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The equational theory of union-free algebras of relations 

H. ANDRI~KA AND D. A. BREDIKHIN 

Abstract. We solve a problem of J6nsson [12] by showing that the class Y/of (isomorphs of) algebras 
of binary relations, under the operations of relative product, conversion, and intersection, and with the 
identity element as a distinguished constant, is not axiomatizable by a set of equations. We also show 
that the set of equations valid in ~ is decidable, and in fact the set of equations true in the class of all 
positive algebras of relations is decidable. 

Call an algebra of similarity type (2, 2, 0, 0, 2, 1, 0) a positive subreduct of an 
algebra of (binary) relations, or simply a positive set relation algebra, if it has the 
form 

9.I = (A, u ,  oh, ~2~, U x  U,I,-1,  Iu ) ,  

where A is a set of binary relations (on some base set U) that is closed under the 
operations of union, u ,  intersection, oh, relative product, [, and conversion, 1, and 
that contains the empty relation, ~ ,  the universal relation, U x U, and identity 
relation, Iu, on U. Similarly, let's call an algebra of the form 

~ =  <A, u, l, - ' ,  Iu> 

a subpositive, or union-free, set relation algebra. Let ~ and ~ be the classes of 
algebras isomorphic to the positive and subpositive set relation algebras respec- 
tively. 

The class ~ was studied by J6nsson in [12], where it was shown, among other 
things, that ~ is a quasivariety, i.e., it is axiomatizable by an infinite set of 
conditional equations (or universal Horn sentences). Concerning other possibilities 
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for axiomatizing N, Jdnsson raised two problems: is ~ finitely axiomatizable, and 

is it a variety, i.e., is it axiomatizable by a set of  equations. Haiman [ 11] answered 

the first question negatively. In this paper we shall answer the second question 
negatively: N is not a variety. We shall also show that the equational theory of 
is decidable. The class N was studied by Andr6ka and N6meti. Using standard 
methods of  algebraic logic (see, e.g., [14]) they showed that it is a quasivariety, and 

in [4] they showed that it is not a variety. Using the method of  proof  of Comer [ 10], 
it can be shown that N is not finitely axiomatizable. In the present paper, we shall 
prove that the equational theory of N is decidable. At the end of the paper we shall 
discuss some extensions of  these results. 

A labeled graph is a structure (5 = (V, E) ,  where V is an arbitrary set and 

E _~ V x N x V; here, N is the set of positive integers. V is called the set of vertices 
and E is called the set of labeled edges. An element (u, k, v) of E is called a (directed) 
edge of (5 from u to v with label k, and will be represented graphically by O k , O.  

Since all graphs considered in this paper will have labels, we shall simply refer to 
them as graphs. 

Let (51 = (VI, E l > and (52 = <V2, E2> be graphs. Recall that a homomorphism 
from (51 to (52 is a mapping h from V1 to II2 that preserves directed edges, i.e., if 

(u, k, v) is in El,  then (h(u), k, h(v)) is in E2. We write (51 ~ (52 to indicate that there 
exists a homomorphism from (5i to (52. Since (51 is a structure without operations, 
a congruence relation on (51 is just an equivalence relation on Vl. If  O is such an 

equivalence relation, then by the quotient graph (51/O we mean the structure 
(V1/0,  E1/O >, where V1/O is the set of equivalence classes of O and EI/O = 
{(u/O, k, v/O): (u, k, v) e El}. 

The sum or disjoint union, (51 �9 (52, of (51 and (52 is the graph 

(~il k") (~2 = < V1 k-) ~'~2, E1u/~2>, 

where ~2 is the graph with iniverse V2 = V2 x { V1 } that is canonically isomorphic 

to (52 via the mapping v -~ 6 = (u, 1/1), i.e., ~2 is a canonically chosen isomorphic 
copy of (52 whose universe is disjoint from that of (51- We shall follow the usual 

custom of abusing notation by writing "v"  instead of " r  for elements of (51 (~ (52 
that come from (52- 

A 2-pointed graph is a graph with two distinguished vertices, i.e., a structure 
= (V, E, i, o) ,  where (5 = (V, E )  is a graph, and i and o are two (not necessarily 

different) distinguished vertices, called the input and output vertex respectively. We 
sometimes denote S5 by ((5, i, o) .  The notions of  a homomorphism and a congru- 
ence relation extend automatically from graphs to 2-pointed graphs. Of course, 
homomorphisms preserve input and output vertices. We shall usually speak simply 
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of  graphs whenever it is clear from the context  whether  or not  the graphs under  
considerat ion are 2-pointed. 

We now define some further constructions on graphs that will serve, in the 
context  of  this paper, as graph-theoretic analogues of  operat ions on binary rela- 

tions. Given two graphs 91 = ((51, it, Ol) and ~2 = ~152, i2, 02), we define their 
relative product ,  -~l; 92, and their Boolean product ,  91" ~2, as quotients of  
151 @ 152. In the case of  relative product ,  we take U to be the smallest equivalence 
relation on the universe o f  151G 152 that  identifies Ol with i2, and we set 

-~1 ; 92  = (O i  �9 152/O, i l /O, 02/0  ).  

Notice that  almost all equivalence classes in this quotient  are singletons. The 
possible exceptions are i l /0 ,  o~/0, i l /0 ,  and 02/0 ,  and here are four  possibilities: 

i l /0  = {i1}, 01/O = i2/0 = {oi, ia}, 02 /0  = {02} 

il/O = Ol/O = i2/0 = {il, 01, i2}, 02 /0  = {02} 

i l / 0  = {it}, 01/O = i2/0 = o2/0 = {0,, i2, o2} 

il/O = Ol/O = i2/0 = 0 2 / ~ )  = {i,, ol, i2, 02} 

in case il ~ ol and /2 ~ 02, 

in c a s e  i 1 = o I and i 2 --fi 0 2 ,  

in case il r o~ and i2 = o2, 

in case il = Ol and i2 = 02. 

If  u is an element of  t51 or 152 and u/O = {u}, then we shall identfy u/O with u. 
In the case of  Boolean product ,  we take O to be the smallest equivalence 

relation on the universe of  (51 | 152 that identifies il wi th/2 and Ol with o2, and we 

set 

91 " 92 = (15i 0152 /~  , il/O, Ol/O ). 

Again, almost  all equivalence classes in this quotient  are singletons, and the possible 
exceptions are i l /0 ,  o l /0 ,  i2/0 and o2/O. There are two possibilities: 

i1/0 = i2/0 = (il,  i2}, 01/O = 02/0  = {Ol, 02} in case ii r  and i2 r 02, 

il/O = 01/0 = i 2 / 0  = 0 2 / 0  = {il, Ol,/2, 0 2 }  in case ii = 01 or i2 = 02. 

The converse, 9Y,  of  91 is defined to be the graph obtained from 91 by 
switching i I and ol, i.e., by making Ol the input vertex and il the output  vertex, but  
leaving the set of  edges unchanged. See Figure 1. 

The equational  language of  ~ consists of  an infinite number  of  variables, 
Xl, x2 . . . .  , the operat ion symbols + , . ,  ;, and '~, denoting the abstract operations 
of  Boolean sum, Boolean product ,  relative product,  and conversion, the constant  
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Figure 1. Operations on graphs. 

symbols 0, 1, and 1' denoting the Boolean zero and one, and the identity element, 
and the equality relation symbol, = .  It is sometimes also convenient to admit, in 
addition to = ,  a second primitive relation symbol, namely the inequality symbol <.  
Of course, every inequality a < z can be viewed as an equation, namely the equation 
a - r = cr. The equational language of  ~ is the same as that of ~ except that it does 
not contain the symbols + ,  0, or l. (We follow the convention that, in expressions 
lacking parentheses, the symbol ";"  has precedence over ".".) Let Te and Te be the 
respective sets of  terms (sometimes also called p o l y n o m i a l s )  of  these languages. For  
each term a with variables among x~ . . . . .  x, ,  each algebra of  relations 9,1, and each 
sequence k = (R1 . . . . .  R,) of relations in 9.I, the value of a a t /~  in 9.1 is denoted by 
a~[/~]. Of course this is just a binary relation. We say that the inequality a -< z, 
respectively the equality (or equation) o-= z, holds  in 9.1, or is va l id  in N, if 
a~[k] _~ z~[/~], respectively a~[R] = r~[/~], for each sequence .~ of  relations from 9.I 
(of  the appropriate length), and it holds in N if it holds in every algebra in N. 

For  each term a in Te we define a graph .~,. The definition goes by induction 
on the definition of terms. Fix two arbitrary, distinct elements a and b. For  any 
positive integer k we set ~ k  = ( { a , b } ,  { ( a , k , b ) } , a , b ) .  We also set Ibv= 
({a}, ~ ,  a, a ) .  Finally, for terms o- and r in T~ we set 

- ~  = ~ ,  ~ =~5~ -~o - ~ ,  ~5~;~ -- ~5~; ~5~. 

Observe that, for each term a, the construction of  ~ is effective, and . ~  is finite. 
This will play a role in establishing the decidability of  the equational theory of ~ .  

To give some concrete examples of  such graphs, let ~, e, 0, and r/be the following 
terms: 

@) ~ = x 1; x3 " x 2 ; x 4 ,  

((~) (~ = Xs;  X6,  

(~) 0 = x f ;  x2' x 3 ; x f ,  

(/7) t] = (X~;  X 5 " X3; X ~ ) ;  ( X ~ ;  X 2 " X6; X ~ ) .  
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Then the graphs  of  "~k, ~1,, ~a,  ~ ,  ~ a, ~ ,  ~ , ,  and  . ~ . ,  can be visual ized as 

follows: 

-/ o-  

4 

~.~ 
Figure 2(a)-(h). Graphs .% associated to terms ~ E T~. 

O" 

We now give a theorem tha t  character izes  when an inequal i ty  or  equal i ty  is val id  in 

T H E O R E M  1. Let ~ and ~ be terms in T~. Then the inequality ~ < T is valid in 

iff there is a homomorphism from ~ to ~ .  Hence, the equation a = ~ is valid in 
iff there exist homomorphisms from ~o to ~ and from ~ to ~ .  
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Before proving Theorem 1, we shall establish two lemmas. 

LEMMA 2. Let  5m = (15rn, ira, Om ) be a graph for  m = 1, 2, 3. 

(i) 5~---+5~ /ff51----)'52 . 
(ii) 51; 52-"~53 iff  there is an element w o f  15 3 Sblch that 5 1 ~ ( 1 5 3 ,  i3, w )  and 

52--' (15~, w, o35. 
(iii) 51 "52 ~ ~3 /ff 51 --~ 53 and 52 ~ 53" 

Proo f  We sketch a proof of case (ii). Suppose, first, that h is a homomorphism 
from ~ ; 5 2  to 53. Set w = h ( O l / O ) = h ( i 2 / O ) ,  and define h~, for i = 1 , 2 ,  by 
stipulating that h~(v) = h(v/O)  for every v from 15~. Then ha maps ~ homomorphi- 
cally into ((53, i3, w) and h2 maps 52 homomorphically into (153, w, 03). 

Now suppose that we are given a w from 53, and homomorphisms h~ and h2 
from 51 into (153, i3, w) and from 52 into (153, w, 03) respectively. Then 
h~ (Ol) = h2(i2), so the mapping h from -~1; 52 to -~3 defined by h(v/O) = h~(v) for v 
from 15~ is well-defined and a homomorphism. [] 

The relationship between the graphs 5~ and the algebras of N is captured by the 
following definition and lemma. For an algebra 9.I in ~ with base set U, a positive 
integer n, and a sequence/~ = (R1 . . . .  , R,) of relations from A, we define the graph 
15(9.1,/~) by stipulating 

15(9.I,R) = ( U ,  { (u , k , v ) :  u , v  �9 U, 1 < k <-n,(u, v) �9 R k } ) .  

LEMMA 3. For each term ~r in Te  and pair o f  elements u, v �9 U we have 

(u, v) �9 ~ [ k ]  i f fSo~(15(gX,~),u,v).  

Proo f  The proof is by a simple induction on terms. We shall treat two cases as 
examples, that of a variable, and that of the relative product of two terms. Set 
15 = 15(9.1,/~). Then 

(u, v) e x~[/~] iff (u, v) �9 Rk 

iff (u, k, v) is an edge of (5 by definition of 15, 

iff 5xk ~ (15, u, v)  by definition of -~xk. 

Now assume that the lemma holds for a given a and z. Then 

(u, v) �9 or; z~i[/~] iff (u, w) �9 a~[/~] and (w, v) �9 ~[/~] for some w, 

iff S~ --, ( G, u, w ) and S~ ~ ( G, w, v ) for somew, 

iff 5~;~ ---' (G,  u, v ) .  
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The second and third equivalences follow by the induction hypothesis and Lemma 
2(ii) respectively. The other cases are quite similar, and are left to the 
reader. [] 

We are ready to prove Theorem 1. 

Proof of Theorem I. Assume, first of all, that there is a homomorphism from ~5, 
to .~ .  Let 9/ be any algebra of N, say with base set U, and /~ any sequence 
of elements from 9/. Fix two arbitrary elements u, v in U, and suppose 
that (u, v) e a~[/~]. Then SS, ~ ((5(9.1,/~), u, v) ,  by Lemma 3. Hence, ~ 
(15(9/,/~), u, v) ,  since -~ -,SS,. Therefore, (u, v) ~ z~[~q], again by Lemma 3. This 
proves that the inequality a < z is satisfied by k in 9/. Since 9 / an d /~  were arbitrary, 
a < ~ is valid in N. 

For the converse implication, assume that the inequality a -< z is valid in N, and 
suppose that ~ = (V, E, x, y ) .  For  each k with 1 <- k < n, set 

(1) Rk = {(U, V): (u,k, v) ~ E}. 

Let 9 / s  N be any algebra with base set Vsuch that R1 . . . . .  Rn are in 9/. By (1) and 
the definition of 15(9.i,/~) we have 

(2) ~ = (15(9.~, _~), x, y ) .  

Since this trivially implies SS~ --* (15(9/,/~), x, y ) ,  we get (x, y) e ae[/~] by Lemma 3. 
Hence, (x, y) E ~[/~], by our assumption. Applying Lemma 3 again, and using also 
(2), we get .~  ~ . ~ ,  as desired. [] 

Regarding Theorem 1 and its proof, we would like to make a few remarks. First, 
let 15 = (V, E )  be the disjoint sum of all the graphs 15o, where a ranges over the 
terms in Te with variables among xl . . . .  , x, and 15~ is the non-pointed reduct of 
S~o. For  each k with 1 < k < n define R~ as in (1) of the proof  of Theorem 1, and 
let 9 /be  the union-free set relation algebra generated by RI , .  �9 �9 R,. Just as in (2), 
we have 15 = 15(9.I,/~), i.e., 

(3) t5(9.1, R) is the disjoint sum of the graphs 15~, a ~ Te. 

Using (3), it is not hard to prove that 

(4) 9 / i s  the free algebra over N with n free generators R 1 . . . . .  R.. 

Indeed, suppose that _R satisfies an inequality a -< z in 9/. To show that a -<- z is 
valid in ~ ,  it suffices to show that .~ --*.~, by Theorem 1. Let . ~  = (ffi~, i, o) .  



Vol. 33, 1995 The equational theory of union-free algebras of relations 523 

From (3) we see that the identity function is a monomorphism from .~  to 

(15(91,/~), i, o) .  Therefore, by Lemma 3, we have (i, o) ~ ~r~[/~]. Since R satisfies 
a -< r in 91, we get (i, o) ~ T~[R], and therefore .~  ~ (t5(91,/~), i, o) ,  by Lemma 3. 
Let h be such a homomorphism. 

For a moment, let us treat the edges of graphs as undirected. Under this point 
of view, it is easy to show, by induction in terms ~, that the graphs (tic are all 
connected, and that these are precisely the connected components of  15 = 15(91,/~). 
Since 15~ is connected in this sense, h must map (5, to a connected component of 
(5(9.1,/~). But i and o are in the image of h, and they belong to (5~. Thus, h must 
map 15, to (5o, and hence also .~, to . ~ ,  as desired. 

Our second remark is that, by the proof  of  Theorem 1, ~ has the finite model 
property, i.e., an equation fails in N iff it fails in a finite algebra in N. In fact, an 
equation that fails in N must fail in an algebra with a finite base set. 

Third, in our opinion Theorem 1 gives a useful tool for investigating the 
equational theory of N. For example, it follows at once from Theorem 1 that, for 
every equation a = ~ valid in ~ ,  exactly the same variables must occur in cr and ~. 

Indeed, a variable xk occurs in a, respectively r i f f  _~, respectively ~ ,  contains an 
edge labeled k. Furthermore, if ~ --* ~,  and ~,  ~ ~ ,  then a label k occurs in f3, iff 
it occurs in ~ .  

Finally, since the graphs .~o are finite and effectively constructed, we can 
effectively decide whether ~ --+ SS~ and .~ ~ ~ .  This gives us a decision procedure 
for the equational theory of N. 

COROLLARY 4. The equational theory o f  ~ is decidable. 

It is possible to give another proof  of Corollary 4 using the known theorem in 
[1], pp. 70-71, that the set of logically valid universal-existential sentences (with 
relation symbols only) is decidable. In fact, this actually proves more. 

T H E O R E M  5. The equational theory o f  ~ is decidable. 

Proof  Let S be the first-order language with a denumerable number of binary 
predicates R1, R2 . . . .  , and individual variables v l , v 2 , . . . .  Following Tarski- 
Givant [ 17], p. 28, we define, for each term a in Te and each pair of indices i, j in 
{1, 2, 3}, a formula G(a, i , j )  of s with the two free variables v i and vj as follows: 

G(xk, i , j )  = v, Rkvj, 

G(O, i , j )  = (u i ~ Ui) , 

G(1, i , j )  = (vl = vi), 
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G( 1', i, j )  = (vi : v i), 

G(a  ~, i , j )  = G ( a , j ,  i), 

G(a  + ~, i , j )  : G(a,  i , j )  v G(z,  i , j ) ,  

G(~r . ~, i , j )  = G(a,  i , j )  /x G(~, i , j ) ,  

G(a;  ~, i , j )  : 3vm[G(a, i, m)  /x G(z,  re, j)] 

where m is the first positive integer # i, j. 

For each term a, let q~ be the formula G(o-, 1, 2). Now let 9.I be any algebra of 
~ ,  say with base set U, let/~ = <RI . . . .  , R, > be any sequence of relations from ~I, 
and let a, z be any terms of Te with variables among x ~ , . . . , x ~ .  Using the 
definition of G and induction on terms, it is easy to prove that 

(U,V) G o ' S [ R 1  . . . .  ,R~] iff ( U ,  R 1 , .  �9 �9 , R ~ )  ~ (po[u,v]. 

Hence, 

9.1 ~ (a = z)[Ri . . . . .  R ,]  iff < U ,  R 1 . . . . .  R n > ~ Vv,  Vv2(qo a ~ (Pc). 

In particular, the equation a = v is valid in N iff the sentence Vvl VV2((/~a ~ ~0z) is 
universally valid. Now (po and (p~ are built up from atomic formulas and formulas 
of the form v i r  vi using only v ,  /x and 3. Thus, each of them is equivalent to an 
effectively constructible existential formula in prenex normal form. Hence, 
VVx Vv2(~0~ ~ (p~) is equivalent to an effectively constructible universal-existential 
sentence ~. Since the logical validity of 0 is decidable, it is decidable whether or not 

a = ~ is valid in ~ .  [] 

The above theorem can be improved to cover other positive classes of algebras 
of logic. For example, by modifying the proof  slightly, we can show that the 
equational theory of the class of positive cylindric set algebras of any given finite 

dimension n is decidable. 
We now turn our attention to the principal result of this paper. 

THEOR EM 6. ~ is not  a variety.  

Again, we begin with a lemma. Let us say that a graph S5 = (V, E, i, o )  has an 
M3-subgraph if there are vertices u, v, and w in V such that u, v, w, i, and 0 are 
pairwise distinct, and there are (not necessarily distinct) labels k o , . . . ,  k5 such that 
(u, k o, i), (u, kl, w), (u, ks, a), and (i, k 3, v), (w, k4, v), (0, ks, v) are all edges of 5 



Vol. 33, 1995 The equational theory of union-free algebras of relations 525 

xl. 

Figure 3. The subgraph M 3. 

(see Figure 3). (The notation "M3" is used because of the similarity of this 
subgraph to the lattice M 3.) 

LEMMA 7. For no term a o f  T~ does 5~ contain an M3-subgraph. 

Proof  The proof  is by induction on terms. For a either xk or 1', this follows 
from the definition of 5~. The inductive clauses are immediate consequences of 
(1 ) - (3 )  below. 

Let 5m = (~)m, ira, Om ) be a graph for m = 1, 2. 
(1) If 5Y contains an M3-subgraph, then so does 51. 
(2) If  51 �9 52 contains an M3-subgraph, then so does 51 or 52. 
(3) If  51 ;52  contains an M3-subgraph, then so does 51 or 52. 
Indeed, (1) is clear, since the definition of an M3-subgraph is symmetric with 

respect to the input and output vertices, and 5~ differs from 51 only in that the 
input and output vertices have been interchanged. 

For  (2), suppose that 53 = 5l  " 5 2  has an M3-subgraph, say (u, ko, i3), (u, kl, w), 
(U, k2, 03) , and (i3, k3, v), (w, k4, v), (03, ks, v) are the edges of this subgraph. Then 
u is either in V1 or V2, by definition of V3. Without loss of generality, we may 
suppose it is in V1. Now the edge (u, k~, w) is also either in E1 or in E2, by definition 
of E3. Because V1 and V2 are disjoint, and u is in Vl\{il, O1 }, the edge must be in 
E 1 . In a similar fashion, using the definition of 51 " 52, we see that each of  the edges 
(u,/Co, il), (u, k2, 01), (il, k3, v), (w, k4, v), and (01, ks, v) are in El. Thus, 51 contains 
an 343 subgraph. 

For  (3), assume first that il vaol and i 2 ~ o  2. Suppose that (u, ko, i 3 ) a n d  
(u, k2, o3) are edges in 53 = 5~ ; 5~. By definition of 51; 52, the only vertex that can 
have an edge to both i3 and 03 is the vertex ol /O = i2/0. Thus, u = ol /O = i2/0. 
Similarly, if (i 3, k3, v) and (03, ks, v) are also edges in 53, then v = 01/O = iz/O = u. 
Because the points u and v must be distinct in an M3-subgraph, this shows that 53 
can have no such subgraph. 

Assume now that 01; 02 contains an M3-subgraph. Then i3 r 03. Assume that 
il = 01. Then/2 r o2 by i 3 ~ 03. Thus if a vertex u has "straight edges" to both/3 and 
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03, then u has to be in V2 and the edges have to be in E2. By applying this argument 
again, we obtain that u, v, w all have to be in 1/2, and ~2 contains an M3-subgraph. 
The case when i 2 = 02 is completely analogous. [] 

We are ready now to prove Theorem 6. 

Proof of Theorem 6. Let q~ be the equation 

Xl;  X3 �9 X2; X4 ~ X5; X6 

and ~ the equation 

X ~ ;  X2" X3; X ~  ~-~ ( X ~ ;  X 5 ' X3; X ~ ) ;  ( X ~ ;  X 2 "X6; X ~ ) .  

Notice that ~0 and 0 are just the equations e < 6 and 0 <- q, where 5, 6, O, and q are 
the terms defined in (e), (6), (0), and (t/). 

(1) The conditional equation ~0 ~ 0  holds in ~ .  

Indeed, let 9.1 be in N, and suppose that /~ = ( R 1 , . . . ,  R 6 )  is a sequence of 
elements from 92 satisfying the equation e < 8. Let (i, o) be in R 1 1 I R2 c~ R3 I R4 ~, 
say u and v are such that (u, i), (u, 0), (i, v), and (0, v) are in R1, R2, R3, and R4 
respectively (see Figure 2(f)). Then (u, v) is in R~ I R3 and in R21 R 4. Hence, by our 
assumption, (u, v) is in R5 I R6'  say (u, w) is in R5 and (w, v) is in R 6 (see Figure 2(d) 
and (c)). Now we easily check that (i, w) is in Ri -1 JR5 and in R3 I R6 1, and that 
(w, o) is in RsllR2 and in R6 I R4 ~ (see Figure 2(g)). Hence, (i, o) is in 

(R~I I Rs~R3 I R6 1) I (R;~ I R2~R6 [ R4~), 

as was to be shown. This proves (1). 
Let 3; be the term algebra on the variables Xl, x2, �9 �9 �9 x6 for the language of ~ ,  

or, equivalently, the absolutely free algebra on six generators for the similarity type 
(2, 2, 1, 0). We shall define a congruence relation T on 3; with the following 
properties: 

(2) (or, r) is in T whenever ~ = r is valid in ~ ,  
(3) (5, e ' a )  i s in  7 ~, 
(4) (Q, 0 " r/) is not in T. 

Assuming, for the moment, that (2)-(4) hold, we complete the proof as follows. 

(5) 3;/T is a model of the equational theory of ~ .  
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Indeed, suppose that an equat ion a = ~ with variables among x~ . . . . .  x ,  is true in 
N, and let (71 . . . .  , 7 , )  be any sequence of  n terms f rom ~:. Then the equat ion 

~(71 . . . .  ,7 , )  = ~ ( ~ 1 , . . . ,  ~,) 

is also true of  ~ ,  by substitution. Hence,  (cr(71 . . . .  ,7n), * ( 7 ] , - - . ,  7n)) is in 7/, by 
(2. Thus, ( 7 l / ~ u , . . . ,  7n/~ u) satisfies a = ~ in 3;/~. Since (71 . . . .  ,7n) was arbitrary,  
this proves (5). 

A similar argument,  using (3), (4), and the assignment (x l /~  . . . . .  x6/gJ), shows 
that  the implication (p ~ tp fails in 2:/7L But this implication is true o f  every algebra 
in ~ ,  by (1). Hence,  3 ; /~  is not  in ~ .  Together  with (5), this shows that 5~ cannot  
be a variety. 

We shall define 7 ~ as an extension o f  the congruence relation ~ on 3;, where 7J~ 
is: 

~1 = {(a, T): ~ = ~ is true in ~ ) .  

To  define this extension, we need to introduce some auxiliary notions. We begin 
with the notion of  a (p-extension. By a (p-extension of  55 = (V, E, i, o )  we mean a 
graph 55" = (V ' ,  E ' ,  i, o ) ,  such that,  for  some vertex w that  is not  in V, and some 
vertices u, v, p, and q that  are in V, we have: V ' =  Vw{w}; the edges (u, 1,p), 
(u, 2, q), (p,  3, v), and (q, 4, v) are all in E; and E '  = E u ( ( u ,  5, w), (w, 6, v))  (see 
Figure 4). The name "(p-extension" comes f rom the relationship of  the graph 55~ to 
the graph 55,. ~, and the connect ion of  (p to e and ~ (see Figure 2(d) and (c)). 

(6) Let 55m = ({~)rn, irn, Om) be a graph, for  m = 1, 2, 3. I f  551 is a (p-extension of  

55e, then 55y, 551 " 553, 55i; 553, and 553; 551 are (p-extensions of  55y, 552'553, 
552; 553, and 553;552 respectively. 

4L 

ar 

,tY 

I 

U.. 

.tr" 

Figure 4. q~-extension. 
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Indeed, suppose that 9~ is a (p-extension of 92" Since the graphs 9~ and 9m ~, for 
m = 1, 2, are identical except for their input and output vertices, and since the 
definition of a (p-extension doesn't mention the input and output vertices explicitly, 
we see that 9~' must be a (p-extension of 9~.  Furthermore, the notion of a 
(p-extension involves the addition of a new vertex, different from the input and 
output vertices, that satisfies special conditions. Now, the Boolean product and the 
relative product of two graphs is essentially their disjoint union, except for the input 
and output vertices. Therefore, if the special conditions are satisfied in 9! with 
respect to 92, then they are satisfied in 9j �9 93 with respect t o  *~2 " *~3, and similarly 
for the relative products. We leave the details to the reader. 

Let A be the set of pairs of terms (a, r) of 3; such that, either 9~ is a (p-extension 
of 9~, or 9~ is a (p-extension of 9~. 

(7) If  (a, ~) is in A, then, for every term 7, so are 

(a '~, r~), (a '7, r ~) ,  (7 �9 ~, 7 �9 ~), (~; ~, z; 7), (7; a, '/; r)- 

Indeed, if o- and v are identical, this is trivial. If 9~ is a (p-extension of 9~, or 
vice-versa, then this is an immediate consequence of (6) and the definitions of 9~ .~, 
etc. 

The relation A is obviously symmetric. Using (7) and the fact that 7s~ is a 
congruence relation, an easy general algebraic argument shows that the transitive 
closure of 7S~wA is a congruence relation on 32 We take 7/ to be just this 
congruence relation. We now show that (2)-(4) hold for 7/. We immediately get (2) 
from the definition of ~u~ and the fact that ~ _c ku. Furthermore, 9~6 is a 
(p-extension of 9~. Thus, (e, e �9 6) is in A, and hence also in 7 s, so (3) holds. The 
proof of (4) will require more work. 

We shall say that a graph 9 = (V, E, i, o)  has a loop if one of the following 
conditions holds: i = o; an edge of the form (u, k, u) is in E; there is an edge (u, k, v) 
in E such that, for some l r k, the edge (u, l, v) is also in E; there is an edge (u, k, v) 
in E such that, for some t, the edge (v, l, u) is also in E. It is clear that loops are 
preserved under homomorphisms, i.e., if 9~--' 92, and if 9~ has a loop, then 92 also 
has a loop of the same type. 

(8) Let (a, ~) e 7SlwA. I f9~  has no loop and 97 ~ 9 ~ ,  then r has no loop and 

9~ --, 9~. 

Suppose, first, that (a, r) is in 7s~. Then, by Theorem 1 and the definition of ku~, 
there are homomorphisms from 9~ to 9~ and conversely. Hence, 97 ~ 9 ~  iff 
97 --* 9~, and 9~ has a loop iff 9~ has a loop. Thus, (8) holds in this case. 
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Assume, now, that (a, ~) is in A, that Ib~ has no loop, and that SS, --* I0~. Suppose 
that SS~ is a ~o-extension of ~ .  Then we obviously have 5~ ~ 5 ~ ,  and hence 
SS, ~ ~, .  Assume, for contradiction that ~ has a loop. Let w, u, v, p, and q be as 
in the definition of a q~-extension. Ib~ has no loop, by assumption. Therefore, since 
I~ is a q)-extension of ~o, a loop in ~ that involve w. Hence, it must have the form 
(u, 5, w), (w, 6, v), since these are the only edges in .~  that involve w. But this is a 
loop only if u = v. Since the latter implies that (u, 1, p), (p, 3, v) is a loop in ~ ,  we 
have reached a contradiction. 

Suppose, finally, that SS~ is a ~0-extension of ~ .  Then ~ ~ ~ .  Since a has no 
loop, by assumption, we see that z has no loop. It remains to prove that ~ ~ .~.  
From the definition of .~, = ( V,, E,, i, o),  we see that, for some elements c, d, e, f ,  
and g, we have 

V, = {i, c, d, e,f, g, o}, 

E~ = {(c, 1, i), (c, 5, e), (i, 3, d), (e, 6, d), (f,  5, e), (f ,  2, o), (e, 6, g), (o, 4, g)}. 

(See Figure 5.) 
Let h map lb, homomorphically into ~ ,  and let w, u, v, p, and q be the vertices 

of SS~ as in the definition of a ~p-extension. Suppose, for contradiction, that w is in 
the range of h. As is clear from the labels in Figures 4 and 5, and from the fact that 
(u, 5, w) and (w, 6, v) are the only edges of ~ that involve w, we must have 
h(e) = w, h(c)= h ( f ) =  u, and h(d)= h(g)= v. For similar reasons, w is not in 
{h(i), h(o), h(c), h(d)}. Since ~ has no loops, the vertices h(i), h(o), h(c), h(e), and 
h(d) are pairwise distinct. Using Figure 5 and the fact that h preserves labels, it now 
follows that h(i), h(o), h(e), h(e), and h(b) are five distinct points that form a 
M3-subgraph of ~ .  But this contradicts Lemma 7. We conclude that w cannot be 

c 

Figure 5..~n. 
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in the range of h. Hence, h is actually a homomorphism of 9n into .~,, is desired. 

This proves (8). 

(8) Let (a, z) e ku. If 9~ has no loop and 9 ,  ~ 9 ~ ,  then ~ has no loop and 

9 ,  --, 9 , .  

Indeed, suppose that (a, z) is in iv. Since h u is the transitive closure of ku 1 u A, 

there is a sequence ( 7 1 , . . . ,  ?m) of terms of 3; such that o- is 71, ~ is ~,, and (V~, ~+ ~) 
is in T~ u A for 1 < i <  n. Applying (8) successively, we get the conclusion of (8) 

holds for each 7~. Hence, it holds for z. 
We are ready to prove (4). Clearly, 0 . q  does not contain a loop, and 

9 ,  ~ 9 ~  ~. If  (0, 0 ' t/) were in. ~, then we could apply (9) to conclude that 9 ,  ~ 9~. 
But it is easy to check that there cannot be a homomorphism of 9 ,  into 90 (see 
Figures 2(g) and (f)). This completes the proof  of the theorem. [] 

Remark. Using the notion of 2-pointed graphs, and the methods of the proof  of 
Theorem 1, we can extend Theorem 1 to the equational theory of ~ .  To handle 
"union" we use sets of graphs instead of single graphs; in particular, we associ- 

ate a set 5e~ of graphs with each term ~ ~ T~ in the following way: Sex = {9x ), 
5 ~ 0 = ~ ,  5 e l = { ( { a , b } , ~ , a , b ) }  , 5~+o =SP~uS~ 5~ .~=5e~ .5~  etc., where 
5P~ " 5~ = {~l " 92:91 ~ 5P~, 92 ~ 5P~} �9 If 5~1, 5~2 are sets of graphs, then 5~ ~ 5 P  2 iff 
(V92 ~ 5P2)(391 ~ 5~1)(9l ~ 92). With these definitions, the extension of Theorem 1 

goes through with almost no change. 
Using the extended Theorem 1, one can obtain some known axiomatizations of 

the classes of subreducts of ~ (see e.g. [2, 3, 5-9,  13, 15, 16]). For  example, to 
obtain a description of the equational theory of the { [ }-reducts (or the {o}-re- 
ducts), we apply Theorem 1. Since we have only [, the term-graphs are linear, and 
each edge contains only one label. (In other words, between any two vertices we 
have only one edge.) There is a homomorphism between two such graphs iff they 

are equal. So, a = ~ holds iff 9~ = 9~. One can show that 9~  = 9~ iff o- can be 
obtained from z by applying the associativity of ;. Thus we obtain a characteriza- 
tion of the equations that are valid in all { I }-reducts. A similar argument can be 

given for {I ,  c~}. 
If  we have only composition I and inverse -1, then the graphs consist of a single 

undirected path, like �9 ~ ~ �9 ~ y �9 ~ ~ � 9  There is a homomorphism from one 
such graph into another only if the length of the first path is at least as big as that 
of the second. So .~ --* (5 and (5 ~ 9 only if the lengths of 9 and (5 are the same, 
and in this case 9 ~ (5 iff 9 = (5. Thus, again z = a iff ~,  = 9~- It can be seen that 
9~ = 9~ iff r = a can be derived by using the associativity of ; and the involution 
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proper t ies  o f  ~ (x ~ = x, (x; y )~  = yU; x~) .  I f  we are interested in the " inequa l i ty"  

theory  o f  ( 1 ,  1} (i.e. in formulas  o f  the form ~ < a), then we have to add  

x < x;  x ~ ;  x as an axiom.  A similar  a rgumen t  can be given for  { 1, -1,  •} (see [13], 

p r o o f  o f  Theo rem 4.1). 

Re la ted  results are  given in [8]. A m o n g  others,  it  is shown in [8] tha t  the 

equa t iona l  theory  o f  all subreducts  ( to  a given subsimi lar i ty  type) o f  ~ is finitely 

ax iomat izab le  iff no t  all o f  the ope ra t ions  [, - ~, n are con ta ined  in these subreducts .  

In  par t icu la r ,  [8] conta ins  ano the r  p r o o f  tha t  the equa t iona l  theory  o f  N is no t  

finitely axiomat izable .  
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