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C H A R A C T E R I Z A T I O N  O F  S E M I N U C L E A R  S E T S  I N  A F I N I T E  
P R O J E C T I V E  P L A N E  

AART BLOKHUIS 

Let C be a set of q + a points in the desarguesian projective plane of order q, such that  
each point of C is on exactly 1 tangent, and one a + 1-secant (a > 1). Then either 
q = a + 2 and C consists of the symmetric difference of two lines, with one further point 
removed from each line, or q = 2a + 3 and C is projectively equivalent to the set of points 
{(O,l ,s) , (s ,O,1) , (1,s ,O):  - s  is not a square in GF(q)}. 

I N T R O D U C T I O N  

There exists an interesting configuration of 9 points in PG(2,  7) which has the property 
that  each point lies on a unique tangent (and hence also on a unique 3-secant). The interest 
in this particular configuration stems from the following theorem: [Blokhuis & Bruen [1]]: 

The minimal number of lines blocked by q + 2 points in PG(2, q), q odd and at least 7 
equals (q + 2)(q + 1)/2 + (q + 2)/3. Moreover for q > 7 equality occurs if  and only if the 
set of points has the property that each point is on a unique tangent. 

A set of q + 2 points with this property is called a seminuclear set in [1]. 

In this note it is shown that  the only q for which a semlnuclear set exists in the desarguesian 
projective plane PG(2 ,  q) are q = 4 and q = 7. In fact we shall prove the following result 

T H E O R E M .  Let C be a set of q -k a points in the desarguesian projective plane of order 
q, such that each point of C is on exactly 1 tangent, and one a + 1-secant (a > 1). Then 
either q = a + 2 and C consists of the symmetric difference of two lines, with one further 
point removed from each line, or q -- 2a q- 3 and C is projectively equivalent to the set of  
points {(0, 1, s), (s, O, 1), (1, s, 0 ) :  - s  is not a square in aF (q )} .  

In both of the examples mentioned in the theorem we see that  the tangents at the different 
points on an (a + 1)-secant of the configuration are concurrent, in fact their point of 
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intersect ion lies on the remaining (two) (a + 1)-secant(s).  It is this p roper ty  which is 
shown to hold for any set of the  specified type  (in a desarguesian plane);  as a consequence 
no other  examples exist.  

A T H E O R E M  O F  C E V A  

Let P = <  ( z , y , z )  > be a point  and q = <  [a,b,c] > a line in PG(2, q). The point  P 
is on the  line q i f a x  + b y + c z  = 0 or in other  terms:  < q , P  > =  0. If no confusion is 
possible we write qP in s tead of < q~ P >.  Note tha t  if P is not on the line q then qP is 
not  well-defined, since its value depends on the choice of homogeneous coordinates .  Still  
we shall use the  expression, but  only in formulas tha t  are homogeneous of degree 0 in all 
variable% or in s i tuat ions where the coordinates  have been fixed. 

T H E O R E M  1 [(CEVA) see e.g. [2, p. 89]]. Let p, q and r be three Hnes through the 
(non-collinear) points P, Q and R respectively, (but such that p does not contain Q or R 
etc.). Then the lines p, q and r are concurrent if and only if 

pQ.qR.rP 
- - 1 .  

pR.qP.rQ 

(Note tha t  Ceva's theorem is no longer valid if P, Q and R are collinear).  

T H E  S T R U C T U R E  O F  S E M I N U C L E A R  S E T S  

In the  following, C will be a set of q + a points  in P G ( 2 ,  q) such tha t  each point  of C is 
on precisely one tangent  and  one (a + 1)-secant of C.  

P R O P O S I T I O N  2. Let I be an (a + 1)-secant of C. The tangents  of C at the different 
points of 1 A C are concurrent. 

Proof. Let P, Q and R be three points  of C on I. We shall fix coordinates  in such a way tha t  
(1) R = P + Q; 
(2) pQ = 1 for each line p through P other  than  l; 
(3) qP = - 1  for each line q through Q other  than  1. 
As a consequence of this the line p + q passes through R. As X runs through C \ l, P X  
runs th rough  the lines through P different from l, except the  tangent :  p :=  t(P). Similar ly 
QX (resp. RX)  runs through the lines through Q (resp. R) except the  tangent  q = t(Q) 
(resp. r = t(R)). We fix coordinates  for r such tha t  r Q  = - - r P  = 1. Let S be an a rb i t r a ry  
point  of the plane outside the line I. If Pl and P2 are two different lines th rough  P ,  then 
plS ~ p2S since equali ty would imply tha t  P ,  Q and S are on the line Pl - P 2 -  Now we 
show tha t  

r n : = p +  E P X = O ,  i f q > 2 .  
x6c\l 
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To see this,  note tha t  m P  = 0, m Q  = 1 + ... + 1 (q t imes )=  0 and m S  = 0, since this 
equals the  sum of all elements of GF(q)  and q > 2. Since P ,  Q and S are independent ,  
m = 0. In  the  same way we find 

q +  E O X = O  and r +  E R X = O .  
x e c \ t  x e c v  

However, since R X  = P X  + Q X  for all X E C \ l, it  follows tha t  r = p + q; the  tangents  
at P ,  Q and R are concurrent�9 

The point  of intersect ion of the  tangents  of C at  the  different points  of l rh C is called the 
nucleus of the  line I. 

P R O P O S I T I O N  3. Let  l and m be two (a + 1)-secants o f  C. Then either the nucleus o f  l 
is on m and the other way round, or both lines have the same nucleus. 

Proof. Let P, R 0 , . . . ,  Ra-1  be  the  points  of C on the line I. Assume we have fixed the 
coordinates  in such a way tha t  Ri = Ro + c i P ,  for appropr ia t e  ci. We can then coordinat ise  
the  corresponding tangents  similarly;  tha t  is ri = ro + cip, since they  are concurrent  and  
p R o + r o P  = O. Let S h e  an a rb i t r a ry  point  of C on the l i n e m ,  let R =  Ri  be one of 
the  points  of l r C \ {P},  and X be a point  from C \ l, different from S. Then by Ceva's 
theorem: 

< X P ,  R > < X R ,  S > < X S ,  P > 
�9 ~ - - 1 ,  

(1) < X P ,  S >  < X R ,  P > ' < X S ,  R >  

On the other  hand  we have the produc t  

pR ]-[ < X P ,  R > _ 1. (2) 
ps" i .  < x p ,  s >  

x e c u u { s }  

To see this ,  note tha t  the left hand  side is the  product  of all nonzero elements of GF(q), 
since it is a p roduc t  over all lines th rough  P not containing R or S.  In the  same way we 
obtain:  

r S  1--[ < X R ,  S > = - 1 .  (3) 
i J .  < x R ,  P > 

xcc \ tu {s }  

In a sl ightly different but  analogous way we obta in  (4) by looking at all lines th rough  S 
not  containing P or R: 

s P  < X S ,  P >.]--[ r i p  m P  .~ 1 
(4) H < x s ,  n " - = 

x e c u u { s }  > j# i  

This is explained as follows: The  rat io  r a P ~ m R  occurs a t imes in the  first half  of the 
produc t ,  since there  are a points  on the line m,  other  than  S; therefore we divide by this 
ra t io  a - 1 t imes.  Similar ly  the  lines joining S to the points  R j  # R = Ri  must  be added.  
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But the ra t io  < S R j , P  > / < S R j , R  > is the same as r i P ~ f i R .  (Compare  with the 
remark  after (2). Wri te  

r i P  m P  a-1 
M, := H . 

We can then deduce from equations (1) to (4) by el iminat ing I I x c c \ z u I s }  the fundamenta l  
equation" 

p R i . r i S . s P . M i  = 1. 
p S . r i P . s R i  

In view of our convenient choice of coordinates  of the ri  and Ri i t  follows tha t  pRi  = - r i P ;  
so we can rewrite the above as follows: 

sR i  _ M ~ . r i S  
(5) s P  p---S" 

We now subs t rac t  the  above equations corresponding to i and j and use R i - R j  = ( c i - c j ) P  
and r i S / p S  = r o S / p S  + cl. 

We get ci - cj = - ( r o S / p S ) . ( M i  - M j )  - c iMi + c j M j .  W h a t  does this  mean? It means 
tha t  we can compute  r o S / p S ,  unless Mi - M j  = O. Since cl and cj are different, this can 
only occur if bo th  are equal to -1. 

(I). Suppose M~ and Mj  are different for some i and j .  Then for any pa i r  of points  
S , T  ff m N C we have r o S / p S  = r o T / p T  = c (say); in other  words S , T  6 r0 - cp. This is 
equivalent to m (the line S T )  being dependent  on p and r0, i.e. m contains the nucleus of 
I. 

(II). All  M~ are equal to -1. In this case it follows immedia te ly  from (5) tha t  sR~/r~S  = 
s P / p S ,  which implies  tha t  the point  of intersection of the  tangents  of points  on 1 is the same 
as tha t  of tangents  of points  on m. For,  let s R ~ / s P  = r ~ S / p S  = c. Then s(R~ - cP)  = 0 
and (r~ - cp)S  = 0. Now since by our choice of coordinates  (ri - cp)(Ri  - cP)  = 0 we 
get tha t  s is the same line as ri - cp. But in tha t  case s passes th rough  their  point  of 
intersect ion,  tha t  is the nucleus of l. Since S was arbi t rary ,  l and m have the same nucleus. 

We now proceed to show that  (II) does not in fact occur. S tar t ing  with our line l and 
using Propos i t ion  2, we see tha t  the  remaining lines are of two types,  those with the  same 
nucleus as l, and those whose nucleus is on the line I. The lines with their  nucleus on the 
line l all pass th rough  the nucleus of I. Conversely, if a line m has the  same nucleus as l, 
then the point  of intersect ion of m and l is the other  nucleus ( there can not be jus t  one 
nucleus, since tha t  point  would be on q + a tangents ,  but  it  is on only q + 1 lines). Hence 
we find in this case precisely 2 nuclei, and each (a A- 1)-secant passes th rough  one of them. 
Let Q be any point  outside the  set C. The number  of lines th rough  Q intersect ing C in an 
odd number  of points  has the  same par i ty  as C. Take two points  of C, such tha t  the nuclei 
of the (a + 1)-secants through them are different. Then their  tangents  intersect  in a point  
Q which can not  be on a (a q- 1)-secant, and hence Q lies on precisely 2 lines intersect ing 
C in an odd number  of points.  Now assume tha t  q > a q- 2. In tha t  case th rough  at least 
one of the  nuclei there  is more then one ( a T  1)-secant, and hence also a line missing C and 
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the other nucleus. Intersect this line with an arbi t rary tangent through the other nucleus. 
The point of intersection is on precisely one tangent. Since C cannot be odd and even at 
the same time we have a contradiction, whence (II) does not occur. 

We are now able to prove the result. 

T H E O R E M  4. Let C be a set of q + a points in the desarguesian projective plane such 
that each point of C is on exactly 1 tangent, and one (a + 1)- secant (a > 1). Then either 
q = a + 2 and C consists of the symmetric difference of two Hnes, with one further  point 
removed from each line, or q = 2a + 3 and C is projectively equivalent to the set of points 
{(0, 1, s), (s, 0, 1), (1, s, 0 ) :  - s  is not  a square in GF(q)}.  

Proof. The (a + 1)-secants parti t ion the points of C, hence q + a is a multiple of a + 1. If 
q -- a + 2 there is nothing to prove, so assume the number  of (a + 1)-secants is at least 3. 
From proposition 3 and the fact that  the second alternative does not occur, we see that  the 
nucleus of any (a + 1)-secant is on the intersection of all others. Since the nucleus obviously 
cannnot be on the secant itself, at most two (a + 1)-secants go through one point. Hence 
the number  of (a + 1)-secants is precisely three. The last part  of the theorem is left as an 
exercise. 

A C K N O W L E D G E M E N T S .  I am very greatful to Andries Brouwer, for suggesting an im- 
provement of the original argument.  This work was done while the author  visited the 
Mathematics Department  of Aarhus University as part  of an exchange program made 
possible by the Erasmus program. 
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