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TRANSLATION PLANES OF LARGE DIMENSION 

ADMITTING NONSOLVABLE GROUPS 

V. Jha and Norman L. Johnson 

In this article, the question is considered whether there exist finite translation planes 
with arbitrarily small kernels admitting nonsolvable collineation groups. For any integer 
N, it is shown that there exist translation planes of dimension > N and order q3 
admitting GL(2, q) as a collineation group. 

1. INTRODUCTION 

One of the main outstanding problems concerning finite translation planes is the follow- 

ing: Given any finite group G, is there a translation plane which admits G as a group of 

collineations? 

Ostrom [14] has shown that if G is an elementary abelian 2-group all of whose involutions 

are Baer acting on an odd order translation plane of vector dimension 2d over the kernel K 

then ]G I must divide d. d is called the Ostrom dimension of the plane. 

The effect of this result is to exclude the possibility of many simple groups acting on a 

translation plane with small Ostrom dimension d. For example, if PSL(2, u), u ~ 2 acts on 

a translation plane of odd order, the Klein 4-subgroups satisfy the above condition so that 

4 divides d (Ostrom [14], Cot. 2). 



88 Jha and Johnson 

Fink and Kallaher [3] have shown that if a simple group G acts irreducibly on the associated 

vector space over the kernel K and (IGI, characteristic K) = 1 then the possibilities for G 

to be a sporadic simple group are quite limited (see Fink, Kallaher [3], Theorem (4.3)). 

Actually, it is easy enough to produce translation planes of Ostrom dimension d with d 

arbitrarily large. For example, the Andr4 planes suffice. However, with the exception of the 

Desarguesian and Hall planes, the associated collineation groups are solvable. 

There are also the sequences of translation planes of Kantor [11] obtained using the pro- 

cedures of "slicing," "extending" and "spreading" which can produce translation planes of 

large dimension. In these cases, the collineation group gradually disappears as the dimension 

increases. 

Let ~r be a derivable translation plane of order q2 and kernel K ~- GF(q) (Ostrom dimension 

2) which admits a derivable net D whose Baer subplanes which are incident with the zero 

vector are not all K-subspaces. Then Johnson and Ostrom [10] show that the kernel of 

the derived translation plane is the maximal subfield L of K such that the indicated Baer 

subplanes are L-subspaces (see also Johnson [9]). Hence, if q = pr, the Ostrom dimension 

conceivably can jump from 2 to 2r by derivation (see Johnson [9] for examples where this 

occurs). However, the collineation groups which can be obtained by this procedure are 

generally solvable. 

Concerning nonsolvable groups, Foulser [5] has shown that derivation can produce transla- 

tion planes of order q4 and Ostrom dimension 4 admitting SL(2, q). 

Kantor [11] has also determined a class of even order translation planes of order q3 and 

Ostrom dimension 3 admitting SL(2, q). 

Bartolone and Ostrom [1] also construct planes of order q3 and dimension 3 admitting 

SL(2, q). 

Finally, there are the unusual planes of Kantor [12] of order q6 and Ostrom dimension 2 

which admit SL(2, q2). 
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However, this is essentially where the examples stop. That  is, there are no examples of 

translation planes of Ostrom dimension greater than 4 which admit nonsolvable collineation 

groups. 

A question related to the foregoing discussion is the following: 

If N is any integer, is there a translation plane of Ostrom dimension >_ N which admits a 

nonsolvable collineation group? 

In this article, we answer the previous question and provide alternative constructions of the 

planes of Kantor and Bartolone-Ostrom. 

We show the following: 

COROLLARY. Let N be any integer. Then there is a translation plane of order qZ that 

admit, GL(2,q) as a eollineation group and which has Ostrom dimension >_ N.  

This result follows from: 

THEOREM (see (6.2)). For any prime power q and for any integer n > 1 and n ~ Omod3, 

there is a translation plane of order q3n admitting GL(2, qn) as a collineation group with 

Ostrom dimension n. 

Furthermore, when n = 2, we may reconstruct Kantor 's  planes of order qS admitting 

GL(2, q2) and Ostrom dimension 2. When n = 3, we show how to obtain the planes of 

Bartolone-Ostrom (using the Sandler semifields). 

But, note the vast number and variety of exotic translation planes. For example, when 

n = 5, we may obtain translation planes of order q15 and Ostrom dimension 5 admitting 

GL(2, qS) or for n = 31, translation planes of order q93 admitting GL(2, q31) and Ostrom 

dimension 31. 

The group GL(2, h) involved acts as it would on the associated Desarguesian plane of order 

h a . 

In some sense, our results are bi-products of our analysis of the following question: 
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(*) Which spreads of order q3 admit GL(2, q) acting as it does on the Desarguesian plane 

of order q3? 

We have characterized all the planes satisfying (*) in [7]. In the present article, as men- 

tioned above, we introduce a technique inspired by Bartolone and Ostrom ([1, section 3]), 

for constructing large numbers of spreads satisfying (*). Our method depends upon the 

existence of a fixed- point-free nonprojective collineation a, of the Desarguesian projective 

plane PG(2, q); whenever such a a exists, we shall be able to construct a spread ~-~ satisfying 

(*). It turns out that by varying a, while keeping q fixed, we can alter the size of the kern 

r,,, and hence also dimrt,: this is what gives Theorem (6.2) above. In addition, we have 

enough ~r~ to establish that for every prime power q = p'~ > p, there exists a translation 

plane of order q3 admitting SL(2, q); up to now, this fact has only been proved for even q, 

and when q is a square or a cube (cf. Kantor [111, [12 t and Bartolone-Ostrom [1]). 

THEOREM (see (6.7)). Let q =pm > p be any strict prime power. Then there is a non- 

Desarguesian spread r of order qa that admits GL(2, q) acting as it does on the Desarguesian 

spread of order q~. 

REMARK. All the known spreads of order p3 admitting GL(2, p) are Desarguesian. More- 

over, by Bartolone-Ostrom ([1, section 2]), if GL(2,p) acts in a "Desarguesian manner" on 

a spread 7r of order p3, then rr is necessarily Desarguesian. More precisely, if V = ~ admits 

G = GL(2, p) such that G fixes a Desarguesian spread F on V then all other G-invariant 

spread F on V are necessarily Desarguesian. 

Acknowledgement :  The authors gratefully acknowledge the help of Professor T. G. 

Ostrom in the preparation of this article. 

2. SPREAD-SETS 

In this section we describe some notation and results concerning spread-sets that we shall 

use. Throughout the article, a vector space of type V = ~.N is the vector space of row 

N-tuples over the prime field GF(p). 
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(2.1) D E F I N I T I O N . . h 4  is a spread-set on F~,  if.s C GL(n,p)O{O) is a set ofp N matrices 

such that 

(i) 0, I �9 ,~4 ; 

(ii) X, Y �9 A4 =~ X - Y �9 GL(n, p) whenever X # Y. 

.s is an additive spread-set if, in addition to being a spread-set, .L4 is a group under matrix 

addition (or equivalently A~f is additively closed). 

A spread on 7r = ~-N @ F~ is a collection F of pN + 1 rank N subspaces of ~r such that  any 

two distinct members (or "components") of F intersect trivially (e.g., [13, chapter 1]). Any 

spread-set .~f on F N has associated with it a spread FM, which we shall describe using the 

following notation. 

(2.2) NOTATION. Let 7r = ~-N ~ F~,  and M any N x N matrix over GF(p). Then we 

shall use the notation y = xM to denote the subspace M of 7r given by: 

h~r = {(x, x M ) : x  �9 FN}.  

Also, the space 0~3F~ is written as x = 0. If .M is a spread-set on F~ then the corresponding 

spread is 

= {y = x M :  M �9 A/I} u {x = 0) . 

It is easily verified that r ~  is a genuine spread, and the subring of Hom(Tr, +) that leaves in- 

variant each component of Fm can be canonically identified with the subring of Hom(~ N, +) 

that centralizes M; in fact, by Schur's lemma, both centralizers are fields since M generates 

an irreducible group. Thus one obtains 

(2.3) RESULT (cf. Foulser [4]). If A4 is a spread-set on ~-N then the centralizer of ~4 

in Hom(F N, +) is a field K,  and K* is isomorphic to the group of kern homologies of the 

corresponding spread FM. 

We now turn to another version of Foulser's results, in the context of additive spread-sets. 

(2.4) DEFINITION. 

define 

Let .A4 be an additive spread-set on (F N, +). For any x, y 6 F N, 

x oy = xMy 
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where My is the unique element of ~4, the slope of y, whose first column is y (transpose). 

We call D~a = (F N, +,  0) the semifield associated with the additive spread-set .L4. 

REMARK. It is well known, and readily verified, that D ~  actually is a semifield. 

According to the conventions of [6], the fight nucleus Nr(D), of any semifield D, is canon- 

ically isomorphic to the kern of the translation plane coordinatized by D. Thus by Result 

(2.3), we have 

(2.5) RESULT. 

on F N. Then 

Let DM be the semi field associated with the additive spread-set M, defined 

CGL(N,p)(M) U {0} --= Nr(D~).  

3. IRREDUCIBLE PAIRS 

Let a be a nonprojective fix-point-free collineation of a Desarguesian projective plane 

PG(2, q); thus a 6 PFL(3,  q), and a fixes no point of PG(2, q). We shall eventually show 

that any such a gives rise to a spread ~r~ whose order is q3 and admits GL(2, q) as an 

automorphism group. However, we shall not describe r~ directly in terms of cr, but rather 

in terms of a coordinatizing "irreducible pair," which we define now. 

_ 3 m  (3.1) DEFINITION. Let V - Fp be regarded as a vector space over a field of matrices 

F C_ GL(3m,p) U {03m} 

such that F ~- GF(q), where q = pro. Now if T 6 GL(3m, p), we call (T, F)  an irreducible 

pair on V if 

(i) T normalizes but does not centralize F; and 

(ii) T does not fix any rank-one F-subspace of V. 

Thus T 6 PFL(V, F )  and fixes no projective point of PG(2,  F).  So T induces a nonprojective 

fixed-point-free collineation a of PG(2, q), and we regard this a as being eoordinatized by 

(T, F).  Conversely, it is obvious that any fp f  nonprojective collineation a, of PG(2, q), can 

be coordinatized by at least one irreducible pair (T, F)  on V = F v3"~, where q = pro. Hence 
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we normally deal only with irreducible pairs (T, F),  rather than with the collineations a that 

coordinatize them. But we begin by proving a lemma that explains the connection between 

a and (T, F).  The lemma justifies our terminology by showing that T acts irreducibly; it 

also brings definition 1 into line with our earlier definition of irreducible pairs [8]. 

3 m  (3.2) LEMMA. Let ( T , F )  be an irreducible pair on V = Fp , with F = GF(q) .  Then T 

does not  f ix any proper nonzero F-sub,pace of V .  

PROOF. Let g be the collineation of PG(2, q) defined by the action of T on V, regarded 

as an F-space. Then g is an f p f  collineation of PG(2, q). But an f p f  eollineation of a 

projective plane cannot fix any line ([6 Theorem 13.1]); so T cannot fix a rank-two subspace 

of V, and the lemma follows. 

We now obtain an additive spread-set from any irreducible pair (and hence, indirectly, from 

any f p f  collineation cr of PG(2, q) such that a E PFL(3, q) - P G L ( 3 ,  q)). The short proof 

of the result has been included for the convenience of the reader, even though a more general 

result is obtained in [8]. 

3,, Then (3.3) PROPOSITION. s (T ,F )  be an irreducible pair on V = Fp . 

A T ,  F = F + F T  + F T  2 

is an additive spread-set on V.  

PROOF. If not, then: 3al ,  a2, a3 6 .T', not all zero, such that ao + a l T  + a 2 T  2 is singular. 

Thus, 
2 

3x E V - {0} such that ~ a i x T  i = 0 . 
i = 0  

Now if a2 = 0 then T fixes a one-space over F,  and if a2 # 0 then T leaves invariant the 

F-space generated by {~z,Tx},  contradicting Lemma 2. Thus, AT, F has q3 _ 1 nonzero 

elements, and these are all nonsingular. The result follows, as AT, p is obviously an additive 

group. 
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The proposition permits us to use the following 

(3.4) NOTATION. If (T, F)  is an irreducible pair on (F~", +) then 

DT, F = (F~", +, .) 

is the semifield associated with the spread A(T,F ). 

We now characterize these DT, F as being the semifields satisfying the following (slightly 

redundant) system of axioms. 

(3.5) DEFINITION. A semifield D of order qS is a cyclic semifield (relative to GF(q)) if 

(I) Win(D) = Nt(D) = r -~ GF(q) where g,n(D), Nt(D) denotes the middle and left 

nucleus of D respectively; and 

(II) 3t 6 D - F and a 6 AutGF(q)-{identity} such that 

(i) f t  = t f  ~ Vf  6 F; 

(ii) t(tx) = t2x Vx e D; and 

(iii) D = F + Ft  + Ft  2. 

(3.6) PROPOSITION. If (T, F) is an irreducible pair on ~3m, D(T,F) iS a cyclic semifield 

of order qS = pare. Conversely, any cyclic semifield of order qa is isomorphic to a D(T,F), 

for some irreducible pair; (T, F), on r~ m. 

PROOF. Let D be a cyclic semifield of order qa, and choose a GF(p)-basis F of D, such 

that 1D is the first element of F. We can now identify (D, +) with Y = (F~ m, +), via the 

canonical isomorphism determined by F. Moreover, each map of type 

d : D  , D  

X t  ) d x  

is in GL(3m, p) U {Ore }, and so ~' ~ F -~ GF(q) is a field of matrices over which V is a 

rank three vector space. Let T be the matrix {, and observe the condition (i), of Definition 
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3.5(II), implies tha t  T normalizes, but  does not centralize F:  We are making crucial use of 

the fact tha t  Definition (3.5) (I) implies 

ux  = ux  and x u  = x u  V~ 6 ~', ~. 6 D . (a) 

Next observe that  T cannot fix any rank-one F-subspace of (V, +) ,  for otherwise, T - a 

is singular for some oc 6 ~', contradicting the fact that  b is an additive spread-set. Thus 

am It remains to verify that  (T, F )  is an irreducible pair on l~p . 

I )  = F + F T  + F T  2 . (b) 

By Definition (3.5)(II)(ii), T ~ 6 / ) ,  and now by equation (a) above, and the fact t h a t / J  is 

an additive group, we get 

O D_ F + F T + F T  2 

and since, by Proposit ion (3.3), the RHS is also a spread-set of order qa = IDI, equation (b) 

holds; and so D -~ A(T,F), aS required. The converse, that  a n y  D(T,F ) is a cyclic semifield, 

is proved using s tandard arguments similar to the above (cf. [8, Lemma 5]). 

4. GL(2,q)  SPREADS OF ORDER q3 

In this section, V = F~ m is a vector space of row tuples admitt ing an irreducible pair (T ,  F ) ,  

with F ~- G F ( q )  and q = pro. In addition, ~r ---- V $ V is regarded as a GL(2 ,  q)-module, 

under the action of G = GL(2 ,  F )  defined as follows: 

whenever 

g : 7 r - - - 4  7r 

(x, y), , (xa + yc, xb + yd) 

[a g =  6 G  
C 

Hence the action of g on y = x M  (cf. notation) is given by: 
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(4.1) REMARK.  If M is a 3m x 3m matrix over GF(p), then 

g : y = x M ,  , y = x ( a + M c ) - l ( b + M d )  

whenever 

Thus, if we choose a field of matrices A,t D ~ such that  2,4 ~ GF(q3),  then Remark 4.1 

shows that  G fixes the Desarguesian spread l"a4 (ef. notation),  while leaving invariant the 

partial spread 

6F = {y = x F :  F 6 ~-} U {x = 0} . 

Some properties of the action of G on 6F are summarized below. 

(4.2) NOTATION.  In (4.3), (4.4), (4.5), we shall use the notat ion G = GL(2, F) and 

6F = {y = z F :  F 6 ~'} U {x = 0}. 

(4.3) PROPOSITION.  Every g 6 AF is the fixed space of a Sylow p-subgroup of G; hence 

G induces a 3-transitive group on the components of 6F. 

PROOF.  The upper and lower triangular Sylow p-subgroups of G are elation groups of 

FM that  have axes (resp.) y = 0 and x = 0. Thus y = 0 and x = 0 are co-orbital and now 

by Remark (4.1), G is transitive on 6F. Hence each component of 6F is an elation axis. The 

3-transitivity of G is now an immediate consequence of the fact that  GL(2, q) has only one 

transitive representation on q + 1 objects. 

We now extend 6F to a G-invariant non-Desarguesian spread on rr. 

(4.4) THEOREM.  

Further, 

7rT, F = OrbG(y = xT)  L3 6F is a G.invariant non-Dcsarguesian spread. 

kernTqT, F ) ~ CGL(3m,p)({T} U a ~') U {03m} �9 
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PROOF. We first verify that the G-orbit of y = z T  consists of subspaces that do not meet 

any member of ~F at a nonzero point. Since ~ f  itself is a G-orbit, we only need to check 

y = x T  rl (Ut~F) ---- {0} . (i) 

Now (i) can only fail if 

x T = x F 3 F 6 2 -  and x 6 7 : - { 0 } = ~ T - F  is singular. 

But this contradicts the fact {T} U 2- is contained in an additive spread, viz., AT, F (Propo- 

sition 3.3). Thus 8 = Ovba(y = xT)  is a collection of subspaces of ~r, each of order qa, such 

that U8 n u@ = {0}. 

We now check that 8 is a partial spread by showing that 

( y = z T ) G n ( y = x T ) # { O } = ~ G  fixes y = z T .  (ii) 

Thus consider any g =  [:  bd] in G = G L ( Z , F )  such that 

(y = xT)g n (y = xT) # {0}. 

So by Remark (4.1), 

y = x(a + Tc) - l (b  + Td) n y = x T  # {0} 

since a + Tc, being part of a spread-set (Proposition (3.3)), is nonsingular. Thus 

x[(a + T c ) - l ( b +  T d ) -  T] =O 3 z # 0 .  

Hence, 

(b + Td) - (a + Tc)T is singular. (iii) 

Now since T normalizes but does not centralize F (Definition 3.1)), F admits a field auto- 

morphism a ( #  identity) such that 

F T  = T F "  3F  6 2- .  

Thus (iii) gives: 

b + T(d - a ~') + T2c ~' is singular . 
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But this element lies in the additive spread-set ~ ~ .T'T @ .TT 2 (Proposi t ion (3.3)), and 

[0 0] hence must  be zero, because it is singular. Thus b = c = 0 and d = a ~. Hence g = 

and by Remark  (4.2), any such g must  fix y = xT.  Thus (it) is proved, and we have also 

computed  the global stabilizer of y = x T  in GL(2, F )  to be 

{Diag(a ,a" )  : a 6 ~-*} �9 

Thus, Orba(y  = x T )  consists of ]al/q - 1 = q3 _ q components.  Hence 

~F LJ OrbG(y = x T )  

is a part ial  spread on 7r with ( q a _ q ) + ( q + l )  = q 3 + l  components;  and so ~FUOrbG(y = x T )  

is a G-invariant spread, which we call 7rT, F. The kern of this spread is obta ined (up to 

isomorphism) by Foulser's result (2.3). In particular,  since {T} U .T does not generate an 

abelian group (multiplicatively),  7CT, f cannot be Desarguesian. 

(4.5) COROLLARY.  Let 7rT, F be the spread of order qS associated with ( T , F ) ,  an irre- 

ducible pair on V s,, pm = Fp , = q. Then ~rT, F admits GL(2,  q) such that 

(1) The Sylow p-subgroups of OL(2, q) are elation groups of order q, and the corresponding 

q + 1 elation axes are precisely the members of ~f. 

(2) GL(2,  q) is 3-transitive on 6F, and transitive on the other q3 _ q components of 7rT, F. 

(3) ~r iS invariant under AutrcT, F, and the elation groups in 7~T, F are precisely those in 

GL(2,  q). 

PROOF.  Par ts  (1) and (2) are included in Theorem (4.4) and Proposi t ion (4.2). If (3) 

were false, then every component  of 7rT, F would be a nontrivial  elation group forcing it to 

be Desarguesian, by the Her ing-Ostrom theorem [13, p. 178], contrary  to Theorem 3. 

Before giving examples of 7rT, F'S, it is desirable to summarize  what  we have achieved so far; 

in part icular,  to restate  the connections between the various entities that  we have introduced: 

f p f  nonproject ive collineations, irreducible pairs, cyclic semifields, and rrT, F'S. 
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5. CONNECTIONS ESTABLISHED 

3rn pm Let V = Fp , = q. Then V admits an irreducible pair (T, F), F ~- GF(q), iff PG(2, q) 

admits an f p f  collineation $ 6 PPL(3,  q) - PGL(3, q); the existence of (T, F )  is also equiv- 

alent to the existence of a cyclic semifield DT,  F ,  of order q3, whose spread set is given by 

A T ,  f = fly ~ .FT @ ~ T  ~. Hence, 

Nr(DT, F) ~ CHom(V,+)( {T} tO :F) . (i) 

Next consider the action of GL(2, q) on 7r = V @ V, defined by the standard action of 

G = GL(2, F) on ~r, by matrix multiplication; thus, G has the "Desarguesian" action on lr, 

permuting the components of a Desarguesian spread I'M on ~r, where M ~- GF(q 3) is a field 

of matrices containing F. Further, G leaves invariant the Desarguesian partial spread 

= = f e u {x  = 0}  

and acts as an automorphism group of the following spread: 

7rT, F --~ r U Orba(y = xT) . 

G has exactly two orbits on the components of ?rT, F; the q + 1 components of 6F is one of 

them, and the other orbit consists of the remaining q3 _ q components of "lrT, F. Further: 

KernrT, f ~- Nr(DT, F) �9 (ii) 

To provide examples of 7rT, F, we therefore only need to give examples of irreducible pairs 

of cyclic semifields with appropriate parameters. Such examples will now be given. 

6. EXAMPLES 

The matrix version of the following theorem corresponds to a large class of irreducible pairs. 

(A more general version of the theorem is proved in [8].) 
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(6.1) THEOREM. Let F = GF(qam), where q is any prime power, and m > 1 satisfies 

(3 ,m) = 1. Let P and N be the .~ubfields o f f  given by P = (GF(qm), and N = GF(qa). 

Choose w to be any primitive element of F*, and define 

a :F- - -~ ,F  

X ~ ~ X  qs . 

Then 

(1) a is strictly semilinear map of F viewed as an P-space, and a does not fix any P-subspace 

of F (other than {0} and F). 

(2) CHo,~(F,+)({a} U P) = N. (N.B.: The notation ] : F , F is being used.) 

PROOF. For any integer k > 1, a routine induction shows that 

Ol k : X --'-+ 02(qa~--l) /(qa--1)X qak 

and hence choosing k = m yields 

o~ m = p  where ( v ) = N * .  

Hence W, any a-invarlant P-subspace of (F, +),  must also be fixed by N. So W is invariant 

as an R-module, where the ring R is defined by 

R = { f ( 6 , ~ ) : 6 6 P ,  ~ 6 N ,  f ( x , y )  6 K[x,y]} 

where K[x, y] is the ringe of K = GF(q) polynomials in the indeterminates x and y. But 

as F is finite, the ring R must be a subfield of F containing P and N. Hence R = F, since P 

and N are maximal subfields of F. Thus W = F or {0} and (1) is proved. To prove (2), let 

A E Horn(F, +)  be any element centralizing {a} UP. Thus A centralizes a m, which we recall 

is a generator of l~*. Thus A centralizes P U N~ and hence also F. But by Schur's lemma IF 

is its own centralizer, and so A 6 ~'. Hence we may write 

A : F ---+ F 3~6F. 

x ---~ ~x 
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But now A centralizes a iff ~ 6 1~. Hence, the theorem is proved. 

(6.2) COROLLARY.  Let V = F~ N, where p is any prime and N i8 any positive integer 

such that N = non~ and nl  > 1 satisfies 3 ~ hi .  Then V admits an irreducible pair (T, F )  

such that the corresponding spread 7r(T,F), of order p3N and admitting GL(2 ,pN) ,  satisfies 

the conditions: 

Kern WT, F ~ GF(p  3n~ and dim 7r(T,F ) = nl �9 

PROOF.  Take the matrix version of Theorem (6.1), relative to any GF(p)  basis of (F, +) ,  

and choose q = p-0. 

We now turn to a second construction of irreducible pairs: these lead to the Kantor  planes 

of order q6 admit t ing GL(2,q  2) [12], if q # 2. 

(6.3) T H E O R E M .  Let GF(q)  TM K c_ F ~- GF(q~). Let V = F a. Assume u is a prime 

p-primitive divisor of qa _ 1 where ( i ,u )  = (i, 3) = 1. Choose B 6 GL(3,  F) so that the 

entries are in K (i.e., in GL(3,  K) ) .  Assume IBI = u. Define a : x ~ x q S  = (x~,x~,xqa)B 

for some fixed basis of V.  Then 

(1) (F ,F )  written as matrices relative to some GE(p)-basis of (~, +) forms an irreducible 

pair. 

(2) The translation plane 7r~, F corresponding to (F ,F)  has order qai, admits GF(2 ,q  i) and 

has kernel containing GF(q  3) so is of Ostrom dimension < i. 

(3) I f  i is prime, the plane is of Ostrora dimension i. 

PROOF.  Forc~ : x - - ~  xqB t h e n a 2  : x - - ,  xq2B 2 s i n c e B  6 GL(3,  K)  s o t h a t  ~i : x _ ,  

xq~ B i. 

Thus (B  i) = (B) as ( i ,u)  = 1. I f a i s  reducible so is a i = 8. Asume W i s  a n o n z e r o  

F-subspace which is invariant under a and hence 8. Thus, 

IW [ = qi or q2i . 

Since ulq 3 - 1, if also u[q i - 1 or q2i _ 1 then u[(q 3 - 1,q z - 1) = q ( 3 , z )  _ i where z = i o r  

2i. But,  (3, i) = 1 = (3, 2i). Hence, 0 fixes u nonzero vector of W. Thus,  Fix 0 # 0. By 
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Maschke's Theorem, let C be an ~'-space complement of Fix 0 invariant under 8 (note that 

Fix 0 is an F-space since 0 is linear over le). But, since ]C I = qi or q2i, it follows that Fix 

0 D C # 0--a  contradiction. 

Hence, a is irreducible. This proves (1). 

Note that x ~ x B  centralizes a so that the kernel of a and F contains the smallest field L 

containing B and K ,  L ~- GF(qS). 

Hence the kernel has order q3j where 3j]3i. If i is prime, j = 1 since the plane is not 

Desarguesian. This proves (2) and (3). 

Note if i = 2, we obtain: 

(6.4) THEOREM (cf. Kantor [12]). / f  q > 2, then there is an irreducible pair (T ,F )  

such that the corresponding translation plane 7rT, F has order q6, admits GL(2,q2),  and is 

two-dimensional over its Kern ~- GF(q  3) (Ostrom dimension 2). 

(6.5) REMARK. That 7rT, F is a Kantor plane follows from Kantor [12, Remark 4] and the 

properties of 7rT, F that we have established in Section 4. 

Since irreducible pairs are equivalent to cyclic semifields, we can use known cyclic semi- 

fields of order qS to construct non-Desarguesian spreads of order q3 admitting GL(2,  q) (cf., 

Proposition 3.6). In particular, the Sandier semifields of order q3 [2, p. 243] imply that 

(6.6) THEOREM. (cf., Bartolone-Ostrom [1, section 3]). I f  q is a cubic prime-power 

then there is an irreducible pair (T, F)  such that the corresponding spread 7rT, F of order qS 

admitting GL(2, q) is three-dimensional over its kern (Ostrom dimension 3). 

We leave it to the interested reader to check that the irreducible pairs arising from Sandler's 

cyclic semifields lead to the Bartolone-Ostrom plane indicated above. Combining Theorem 

(6.5) with Corollary 2, we see that 7rr,~:'s exist for all orders q3, if q # prime. Thus we have 

(ef., Corollary (4.5)): 



Jha and Johnson 103 

(6.7) THEOREM. Let q = pm > p, be any prime-power. Then there is a translation plane 

r of order q3, such that A u t r  C GL(2,q) and ~r is non-Desarguesian. ~r can be chosen so 

that Aurar has exactly two orbits on the translation axis: one of length q + 1, and one of 

length q3 _ q. The smaller orbit eonsiMa of all the points of r through which there pa38 an 

a•ne line which is the axis of a nontrivial elation. 

(6.8) REMARKS. In (6.2) and (6.3), we have given some constructions of translation 

planes of order q31 with kernel GF(q 31o) where JolJ that admit GL(3, qJ) as a collineation 

group. By varying the irreducible pair chosen, it is possible to construct nonisomorphic 

planes with isomorphic kernels. The exact ennumeration of the isomorphism classes is an 

open problem. 
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