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ABSTRACT. Morphogenetic analysis of the orbits of the ideal first-order 

resonance problem in the neighbourhood of the origin. It is shown that 

for problems involving central and near-central resonance it is 

necessary to consider as parameter the cube root of the perturbation 

instead of the square root used in classical non-central resonance 

problems. 

I. INTRODUCTION 

One paradigm of the one-degree-of freedo m perturbed Hamiltonians of Celestial 

Mechanics is the ideal resonance problem, introduced and thoroughly studied 

by Garfinkel (!966, 1982). There, the disturbing function 

R = - cA(I) cos ~, e << I (I) 

is added to a completely integrable Hamiltonian F0([). 

The use of action-angle variables in the study of the ideal resonance 

problem limits the validity of the results, since the action I (defined by 

an integral over a closed path) is singular at I = 0. In order to study the 

resonant motions near the origin, we need to introduce the regular Poincar~ 

variables: 

k = /~ cos O, h = /~-I sin @. (2) 

In this paper we consider only a first-order resonance, that is, the 

case where A(1) is assumed to be linear with respect to /7". Then 

R = - eTlk , (3) 

where ~I is a constant (in fact the angles e in (I) and (2) do not need to be 

the same; it is enough to have a linear relation among them). 

In forthcoming papers formal solutions of dynamical systems with a 

central or near-central first-order resonance will be considered. One 

important feature in the solutions is the use of the cube root of e as a 

small parameter in the series expansions. This paper aims at showing the 

necessity of the use of the cube root of e instead of the classical square 
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root of e used in action-angle variables analyses, together with a morpho- 

genetic analysis (Thom, 1975) of the orbits of the simple problem stated in 

the next section. 

2. EQUATIONS. CENTRAL AND NON-CENTRAL RESONANCE 

We consider the Hamiltonian 

F = F 0 - eT1k (4) 

(T I > 0) where F 0 is the unperturbed Hamiltonian and -eT1k a linear pertur- 

bation. In this paper, for sake of simplicity, except where otherwise 

stated, we assume T I > 0. 

The unperturbed Hamiltonian is assumed to be regular and has the 

d'Alembert characteristic in canonical form (Henrard, 1974). Therefore its 

expansion is a power series in the action I. Half integer powers of I may 

not appear since they would be necessarily coupled to odd multiples of @ and 

F 0 does not depend on @. Hence 

I n012 + F 0 = w01 + ~ .... (5) 

where 

dF 0 d2F0 
= (6) 

w dI ' n = dl 2 

and the supercript 0 means the value of these functions at the point I = 0. 

Figure I shows the function F 0 in the neighbourhood of the origin in two main 

circumstances: 

(a) 0 and n O have the same sign, 

(b) w 0 and n o have opposite signs. 

In both cases we considered n o >0 (otherwise the figures are the same but 

turned upside down). When 0 = 0 the figure is similar to that of (a) but the 

curvature at the vertex is equal to zero. 

The motions that correspond to the unperturbed Hamiltonian are circles 

drawn with uniform velocity. The frequencies of these motions are given by 

= 0 + n01 + .... (7) 

Therefore the motions that correspond to (a) have finite frequencies and are 

direct while the motions that correspond to (b) are retrograde in the 

neighbourhood of the origin delimited by the minimum of F 0 and direct outside 

(up to the distance where another extremum of the function, if it exists, is 

reached). At the minimum (see Figure 2(b)) we have ~ = 0 (the resonance is 

non-central). When 0 = 0 (and n o > 0) the unperturbed motions are direct as 

in (a); however, the frequency tends toward zero when I goes to zero (central 

resonance). 
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(b) 

Fig. I. The unperturbed Hamiltonian F0(k , h). 

(a) 0 > 0, (b) 0 < 0 (in both cases n O > 0) . 

(Q 

F i g .  2. O r b i t s  d e f i n e d  by t h e  u n p e r t u r b e d  H a m i l t o n i a n  i n  t h e  p l a n e  (k,  h i .  

The dots represent a continuous sequence of equilibrium solutions. 

(a) {b) 

Fig. 3. Orbits defined by the perturbed Hamiltonian in the plane (k, h). 
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3. THE PERTURBED MOTIONS 

Since the Hamiltonian given by Equation (4) does not depend on the indepen- 

dent variable, the trajectories in the phase-plane are solutions of the 

equations F = C. These curves are the projections of the sections of the 

surfaces shown in Figure I by the planes C + 6T1k. It must be kept in mind 

that ~ is a small positive parameter and that, as a consequence, the 

sectioning planes have only a very small inclination. The families of curves 

that correspond to the surfaces shown in Figure I are shown in Figure 3. The 

denomination of the perturbed motions in case (b), in this paper, is the 

same as used in Sessin and Ferraz-Mello (1984) and is summarized as follows: 

The horseshoes and ovals around S I are librations: the polar angle 

oscillates around a fixed value (0 in Figure 3(b)) and the family of curves 

has no topological equivalent among the unperturbed curves of Figure 2; they 

correspond to a bifurcation produced by the resonance in the curves of 

Figure 2(b), and substitute the sequence of dots. The curves where the polar 

angle has a monotonic motion are circulations, inner and outer; they are 

topological equivalents of the curves in Figure 2(b). The limagon-like curve 

through the saddle point on the left is the separatrix. Finally, there are 

the small ovals around $2; from the kinematical point of view these motions 

are librations since the polar angle oscillates around a fixed value (7 in 

Figure 3(b)) but they belong to the same family as the inner circulations 

since there is no topological separation among them. For sake of precise 

identification, and taking into account these facts, we call them paradoxal 

librations. This set of curves is an analytic continuation of the inner 

circulations and form with them only one family of structuraly stable orbits. 

Let us now consider the transition cases between (a) and (b). Figure 4 

shows what happens along the k-axis. In the transition case the tangent plane 

touches F 0 at an inflexion point C where points A, B and D of case (b) 

coalesce. Figure 5 shows the resulting curves, which are the catastrophe set 

that separates the families of curves (a) and (b). In this figure the whole 

inner branch of the separatrix in Figure 3(b) coalesces into the saddle point, 

that becomes the cusp C. Inner circulations disappear and there remains only 

librations and outer circulations. Now, one may note that Figure 5 shows 

librations that envelope the origin; therefore, they correspond to motions 

where the polar angle circulates. In analogy to what has been discussed 

previously, for sake of precise identification these motions were called 

paradoxal circulations: they circulate but they are analytic continuation of 

librations and form with them only one family of structuraly stable orbits. 

One may also note that in the transition from (b) to (a) paradoxal circula- 

tions appear a little before the catastrophe, when the coalescing inner 

branch of the separatrix crosses the origin. 

The families of curves shown in Figure 3 have been discussed by several 

authors (Jefferys, 1966, Message, 1966; Henrard and Lemaltre, 1983; Sessin 

and Ferraz-Mello, 1984). Similar situations involving simultaneously first- 

and second-order resonances have been discussed in connection with the motion 
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Figure 4. Transition from (a) to 

(b) shown in the plane h = 0. 

Figure 5. Catastrophe set of the orbits 

defined by the perturbed Hamiltonian 
0 0 

when ~ = 6 L or w = -~L" 

of minor planets near the Kirkwood gap 2:1 (Andoyer, 1903) and with the 

motion of an Earth satellite in the vicinity of the critical inclination 

(Aoki, 1963; Jupp, 1980). 

4. A QUANTITATIVE APPROACH 

A quantitative approach of the morphogenesis described in Section 3 may be 

obtained through an analysis of the curves, starting from the unperturbed 

case, that is, from ~ = 0. For sake of simplicity F 0 is restricted to its 

leading terms; also, as the centers and saddles are on the k-axis we may 

take h = 0 and consider only the restriction of the function to this axis. 

We then have 

I w0k2 I n0k 4 F(k, 0) = ~ + ~ - ~T1k = C (8) 

and the centers and saddles are given by the cubic equation 

2c~1 
k 3 + 2 k 0 - 0. (9) 

n n 

The condition for having three real solutions is 

= -w 0 k* 
e & e L 3~ I , (10) 

where 

k* = /---/-Sw0 (11) 

3n 0 
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The roots of Equation (9) for e = 0 and s = s and the corresponding values 

of C are easy to calculate. These values are shown in Table I where, for 

sake of simplicity, we used 

C* - (0)2 
0 

n 

The results for a generic s are shown in Figure 6. 

(12) 

- I  

OC 

IC+OC 

PL+OC 

#i 

- %L 

Fig. 6. Locus of the singular points in the plane (C, s 

Points #I and #3 are centers and #2 is a saddle. 

(L = libration, C = circulation, I = inner, 0 = outer, 

P = paradoxal). 

It is noteworthy to say that the quantities k*, c L and C* introduced in the 

calculations are natural units for the problem under consideration. Their 

utilisation leads to the equations 
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o = 8  (,~)o_~ (~)~ 8~ ~ (~) 
U ~ ~ E ~ ~ --~f_ 

instead of Equation (8), and 

6 ~(~)~ _ ~ (~ )_  ~0 

instead of Equation (9). In these equations the sign before g/c L 

changed if 071 > 0. 

must be 

( 1 3 )  

(14) 

TABLE I: Roots of Equation (11). 

Root # 
S = 0 s = S L 

k/k* C/C* k/k* C/C* 

1 / 7 / 2  ") 1 _ 4_3 
1 
2 

2 - / ' 3 / 2  

o t 3 0 

_! i 
2 

The point where the branch #2 cuts the s-axis is such that C = 0; that 

is, from Equation (13) , since k ~ 0, 

g ~(~)~ _ ~ (~ )_  ~ _~ = o .  

This equation combined with Equation (14) leads to 

s k 
_ _  = _ 

ST 

and then 

_t=_q ~ 
e L 2 

It is also elementary to see that the branches #2 and #3 are tangent 

at c = eL, that the branches #I and #2 have opposite inclinations at g = 0, 

and that the branch #3 has a horizontal tangent at g = 0. 

The results of this section may be presented in a different way (Figure 7), 

taking as parameter the unperturbed frequency at the origin (0) instead of 

g, that is, through the change in shape of the unperturbed Hamiltonian, 

while the linear perturbation is kept fixed. The condition for having three 

real roots now is written as 

0 0 3 . 0 2 2.1/3 
~ -~L = - 2 In s ~i ] (15) 
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The roots in the point w 0 _ 0 = L are the same as already g~ven in Table I; 

we have 3ust to translate them In terms of the approprlate variables. The 

results are shown an Table II where for sake of simplicity we used 

k ~* -\~-~/ , C** = ~I k**. (16) 

When these quantitles are used, Equations (8) add (9) become 

I § 3 w 0 k 2 

~L 
and 

~-~  -, 3 ~  ~ - ~ -  2 = o. (18l 

There results for 0 = 0 the values k/k** = ~ and C/C** =- 13/4) ~(= -0,945), 

I 

0c I 
I 

r 2 
L I 

f 
-2 

-3 

Fig. 7. Locus of the singular points in the plane [C, 0). 

The symbols are the same of Figure 6, 
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0 0 
TABLE II: Roots when ~ = - w L. 

Root # k/k** C/C** 

I 2 -3 

-1 g 
3 

5. THE CUBE ROOT OF THE SMALL PARAMETER 

It is a classical point in the Mechanics of the Solar System that in case of 

resonance the formal solutions valid in the neighbourhood of resonant initial 

conditions are series of powers in the square root of the small parameter. 

This fact may be considered as a consequence of the Weierstrass' implicit 

functions theorem (see, e.g. Poincar~, 1893). The quantitative elements of 

Figure 3b give an a posteriori justification of the use of the powers of 

the square root of the small parameter in the study of the orbits in the 

bifurcation created by the perturbation of a non-central resonance with a 

finite 0. Compute the intersections of the separatrix with the k-axis. The 

separatrix is defined by the planar section that is tangent to the unperturbed 

Hamiltonian in A (see Figure 4). The corresponding values of k are given by 

Equation (8). Because of the tangency in A, one of the roots (let it be 

called -k 0) is double. If the other roots are b and c, the fourth degree 

equation is 

I n0(k + k0)2 (k - b) (k - c) = 0. (19) 

I n 0 The coefficient of the cubic term is ~ (2k 0 - b - c); but there is no 

cubic term in Equation (8), then 

b + c = 2k 0. (20) 

Analogously, comparing the quadratic term of Equations (8) and (19) 

2 2(b + c)k 0 + bc = 4~0 (21) 
k 0 - --~ 

n 

The comparison of Equations (20) and (21) gives 

(c - b) 2 16~0 8 2 (22) 
= - ---5-- - k0 " 

n 

k 0 is one root of Equation (9). When w 0 < 0 the roots of Equation (9) are 

given by 
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-3eT 
x 

k 0 = k* cos 3; x = arc cos wok, (23) 

Since we assumed that 0 is finite, the argument of the arc cos is 0(s and 

we may write 

3cT 1 
x ~ ~ + wOk, (mod 2~) (24) 

and 

x /~ eT1 
-~ ; (25) cox ] 2 2w0k, 

the choice of the determination (x/3 close to 5~/6) is fixed by the fact 

that the saddle is the leftmost root of Equation (9). Using this approxima- 

tion for k 0 in Equations (20) and (21) we get 

j .  T C 

C - b --~ 4 I 0 ' (26) 

k0n 

that is, Ic-b I = 0 (/~-). The corresponding variation in the action I is 

AI : /2~ ic - b I = 0(/~-) 

since I is finite. Therefore, the excursion of the action around the equi- 

librium value is 0(/~, and could not be given by a series expansion in the 

powers of e. 

A similar situation happens when the resonance is near central. In such 
0 > 0 2/3 

a case libration may happen only for lw i - WL = 0(s ) and the characteristic 
** I/3 

size in the phase plane is given by k = 0(s ). If Equation (22) is used 

as before, we observe that the width of the libration zone in the k-axis is 

0(s I/3) when w 0 = 0 (s2/3). Indeed, in this case the argument of the arc cos 

in Equation (23) is finite, and there follows k 0 = 0 (-/~J) = 0 (gi/3). Then, 

from Equation (22), c - b : 0(~I/3). Therefore the excursion of the regular 

variables around the origin is 0 (si/3), and certainly cannot be given by a 

series expansion in the powers of s or of /~. 
0 
= 0. In this case Equation (8) becomes 

I n0k 4 F(k, 0) = ~ - s~ik = C. 

For the oval that passes through the origin in Figure 3(a), we have C = 0. 

The second root of F(k, 0) = 0 in this case is given by 

k 3 = 8sT1 
0 (27) 

n 

i.e. the perturbed solution makes a great excursion from the origin up to 

distances of the order of I/3, and the solution must be searched using this 

power of s as a small parameter. 
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6. APPLICATION: THE PLANETARY RESONANCE 2 : I 

In a recent paper, Sessin and Ferraz-Mello (1984) have obtained the equation 

for the motion of two planets with periods commensurable in the ration 2 : I. 

In that paper, the classical square root of the parameter was used; however, 

in order to have correct results it was necessary to treat the order of the 

terms in a non-rigid way, for instance, putting together in F I terms of 

first order and terms of order 0(m'/M) 5/4. The use of the cube root of the 

disturbing masses as a parameter allows us to obtain the equations of 

Section 3 of that paper in a rigourous way. We assume that the modified 

values of the eccentricities (e-'0)3 and of the sines of the half inclinations 

(sj0) are of order O(m'/M)I/3 and that the variables that give the departure 

to the exact resonance of the adopted/ canonical variables: x/x20, yj/x20, 

and zj/x20 are of the order O(m'/M) 2~3. We then obtain for the leading term 

of the Hamiltonian: 

= - c o s ( e  + "~1 ) - c o s ( O  + 

which is the same function as F I of the paper, except for an additive 

constant. The next part of the Hamiltonian, F5/3, is almost the same as 

F3/2 of that paper. Because of the stricter rules for the definition of the 

orders the terms whose coefficients are F03 , P30' P31' P40' and P41' of that 

paper, are of order O(m'/M) 2 and must be dropped from Equation (18) of that 

paper in order to obtain F5/3. 

7. CONCLUSION 

The fact that the orbits of the first-order ideal resonance problem are 

defined as projections of plane sections of a simple revolution surface 

allows us to obtain a description of the totality of motions through 

elementary methods. The quantitative analysis of the orbits shows that the 

width of the libration in near-central resonance is of the order of the 

cube root of the perturbation instead of the square root as in non-central 

resonance. This result will be used in forthcoming papers of this series as 

a basis for adopting power series in the cube root of the small parameter to 

represent the formal solution of some resonant problems. 

ACKNOWLEDGEMENTS 

The author is indebted to Dr. W. Sessin for many valuable comments. This 

research was partly supported by the Brazilian Council of Research, contracts 

CNPq 40.3029/80 and 40.6152/82 and by FINEP contract 43.83.0144.00. 



220 S. FERRAZ-MELLO 

REFERENCES 

Andoyer, H.: 1903, Bull. Astron. 20, 321. 

Aoki, S.: 1963, Astren. J. 68, 365. 

Garfinkel, B.: 1966, Astron. J. 71, 657. 

Garfinkel, B.: 1982, Celes. Mech. 28, 275. 

Henrard, J.: 1974, Celes. Mech. 10, 437. 

Henrard, J. and Lema[tre, A.: 1983, Celes. Mech. 30, 197. 

Jefferys, W.H.: 1966, Astron. J. 71, 306. 

Jupp, A.H.: 1980, Celes. Mech. 21, 361. 

Message, P.J.: 1966, in G. Contopoulos (ed.), The Theory of Orbits in the 

Solar System and in Stellar Systems, Academic Press, New York, p. 197. 

Poincar@, H.: 1893, Les M6thodes Neuvelles de la M6canique C@leste, vol. II, 

Gauthier-Villars, Paris. 

Sessin, W. and Ferraz-Mello, S.: 1984, Celes. Mech. 32, 307. 

Them, R.: 1975, Structural Stability and Morphogenesis, W.A. Benjamin, 

Reading. 


