general 
perturbations introduced by Hori (1966).* The method of general perturbations is 
used to obtain the Hamiltonian for the nonresonant secular and long-period rotational 
motion of the triaxial satellite to second order in n/coo, where n is the orbital mean 
motion of the center of mass and coo is a reference value of the satellite's rotational 
angular speed. The differential equations derivable from the transformed Harniltonian 
are integrable in terms of Jacobian elliptic functions and elliptic integrals. Geometrical 
aspects of the long-term rotational motion are discussed and a comparison of theo- 
retical results with observations is made. 

2. Coordinate Systems 

It is convenient at the outset to define certain coordinate systems which will be used 
in what follows. In Figure 1, five orthogonal coordinate systems with their common 
origin O at the center of mass of the triaxial satellite are shown. The OXYZ coordinate 
system is a nonrotating system to which rotational motion about O is referred. The 
Ox~176 ~ system is associated with the orbit of the attracting point mass P about O. 
It may be obtained from the OXYZ system by positive rotations through the angles 
f2 and I, the longitude of the ascending node and the inclination, respectively, of the 
orbit of P. The z~ is directed along the normal to the orbital plane. The Oxyz 
system is associated with the rotational angular momentum H of the satellite about 
O. The z-axis of this system is directed in the sense of H and the x-axis lies along the 
line of intersection of the XYplane and the plane normal to H through O, as shown 
in Figure 1 b. The Oxyz system may be obtained from the OXYZ system by rotations 
through the angles ~* and 0". The Oxuyir system is associated with both the 
vector H and the orbital system Ox~176 ~ It may be obtained from the Ox~176 ~ system 
by rotations through the angles ~ and 0~t. Finally, the Ox'y'z' coordinate system (see 
Figure l c) is such that its axes are principal axes for the triaxial satellite at its center 
of mass. It may be obtained from OXYZ, Oxyz, and OXl-lY~ZI~ systems by rotations 
through the angles (~, 0, ~b), (~b*, 0', ~b'), and (~b~t, 0', ~b') respectively. 

3. The Hamiltonian for the Triaxial Problem 

It is a straightforward matter to obtain the dynamical Hamiltonian H for the triaxial 
problem using the Euler angles ~, 0, ~b, as generalized coordinates. However, if this is 

* A theory similar to Hori's has been set forth by Deprit (1970) and much controversy has arisen as 
to the exact connection between the two theories. See, for example, Campbell and Jefferys (1970), 
Mersman (1971) and Henrard (1971). 
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Fig .  1. C o o r d i n a t e  systems.  

done (see Fitzpatrick, 1970), the form of Ho, the part of the Hamiltonian consisting 
of the rotational kinetic energy of the satellite about O, is not in a very simple form. 
Deprit (1967), following Tisserand to some extent, obtained a simpler form for Ho 
using cononical transformations. The same technique may be applied to the triaxial 
Hamiltonian H expressed in terms of ~, 0, q~, and their conjugate moments, to obtain 
the transformed Hamiltonian, 

H �9 __ 
1 [si~~b' 
2 

cos 2 ~b'l 1 p~, + V, 
+. -~ (P~,- P~,) H 2C 

where A, B, and C denote the principal moments of inertia of the satellite about the 
x'-, y'-, and z'-axes, respectively, and Po,=h-[H[, P0,=h cos0*, and Po,=h cos0* 
are the momenta conjugate to ~b*, qS', and ~/*, respectively. The term V which repre- 
sents that part of the potential energy due to the gravity-gradient torque which depends 
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explicitly on the orientation of the satellite is given by 

3 GMp 2 
V = ~ ~ [(A - B) cos + ( c  - B) cos z 3  (a) 

In Equation (1), G is the universal gravitational constant, Me is the mass of P, R is 
the distance form O to P, and ~ and ;g are the angles between the line segment OP and 

the x'- and z'-axes, respectively. Also, for an elliptic orbit, 

R = a (1 - e2)/(1 + e cos f ) ,  

where a, e, 
tively. 

and f denote the semi-major axis, eccentricity, and true anomaly, respec- 

0 

r - r 

0 
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X 
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Fig. 2. Spherical triangle for the transformation 
(r r ~t*, Pc,, P~,,, Pu,,) -+ (r d?n, VH, Pr PwH). 

In this paper the orbit of P is assumed to precess at a constant rate s For earth 
satellites, g) is (9(10- a) compared to n, so that it is convenient to treat the precession as 
well as the gravity-gradient torque as a perturbation. This may be done by referring 

the rotational motion to the OXYZ system using the angles f2, I, OH, OH, dPH, O' and ~b'. 
The angles f2, I, OH, OH, and CH can be introduced through a canonical transforma- 
tion. 

By referring to the spherical triangle in Figure 2, sin r cosr  *, sin ~* and cos ~ * 

may be replaced by functions of f2, I, OH, OH and ~H as follows: 

where 

sin r  a l sin Cn + b l cos CH 
COS r = al cos ~bn -- bl sin Cn 
sin ~* = c 1 sin f2 + dl cos f2 

cos ~* - cl cos f2 - dl sin ~2, 

al = (cos I - cos 0* cos 0B)/sin 0* sin OH 
bl = sin I sin 0H/sin 0* 
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C 1 = (COS 0 n - -  COS O* C O S / ) / s i n  O* sin I 
d l = sin OH sin On/sin O* 

cos O* = cos OH cos I -- sin On sin I cos OH. 

Furthermore, by using the differential identity, 

de* = d e n  - -  COS 0* (dO* - dO) - cos OH d~[/n 

obtained from the elementary 
differential condition, 

spherical trigonometry of Figure 2, we find that the 

Po, dO* + Pr dqS* - H* dt = Pox d~tH + Pr dCH -- HH dt, 

which is sufficient for a canonical transformation, is satisfied by 

Pox = PO. cos OH 

P4m = P4,* 
HH = H* - ~ (Pox cos I -  x / e ~  2 - P~x sin I cos OH)- 

(2) 

In the last of Equations (2), the new Hamiltonian HH is to be formed as indicated, 
after expressing H* in terms of the variables (r CH, OH, P,~', P4~x, P01,) and the time t. 
It turns out that the angle f2 does not appear in Hn, and since X), the constant rate of 
orbital precession, is small, the second term Hn will be treated as a perturbing Hamil- 
tonian along with V(dp', dpH, t//m Pr Pcx, P,/m, t ). 

For sufficiently small values of the eccentricity, the functions o f f  which appear in 
V may readily be expressed as functions of the mean anomaly, M=n( t - to ) .  The 
resulting Hamiltonian will, because of M and 05, be non-autonomous, but by treating 
M and 05 as additional coordinates and thereby artificially increasing the order of our 
system, the explicit dependence of HH on t may be removed. The reason for doing this 
is that we desire an autonomous Hamiltonian as a starting point for application of 
the perturbation scheme which we shall employ here. 

In addition to eliminating t, we shall introduce the dimensionless variables P 1 -  

Po'/Iocoo, P2-P4,~/Iocoo, and P 3 - P 0 x / I o c o o ,  where I o has the units of a moment of 
inertia and COo is an angular speed such that, at t=  t o, h=IoCO o and the rotational 

1 2 kinetic energy, T= 7Iocoo. We also introduce the notation, A -  A/I o, B -  B/Io, C -  C/I o, 
Q1 --- r Q2 --r Q3 --#~H, Q 4 -  M, and Q5 -05. Using these definitions, removing the 
explicit time dependence from H H, dividing by IoCO 2, and letting F denote the negative 
of the result, we have 

where 
F = Fo + eF1 + e,2F2, 

F O  ~ ~ - -  

1 S i QI I 
2 

E l  - -  u P 4 .  

f 2 
2 

[ ( x -  cos = + ( c  - B) cos z] + 
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+ ( - ~ ) ( - ~ ) [ P a c ~  _ p2 sin I cos Q3] - 

and (a/R) a COS2~ and (a/R) 3 COS2)~ a re  functions of the Qj, j =  1, 2, 3, 4, 5, and Pj 
j =  1, 2, 3, and do not contain t*--tocoo, the new independent variable, explicitly. The 
small parameter e-= n/co o has appeared naturally during the introduction of dimension- 
less variables and inertia parameters. 

The problem embodied by F will be approached as a standard, general perturbation 
problem treating F~ and F2 as perturbing Hamiltonians, and using the method of 
general perturbations which will now be described. 

4. Method of General Perturbations 

We will study the triaxial problem using a method of general perturbations which is 
based on the use of Lie series to generate approximate, direct canonical transforma- 
tions. The procedure we will follow is essentially that developed by Hori (1966). 

A convenient way to introduce the method is by considering the following auto- 
nomous, canonical, differential system: 

where 

dPjd'c = c~S/c3Qj ; 
d2Jd'c = -  c3S/c3Pj ; 

P j  ( 0 )  = x j  

Q j ( 0 )  = yj (j = 1, 2, 3,... ,  n), 

S = S (P1, P2, ..., Pn, Q1, Q2, ..., Q,; e) 

(3) 

is an arbitrary function except that it must be such that a solution to the system (3) 
exists in a domain, 0 _  [z[ <_ 6, ONe<_6, and should have a convergent Taylor series 
expansion about e - 0 .  t In Equations (3) e is not a true variable, but a small positive 
constant and z, the independent variable, is not necessarily the time. 

For convenience, we let 

( X ~ X 1 X 2 X 3 . . .  X n , 

P = (P1 P2 P3 ... p.)T 
Y = (Yl Y2 Y3 "'" y.)r  

Q = . . .  

where the superscript T denotes the transpose. Furthermore, a function f(P1,P 2 ,  " " ,  

Pn, Q1, Q2, Q3, ..., Qn; ~.) will be denoted byf(P ,  Q; e) and the notation 

c3S ( aS ~?S ... ~S ~ T 

will be used. 

t Since we are more  concerned with obtaining a ' formal '  solution, no a t tempt  to prove a part icular  
function S has such properties will be made. 
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The powers series solution to (3) is of particular interest. 
such a solution the additional notation 

To implement obtaining 

D ~  ~ v 

D~s~ = {~, s}  
D ~  - ({~, s} ,  s}  

D~ = {Ds ~ - ~ , s } ,  

where {v, S} denotes the Poisson bracket of v, a differentiable function of the Pj and 
Q j, and of S, is adopted. Then, the power series solution to (3) may be written as 

O(3 

P = x +  k! 
k = l  

CX3 

- -  D~x  

Q = y + k!D~Y �9 
k = l  

(4) 

In Equations (4), S=  S(x, y; e). 
It may also be easily shown that an indefinitely differentiable function, 

=f(Px, P2, ..., P,,, Q1, Qa, ... Q,,), has the series representation 
f(P, Q)= 

f ( e ,  Q) = 

oO 

f (x ,  y) + k! 
k = l  

D~f . (5) 

Furthermore, because the system (3) is autonomous, we have 

and 

0(3 

x = p +  ~-~ 
k = l  

oO 

y = Q + ~"~ 

k = l  

_ ~ ) ~  

k! 

_ ~)k 

k! 

D~P 

k DsQ 

O0 

-k Dk f (P' Q)'  

k = l  

(6) 

(7) 

where S-- S (P, Q; e). 
Equations (4) represent infinitely many canonical transformations and equations 

(6) represent the corresponding inverse transformations. The particular transforma- 
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tion we will use is that obtained from (4) by letting z = e, 

o0 

P ( e ) =  x + 

k = l  
oo 

F_, k 

k i 

8k 

Q (e)= y + k iDksy. 
k = l  

(8) 

Equations (8), along with the corresponding transformation equation, 

0O 

8k 

f (P, Q) = f (x, y) + ~c! Dksf (x, y), 

k = l  

(9) 

for an arbitrary functionf(P, Q), form the basis of our perturbation method. 
Let S be expressed in the form S=  SI(P, Q) + eS2(P, Q) + e2S a(P, Q) + . . .  and let 

F(P,  Q; e)=Fo(F, Q)+eFI(P, Q)+e2F2(P, Q)+ . . .  denote the Hamiltonian for an 
autonomous dynamical system which has a solution when e = 0. Then, if we transform 
from the canonical set (P, Q) to the set (x, y) using the autonomous transformation Equa- 
tions (8), we have F*(x, y ; 0 =  F(P(x, y; ~), Q(x, y; ~);0 as the new Hamiltonian. It 
then follows, from (9) and the expressions for S and F(P, Q; 0, that 

where 

F* (x, y; e) 
o0 

~ * *  = e F k (10) 
k = 0  

F~ = F o (x, y) 

F~ = F 1 (x, y) + {Fo, $1} 

F~ = F2 (x, y) + -} {F 1 + F~, $1} + {F o ,s2} 
(11) 

We have given only the first three terms of F* explicitly, since only these will be used 
here. 

For a particular F(P, Q ;e), it is our aim to choose the functions Sk in such a man- 
ner that the differential equations associated with F* are more tractable than the orig- 
inal canonical equations. If F1 contains both momenta and coordinates, the partial 
differential equations which are obtained by expanding the Poisson brackets in Equa- 
tions (11) may be complicated, thus making the choices of the Sk difficult. To simplify 
the brackets {Fo, Sk} and implement the choices of the Sk, we shall introduce an auxi- 
liary transformation into Equations (11). This transformation is defined by a com- 
plete integral of the Hamilton-Jacobi equation, 

0S ) c~q 0 (12) 
Fo - oy, y +c~--) - =  . 
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The complete integral 8--~1 t + g i (~ ,  y), where 
canonical variables, defines the transformation 

= ( a l ,  ~2, . . . ,  ~n)  T and the ~j are new 

x = -  c~ /~y  

t + / ~  = -  ~ g ~ / ~  

Bj = -  ~ g ~ / ~ j  (j = 2, 3,.. . ,  n), 

(13) 

and the new Hamiltonian, K*(~, ~, t;e)is given by 

where 

CO 

K*(~, ~, t; e) = E eKk,k �9 
k = l  

K~ = F* (x (~, ~, t), y (~, ~, t)). 

(14) 

Since a Poisson bracket is invariant under a canonical transformation, by using 
Equations (13) and the fact that Fo = -~1,  we find that Equations (11) become 

K~ = Fi  (x (~, ~, t), y (~, ~, t)) - 0~/0fli 

K~ = F2 (x (~, ~, t), y(~, ~, t)) + �89 1 + F~, Si} - OSa/Ofll 
(15) 

We now try to choose the Sk successively, in such a manner that our transformed 
dynamical system is easier to solve than the original system. If the Hamiltonian 
F(P, Q ;e) is periodic in the Qj with period 2re, an acceptable choice of S~ is 

$1 = f F~p dill ,  (16) 

where Flp is the part of F~(x(~, ~, t), y(~, ~, t))which contains fl,. In general, we will 
let the subscript s denote the part of a function of ~, ~, and t which does not contain 
/~l explicitly, while the subscript p will denote the remainder of that same function. 
Then, along with (16), we have, through second order in e, 

K'~ - F ls 

$2 = t" IF2 + �89 {F1 
I t /  

-J- S1}]p 

= F2s + �89 {F1 + S1}s. 

(17) 

If K~ and K~ are chosen according to (17) and F is periodic in the Qj with period 
2re, they will not contain t or fil explicitly. Thus, through second order in e, we have 

K* (N,-, f12, fia,--., f t , , - )  -- constant, (18) 

where a dash is used in place of a variable to emphasize its explicit absence from K* 
and since fll is ignorable, we also have 

o r  

~l = O K * / @ i  = O, 

i = constant, (19) 
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which is a new integral of the system. The remaining canonical equations are 

/aB (j ) o~j = OK* j = 2, 3, ..., n 
~j = - 8K*/8~j (j = 1, 2, ..., n). (20) 

If Equations (20) are integrable, the problem is solved through second order in e. If 
they are not integrable, but the equations, 

(21) 

are integrable, then the procedure just described may be applied to the Hamiltonian 
K*(R, ~; e) in another effort to obtain additional integrals and/or integrable equations. 

It may be seen that each time the method we have outlined is applied, two canonical 
transformations, one approximate transformation via Lie series and one exact, auxil- 
iary transformation using the solution to the Hamilton-Jacobi equation for the 'un- 
perturbed' problem are made. The method given here differs from Hori's method 
(Hori, 1966) in the use of the auxiliary Hamilton-Jacobi equation and the invariance 
of the Poisson bracket under a canonical transformation to obtain the simplified Equa- 
tions (15). 

It should be noted that the auxiliary transformation may not always be needed. If 
F o is a function of only the Pj, then the brackets {Fo, Sk} will not be very complicated 
and the Sk can easily be chosen so that one or more of the yj are eliminated from F*. 

5. Long-Term Motion in the Triaxial Problem 

5.1. TRANSFORMATIONS 

In applying the perturbation method just described to the triaxial 
make a second-order canonical transformation defined by 

P = x + e {x, S:t} + e 2 [{x, $2} + �89 {{x, S:t}, $1}]  

Q = y + e {y, $1} + e 2 [{y, $2} + �89 {{y, $1}, S1} ] �9 

This gives us the new Hamiltonian 

where 

F* (x, y; e) = F~ + eF~ + eZF~, 

[(q 1 F ~ = - � 8 9  si Y * + B  

F~ = - x4 + {Fo, Sa} 

E ( x  cos  ( c  - cos  2 z + 
Q=y 

2 cos I - x/x2 - x 2 sin I c o s  Y3] - 

x 4 + �89 {F, + e~, S:t} + {Fo, $2}. 

problem, we first 

(22) 

(23) 

(24) 
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The second and third of Equations (24) are to be simplified by choosing S~ and $2, 
respectively. Clearly, the second equation is simple if we choose S~ = 0, and this choice 
simplifies the third equation. The choice of $2 is more difficult. 

Since Fo contains xl and y~, the expanded form of the Poisson bracket {Fo, $2} in 
terms of x i and the yj is complicated. To simplify this form, we introduce an auxiliary 
canonical transformation which is defined by the complete integral, 

Yl 

S = ~ t * - ~   yj-j dye, (25) 
j = 2  

YlO 

of the Hamilton-Jacobi equation, 

Isin2yl cosZyil[(.~')2 (.c3S)2 ] (0') z ~S 
2A t 2B ~-Y2 \ 0 y l J  - ~Yl /2(7 -t at* 

- 0 .  

In (25), ~i = - F o (  x, Y) and ~j,j= 2, 3, 4, 5, are new canonical variables, while 
(26) 

where 

~ C  (a' + b' sin 2 Yl) 

xl = (c' + d' sin Yi) ' 

a ' =  ~{ (2/~,  - ~22) 

b' -2 ( j  B) 
= (X 2 

=  r(B- 6)  
d' = {2 (A - B) 

(27) 

and Yl owill be specified in what follows. The plus sign is taken on the radical in (27), 
since by proper labeling of the principal axes we may make 0 < 0' < n/2 and since 0 ' =  
=cos -1 (x~/xz) should also be in this range for small perturbations inPa and Pa-* 

The transformation equations derived from g(~, y, t), according to (13), in addition 
to (27) are 

where 

xj=~j (j = 2, 3, 4, 5) 

t* + fli = 11 

Y2 -- f12 = 12 

yj=flj ( j  = 3, 4, 5 ) ,  

Y l  

II= f x//(a 
AB x//C dyi 

' + b' sin 2 Yl) (c' + d' sin 2 Yl) 

1 2  - -  

(28) 

YlO 
,, (29) 
" x /C[B  + ( A -  B)cos Yl] dy, 

x/(a' + b' sin 2 Yi)(c'  + d' sin 2 Yi) 
YlO 

t Only motion which does not correspond to a separatrix polhode will be considered here. See, for 
example, MacMillan (1960). 
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The integral I 1 may be simplified by making a change of variable defined by U 

t any~=co t~ ,  where U = [ X ( / ~ - ( 2 ) / B ( A - C ) ]  ~. Setting y~o=-zc /2  so that ~o=0 ,  
f r o m  ( 2 9 ) ,  w e  g e t  

0 

X/1 -- k 2 s i n 2 (  
(30) 

where u = 

/ ( / ~  -- C )  ( 2 / ~  1 -- ~2)  

XBC 
k2 = ( A -  B)(~2 _ 2C~,) 

(/7 - C ) ( 2 A ~ ,  - ~2)"  

From (30) and the theory of elliptic functions, it follows that sin ( = s n u .  We note that 

- fli is the value of t* when Yi o = - re/2. 
Using the above results and formulae in Whittaker and Watson (1963), we find that, 

if c~ 2 - C(A - B ) / A ( B -  C) and k 2 s n i a -  _e2 ,  where i = x / -  1, then 

12 = iZ (ia) )t (t* + fii) + ( i /2)In ~ - - ~ -  ia " 

In Equation (31), Z(ia) is Jacobi's Zeta-function and O(u+_ ia) are Theta-functions. 
The coefficient of (t* + fla) in Equation (31) is the mean rate of precession of the z'-axis 

about the z-axis if e = 0 and ~ - 0 .  
Using the above results, and setting 

we may write (27) as 

x 1 = (~2/1~ dn u. (32) 

Also, since sin ~ - sn u and cos ~ - cn u, we have 

s in  Yi  = - c n u / x / l  + cr sn2  u 

cos Y l = U-1 sn u/x / i  + cr 2 sn 2 U . 

(33) 

The solution for the unperturbed problem, embodied in Equations (28), (31), (32), 
and (33), corresponds exactly to that given by Whittaker (1965) for a freely spinning, 

triaxial, rigid body. If e = 0  and ~ = 0 ,  Yi =4)' is the angle of spin, Y2 =~bB is angle of 
precession, and 0' = 0' is the nutation angle of the satellite. 

When the equations for the transformation (x, y) >(~, p) are substituted into the 

last two of Equations (24), we get 

F~ = - ~ 4 -  aS1/•fll 
F~ = F2 (x (~, ~, t*), y (~, ~, t*)) + �89 {F 1 +r ,sl} -  S2/ fll 

(34) 
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As pointed out earlier, the obvious choice for S~ is $1 = 0 ;  for, then we have, from (34), 

F~ = - ~ 4  

F~ = F 2 (x (~, p, t*), y (~, ~, t*)) - ~ $ 2 / ~ 1 .  

In principle, the explicit substitution of the transformation equations (27) and (28) 

into F* can be carried out using the expressions 

and 

COSy = COS# ( c o s y  2 cosyl  - sinY2 s inyl  cos 0') - 

- cos 0n sin (sin Y2 COS yl + COS Y2 sin yl cos 0') + 

+ sin On sin # sin 0' sin y 

cos X = cos # sin Y2 sin 0' + cos 0n sin # cos Y2 sin 0' + sin On sin # cos 0' 

whe re / / - -=y3 - - (~+f ) ,  COSO'=xl/x2, and C O S O H ~ X 3 / X 2 .  This will not be done here; 
however, it is fairly easy to show that cos 2 7 and cos 2 Z have the forms 

and 

cos2 7 = �88 - 3 cos 2 On) sin 20' sin 2 y~ + �88 - sin 20' sin 2 Y l) x 
2 2 2 

x sin2 On COS 2# + Z Z Z BijkCOs(iyl  + kY2) 
i = - 2  j = - 2  k = - 2  

2 2 

cos z = 22 Z 
j = - 2  k = - 2  

Cjk cos ( ju  + ky2) 

where Booo=�88 +cosZ0n), Coo=1[(1 +cosZOH)+(1-3cosZOn)COS20'] ,  Bi2o=0,  

C2o=�88 sinZ0n(1- 3 cos 2 0'), and Bijo and Cjo are zero for j  42.  
Now, yz is monotonically increasing with t* and, if the possibility of internal reso- 

nance (Hitzl and Breakwell, 1969) is not considered, the parts of cos2y and cos /x  
which are free of/~1 are those parts of the terms outside the summation signs which are 

free of ill, plus those parts of Booo, Coo and Cao free of ill. To determine the parts 
of these terms which are free of ill, we must consider only the functions cos 2 0' and 
sin20t sin2 yl. 

We have cos 2 0 ' =  R 2 dn 2 u and sinZyl = c n  2 u/(1 -a t- 0~ 2 s n  2 u ) .  Hence, by using cos 2 0' 

= 1 - sin2 0 ', d n 2 u =  1 - k  2 s n Z u  and the identity t 

dn2u - E / K  + Z' (u) ,  

where Z ' ( u ) = d Z ( u ) / d u  is periodic in u, 

sin2yl free of ill are 

we find that the parts o f  c o s  2 0 '  a n d  sin 2 0' 

and 

COS 2 0 t --- ~2E/K 

sin 2 0' sin 2 Yl = 0 2 (E - k 'ZK) /k  2 , 

(35) 

(36) 

respectively. In (36), (~2 =/~(~2_ 212~1)/[~2(/~_ C)] and k '2 = 1 - k 2. 

t Here we have used the facts that E (u )=  ~ dn2u du and E(u)=(E/K)u + Z(u), where E(u) is the 
incomplete elliptic integral of the second kind and K and E are complete elliptic integrals of the first 
and second kinds, respectively. 
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Using (35) and (36) along with the expressions for c o s 2  ]1 and cos 2 Z, we obtain 

where 

and 

K *  (~,  f13, f14, f15 ; g,) = - 6,84 - g2 ((_~)/Yl) ((Do~it) 85 -Jr- g2 [ K o  - <VG>>] , 

gf2  = ( ~ / i t )  ( (D0/n)  [8  3 COS I _ N / 8  2 _ o~ 3-2 s i n / c o s  f13] 

(<VG)> = as(a/R)3 {(A + C -  2/~) (1 + cos 2 On) + (1 - 3 cos 

+ (A + C -  2/~) (1 - cos 2 0u) cos 2fi} 

A = .B[(E/K) ( B -  C ) I B -  1] (2A81/82 - 1) + A - / ~  

0,t) A + 

fi = f13 -- Iris + f(fl4)] �9 

(37) 

The generating function $2 is given by 

$2 = - f [VG(x (~, p, t*), y (~, ~, t*)) - << VG)>] dfl~, (38) 

where VG=(1/n 2) V. Exact analytical evaluation of the integral in (38) appears to be a 
very formidable task and has not been done; however, an approximate analytical 
evaluation has been given by Cochran (1970).The numerical evaluation of the short- 
period perturbations derivable from $2 involves only numerical quadratures, and is 
not considered in this paper. Only secular and long-period perturbations will be dis- 
cussed. 

We note that K* contains neither fl~ nor f12, so that the new canonical equations are 

d~i/dt* = 0 
d~fldt* = r 

dflj/dt* = - OK*/O~j 

( j =  1,2) 

(j = 3, 4, 5) 

( j -  1, 2, 3, 4, 5). 

(39) 

The integrals, 8~ =constant and 8 2 =constant, of Equations (39) express the facts that 
the average values of the rotational kinetic energy of the satellite and the magnitude 
of the satellite's rotational angular momentum, respectively, are constant. 

Equations (39) do not appear to be completely integrable. To obtain equations 
which are integrable, we make the approximate transformation, 

= ~ + ~ (os~ /an )  

= ~ - ~ (a s~ /ag ) .  
(40) 

The function Sf  is at this point arbitrary and the new Hamiltonian is 

where 
K**  (~, n; ~) = ~K~; * + ~Ir  

K t *  = I ( t  (~, n)  - a s ~ / a , ~ .  
(41) 

Since the second of Equations (41) is a simple partial differential equation, no auxiliary 
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transformation will be made. Instead, we let K~p 

r/4 and choose 

s: f ,  = K2p dr/4. 

denote the part of K~ 

To d)(e3), S~ is given by 

where 

= f ,  [(9) e sin r/4 + (~2) e2 sin 2rl4 -Jr- (1-Lg) e sin (2r/3 -- 
3 q- f2 {[ 16 -k (-~2) e23 sin (2r/3 -- 2r/5 2r/4 ) -- 

- (1-~) e sin (2r/3 - 2r/s - 3r/4) - (-~4) e2 sin (2r/3 -- 2q5 

A=(A+C- 
A=(X+C- 

2/~) (1 + cos 2 On) + (1 - 3 cos 2 On) A 

2/? - 3A) (1 - cos 2 On). 

which contains 

(42) 

2q5 - r/4)] + 

4q4)}, 

In the expressions for  f l , 2  , A is to be obtained by replacing ~1 by ~1 and ~2 b y  ~2 in 
the last of Equations (37). Also, we have adopted the notation cos 0n-~3/~2.  

The perturbations in the variables ~j and flj, which may be computed using Equa- 
tions (40), may be termed 'quasi-long period perturbations' since they are perturba- 
tions with periods of order 2rc/n. We also note that the amplitudes of the seperturba- 

tions are of order e. 
Using the choice, (42), of S~', we have, from the last of Equations (41), 

where 
K~* = K~ ({, q) - (os/n)(coo/n) ~5 - (VG), 

K~(~,, n )=  (n/n)(O9o/n) [g3 c o s / -  x/~ 2 - ~2 s in/cosr /3 ] 

(VG) -- -~(1 -- e2) -3/2 [(A -t- C - 2B) (1 -t- COS 2 OH) -Jr- 
+ (1 - 3 cos 2 On) A]. 

(43) 

In the second of Equations (43), ( 1 - e 2 )  -3/2 is the part of (a/R) 3 which does not con- 

tain r/4 = M. Note that the rotation of the apsidal line of the orbit of P does not affect 
the long-term rotational motion of the satellite. 

The new Hamiltonian K** does not contain r/l, r/2, r/4 or r/s, and the new canonical 

equations are 

d~ jd t*  = 0 (j = 1, 2, 4, 5) 

dc~3/dt* = c3K**/&13 
dq/dt* = -  aK**/c~,. 

(44) 

Hence, ~1, ~ 2, ~ 4, and ~ s are constant. Also, from the last two of Equations (44),we 

immediately obtain 

r/4 = n t  + r/40 = M 

r/5 =cbt + r/50 =o5. 
(45) 

These last results represent merely the recovery of our assumed variations for M and o5. 
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The rest of Equations (44) can also be integrated. Their solution, which will now be 
considered, determines the long-term rotational motion of the satellite. 

5.2. LONG-TERM MOTION 

Since a large portion of the previous work on problems of rotational motion dealt 
with uniaxial satellites, during the course of the work which led to this paper, a set of 
canonical variables which may be related to uniaxial variables was introduced for 
comparative purposes. The variables in this set are 

where 

L j = ~ j  (j = 2, 3, 4, 5) 

z, = .~(t* + n,) 
12 -- (~2/A-) (t* + tl~) + tlz 

lj = r/j (j = 3, 4, 5), 

i = ( B -  c)LI/ C. 

For the unperturbed, uniaxial (A=/~) case, ll = dR', 12 = dRn, 13 = @n, L1 =P,~,/IoCOo, 

L2 = P.~JloCO o,and L 3 = Pon/loCOo. 

The transformation Equations (46) involve t*, so that, when expressed in terms of 
the lj and the Lj, the transformed Hamiltonian,/~, is given by 

P = - �89 (B - C)  L Z / B c  - L22/2A + K** (~ (L), 11 (L, 1); e), 

and may be written explicitly in the form, 

where 

P = - � 8 9  ( B -  O) L]/BO- I ~ I 2 X -  ~L, - 8 ~ (chin) (COo~n) 

+ [aoL  + bo - G cos + coL  + do], 

a o = (~/n)(COo/n ) cos 1 

b o -- ( ~ / n ) ( C O o / n ) s i n I  

c o = - 3 ( 1  - -  e2) -3 / z  ( B  + 0 - -  

do = - ~ ( 1  - e 2 )  - 3/2A o 

A o = A - A + B .  

2A  + 3Ao) /G  

L s +  
(47) 

(48) 

Since t* is absent form/~, we have the first 
expressed in the form 

integral, F =  constant, which may be 

~L~ + 3L3 + ~ = -  ~/LZ2 - L 2 cos 13, (49) 

where fi= co/bo, 3 = -ao/bo, and ~ is an arbitrary constant. Note that since 11 and l z 
do not appear in F, L1 and L2 are constant. Level curves for the long-term motion of 
a typical triaxial satellite (Pegasus A) are presented in Figure 3. 
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I- 3 
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~/z\ \ \ ~ I / / A.,,z -- I 

Fig. 3. 

~ I 
0.4 

A 

Level curves, F(L3, l z ) =  constant. 

To obtain a geometrical interpretation of the integral (49), we let i ~ jo, and k ~ denote 
unit vectors directed along the positive x ~ yO., and z~ respectively, and define 
a vector L by 

L -  Lxoi ~ + Lroj ~ + Lzok ~  

= x/L 2 - L 2 sin 13 i ~  

Then, (49) becomes 

~ L  2 - L 2 cos  13] ~ + L3 k~ . 
(50) 

,, 2 Lro = aLzo + 3Lzo + d. (51) 

Equation (51) represents a family of parabolic cylinders which open in either the positive 
or negative y~ Thus, the vector, L, which may be construed as the averaged 
rotational angular momentum (nondimensionalized) of the satellite, must change in 
such a way that the projections of its terminus onto the y~176 form a family of 
parabolas. 

Since L 2 is constant and the magnitude of L, we have 

2 2 L2o + Lyo + Lzo = L~ = constant. (52) 

Equation (52) represents a family of spheres with origins at O. 
For any particular problem, with given initial conditions which define the initial 

state of the rotational motion of the satellite, we have, according to (51) and (52), a 
unique parabolic cylinder and a unique sphere. The intersection(s) of these two sur- 
faces is (are) the locus (possible loci) of the terminus of L. A typical example is shown 
in Figure 4. If the parabolic cylinder penetrates the sphere as shown in Figure 5b, 
there are two possible loci. The 'occupied' locus may be determined from initial condi- 
tions. 

To determine when the terminus of L occupies a given point on the line of inter- 
section of the sphere and parabolic cylinder, we must obtain an integral involving t* 



144 JOHN E. COCHRAN 

Z 0 

Locus of k 

yO 

Fig. 4. 

X o 

A 

Geometrical representation of the integrals Luo = dtLzo 9 + bL~o + 
and Lzo2 + Luo 2 + Lzo 9' = L9 2. 

explicitly. From (47) and (50), we have 

d L 3 / d t * =  e2boLx o , 

2 -L~ .  Using (51), (52), and (53), we get where L2o = L 2 - Lyo 

d L 3 / d t * =  +_ e2box /L2  - L 2 _ (ilL 2 + [~L3 + 0) 2 

(53) 

(54) 

which, as Holland and Sperling (1969) have pointed out, indicates that L3 is a function 
of elliptic functions of t*. It has not, to the author's knowledge, been pointed out, how- 
ever, that the roots of the quartic equation 9 ( L 3 ) = L Z o = L Z - L ~ - ( d L 2  + 3L  3 + 0 ) 2 =  
= 0  are the values of L3 at which the projections of the parabolic cylinder and the 
sphere on the yz~  (x  ~ =0) intersect. This is an important piece of information, 
since an understanding of the nature of the roots of 9(L3)= 0 is necessary for the inte- 
gration of (54). 

Excluding the rare cases in which the parabolic cylinder and the sphere are tangent 
at a point,* from geometry (see Figures 5a, b), it is obvious that, for real motion to occur, 
9(L3)=0 must have either two or four real roots. It follows then, excluding the rare 
cases as stated above, that there must be two possible forms of the solution to (54). 

5.2.1. Case 1. Two Dist inct  Rea l  Roo t s  

When 9(L3)=0 has two real 
z3 = a l  + ibl and z~ = a l  - ibl 

1954, p. 153) 
A~ + A / c n  t~ 

L 3 = 
A3 + A 4 c n u  

roots, zl and z2, zl > z2, and a pair of complex roots, 
(see Figure 5a), we find that (see Byrd and Friedman, 

(55) 

* These cases correspond to stable or unstable orientations of L. 
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L 
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o L 
Z o 

- Ly o ( 0 " L yO 

( a )  ( b )  
A 

Fig. 5. Projections of the integrals Luo = g~L 2 zo + bL~o + O. and L2x o -t- L2u o + L2z o = L2 2 onto the 
LuoL~o-plane. 

where 

A 1 = z iG 1 + z 2 G 2 ,  A2 = z 2 G 1  - -  z 1 G 2  

A3  = G1 + G2, A4 = Ga - G2 

G1 = x / (z l  - a l )  2 + b~, - a l )  z + b 2 . 

In Equation (55), we have also introduced the notation 

where 
= 6)(t* - C3), (56) 

= g , 2 C o ~ / G 1 G 2 ,  (57) 

a n d  C3 is an  arbi trary  c o n s t a n t .  

function cn a is given by 
Furthermore,  the modulus k of the Jacobian elliptic 

~:2 = [(Zl - z2) 2 - (G1 - Gz)Z]/4G1GE. (58) 

We may also determine 13, as a function of t* for this case. To do this, we use Equa- 
tions (49), (50), (53), (56), and (57) to get 

where 
tan/3 = -  d(dL3/dt~ ) x /G1G2/[ - ( f iLZ3 + ~L 3 + 0)], 

dL3/d~ = -  [A2A3 - A~A4] dn fi cn ~/(A3 + A4 cn ~)2 

(59) 

the quadrant  of l 3 being governed by the signs of the numerator and denominator of 
the right-hand side of (59). 

5.2.2. Case 2. Four Distinct Real  Roots 

If the parabola intersects the circle at four distinct points (see Figure 5b), the quartic 
equation g(L3) =0,  has four distinct real roots, say, zl > z2 > z3 > z4. The solution for 
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L3 in this case takes the form (see Byrd and Friedman, pp. 97 and 133). 

L3 = (Bi + B2 sn a fi)/(B3 + B4 sn a z/) 
where 

~ = d)(t* - C3) 

d) = e2 (Co/2) x / ( z  1 _ z3) (Za - z4). 

The modulus, ~, of s n  a ~ is given by 

= [ ( z ,  - 
- - - 

(60) 

and, depending on between which two roots L3 librates, the Bj have two possible forms. 

If zi _< L3 <_ Za, then Bi = zl(z2 - z4), B2 = z4(zl - z2), B3 = z2 - z4, and B 4 = z i - Z z . I f  

z4 < L3 < z3, Bi  = z4(zl  - z3), 9 2  = 2"1 - -  Z3, and B 4 -"  z 3 - Z 4. Values of 13 may be obtain- 
ed from 

where 

tan I a = - (d/2) (dLa/dfi) (z, - z3) (z2 - z4)/E-  (dL 2 + ~La + 0)], (61) 

dLa/dfi = 2 [BaB 3 - BIB4] cn z~ sn fi dn ~/(B3 + B4 sn 2 z~) 2 , 

and L 3 is given by (60). 
Now, L 3 - - L 2  COSOH and l 3 = ~ H ,  and the angles On and ~R define the orientation of 

L in space. We will use these results in the next section to predict the orientation of the 
rotational angular momentum of an artificial satellite as a function of time. 

The coordinates 11 and 12 exhibit secular and long-period perturbations. By using 
the integral (55) and the Hamiltonian/7, we may write 

d l l / d t*  = n l + *  Di L2 

d l 2 / d t * - -  Yt 2 + D2 L2 
where 

+ D3/(L2 + L3) + D4/(L2 - L3), 

~1 = [ ( / ~ -  C)//~(~] L 1 + e a-~(1 - e2) -3/2 (aAo/OL~) 

ft a = L a / A -  e 2--} (1 - e2) - 3/a [OAo/c?L a + co la  ] 

_ e2 ) -  (OAo/OL~)/L 2 D 1  - - 9 (1 - e 2 3/2 

D 2  _ _ _  g2 9 ( 1  _ e a ) - 3 / 2  [c~Ao/OLa)/L 2 _ 2co/L2 3 

D 3 - - -  e2bo  (dL22 - ~ L  2 d- (5)/2 
D 4 = -  e2bo (dL22 + ~L 2 + e)/2 
c~Ao/OL1 = (2Ao - A * ) / L I  

c?Ao/c~L2 - - -  (2Ao - A*) /L2  

A* = [ ( A -  B ) ( A -  (~)/A] (E - K )  K - E (E - k ' a K ) / k  'a 
k Z K  2 

(62) 

If either of the solutions, (55) or (60), for L 3 is substituted into Equations (62), ll 
and 12 may be obtained by quadrature. In fact, analytical expressions for ll and 12 
may be obtained (Cochran, 1970). These expressions involve elliptic integrals of the 
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second and third kinds and elliptic functions, and are not very well suited for com- 
putations. However, by merely knowing the forms of the solutions for lx and 12, we 
can conclude that the angles of spin and precession of the satellite will experience 
both secular and long-period perturbations. 

Since the potential V is composed of periodic functions, it is not surprising that we 
do not find secular perturbations in momenta Lj. Furthermore, referring to the trans- 
formations (P, Q) , (x, y), (x, y) , (~, II) and (~, I1) ' (L, 1) it is apparent that the 
Pj, to the order of the present theory, do not experience secular perturbations. Hence, 
the angles 0 '=cos  -1 (P1/P2) and 0n=cos  -1 (P3/P2), are not secularly perturbed by 
the gravity-gradient torque. 

6. Comparison of Theoretical Results and Observations 

The theoretical results derived in the preceding section have been used to predict the 
long-term changes in the rotational motion of the Pegasus A satellite. This satellite 
'tumbled' rapidly, so the assumption co >> n is valid. However, it was not spin-stabilized 
against gravity-gradient and other environmental torques. These torques produced 
decidedly non-Eulerian type motion, which was inferred from data obtained from 
on-board sun and horizon sensors. 

During the period of time we will consider, Pegasus A was spinning about its axis of 
maximum moment of inertia, so that its angular momentum and body-fixed z'-axis 
were colinear. The data obtained by the on-board sensors therefore may be used to 
describe changes in the rotational angular momentum. Since the data presented here 
(Holland, 1969) was obtained by statistically averaging acquired data over six-hour 
time periods and since the theoretical results were obtained by an analytical averaging 
process, what is compared here are two descriptions of the motion of L, the averaged 
rotational angular momentum of the satellite. 

The analytical descriptions of O~--cos-l(La/K2) and ~//--13 were obtained using 
Equations (55) and (59). The initial conditions used were h =  5.842 x 105kg-mZ/min, 
On=310 ~ 0n=88 ~ ~bn=~b'=0'=0. Other pertinent data used were A =  1.03068 x 
x l0 s kg-m 2, B =  3.334 55 x 105 kg-m 2, C=  3.94992 x 105 kg-m 2, n-- 3.71~ e=  

=0.1617, 1=31.7 ~ and ~2=-6.152~ The initial conditions for 0n and On 
were corrected for quasi-long period discrepancies using Equations (40) and (42). 

Theoretical and observed time histories of 0n and ~n are presented in Figures 6 and 
7. The small black triangles denote observed values while theoretical results are 
shown as solid lines. Excellent agreement can be observed for the time period of 17 
days covered by the data. Deviations of no more than 10 ~ in 0n and ~n are noted. 

The predicted period of the motion of the terminus of L on the sphere (Equation 
(52)) for the case examined is 22 days. Agreement of theory with observations during 
this time period is very good; however, since forces of other than a gravitational origin 
affect the satellite's motion, good agreement cannot usually be maintained for time 
periods longer than one or two predicted periods of the motion of L. In particular, it 
has been observed that the L-vector for the satelfite Pegasus A passed from the state 
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A 

given in Figures 6 and 7 into a state in which circulation in On occurred. Meanwhile, 
h remained essentially constant. From the theory developed here, we conclude that the 
parabolic cylinder (Equation (49)) must have been altered or at least shifted so that 
it completely penetrated the sphere. These changes are, of course, not predicted by the 
present theory. 

Another change observed in the rotational motion of Pegasus A was the transition 
from rotation, essentially about the axis of minimum moment of inertia, to rotation 
about the axis of maximum moment of inertia. As previously stated, the correspond- 
ing secular change in the Eulerian angle 0' is not predicted by a gravitational theory. 

7. Conclusion 

A problem of rotational motion has been studied by applying a new method of general 
perturbations based on the use of Lie series and complete integrals of Hamilton-Jacobi 
equations to generate canonical transformations. The model for the problem is that 
of a triaxial, rigid satellite the center of mass of which moves in a precessing Keplerian 
ellipse about an attracting point mass. The theoretical long-term rotational motion of 
the satellite Pegasus A has been determined and excellent agreement between theory 
and observations has been obtained over a period of time of approximatley three weeks. 
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