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Abstract. Using conditional Brownian motion and the transformation of drift 
formula (of Cameron-Martin,  Girsarov, Maruyama) we give integral conditions 
on a vector field b which imply the harmonic measures and Green functions 
for ½A and ½A + b(')'V on a bounded Lipschitz domain D are equivalent, By 
equivalent we mean there exist two-sided inequalities with constants depending 
only on b and D. This enables one to conclude the potential theory for 
½A + b(-)'V on D and ½A on D are the same. 

1. Introduction 

The purpose of this paper is to study the operator L =½A + b(.)-V on a domain 
D. We shall impose integral conditions on b which allow b to have singularities 
and D will be a bounded Lipschitz domain in [~d, d > 2. Under our conditions on 
b and D, there will be two-sided inequalities c-1G(x, y)< GL(X, y)< cG(x, y) and 
c-lwX(dz) < w~(dz) < cwX(dz) between Green functions and harmonic measures for 
L and ½A on D. The approach is probabilistic and follows closely Cranston, Fabes 
and Zhao (1986). The ideas here can trace their history to the works of Chung 
(1985), Falkner (1983) and Zhao (t983, 1984). 

There are two main differences between treating ½A + q as in the first work 
mentioned above and L in the present work. The first is in the use of the 
transformation of drift formula (sometimes called the Cameron-Mar t in-Girsanov 
formula which was also studied by Maruyama (1954)) instead of the Feynman-Kac  
formula. The second difference is in the use of the stochastic process version 
of the John-Nirenberg Theorem (see Delacherie-Meyer (1980)) instead of 
Khasminski's Lemma. In the previous works q was taken in the Kato class K~ °c 
(see the proof for Corollary 3.14). The condition that arises from our techniques 
is that IblZEK l°c and IbKeKe+ 1.1°¢ 

The two-sided inequalities between Green functions and harmonic measures 
enable one to obtain potential theoretic results for L which are known to hold for 
½A and we give several though by no means all consequences that may be 
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derived in this manner. We also give analytic conditions on b in the case when D 
is a C ~'~ domain. 

Similar, though not overlapping, Green function estimates have been obtained 
in Hueber, Sieveking (1982) and Stampacchia (1965). 

2. Preliminaries and Notation 

Throughout we shall assume D is some bounded Lipschitz domain in Na, d ~> 2, 
with Green function G(x, y) and Martin kernel functions K(x, z), zsaD. Our results 
also hold in d >t 3 if D is assumed to be a bounded N.T.A. domain as studied in 
Jerison, Kenig (1981). When d = 2 one only need assume re(D) < oe and then one 
must discuss K(x, z) for z in the minimal Martin boundary of D, but this provides 
no difficulty. For  the reader unfamiliar with N.T.A. domains we assume the slightly 
stronger condition that 3D is Lipschitz. 

Let (W, P~, Ft) be Brownian motion killed on exiting D and let p(t, x, y) be its 
transition density. We shall need conditional Brownian motion as introduced in 
Doob (1957). Namely, if z ~ D ,  set 

or when z6D, set 

p %  x, y) = 
p(t, x, y)K(y, z) 

K(x,z) ' 

p(t, x, y)G(y, z) 
p~(t, x, y) = 

6 (x , z )  

These transition densities give rise to measures P~ on continuous paths corres- 
ponding to Brownian motion conditioned to exit D at z. Another handy description 
is to consider the process defined by dYt = dWt + (VK(Yt, z)/K(Yt, z))dt, when zsgD, 
and we replace K(y, z) with G(y, z) when zeD. Then the processes (Y, px) and (W, P~) 
are the same. 

Suppose also that b is a Borel measurable vector field on D. Under the 
assumptions which we make below we are guaranteed the existence of a unique 
solution Xt to 

dXt = dWt + b(Xt)dt, Xo = x. 
t 

Then X is the diffusion with generator L = ½A + b(').V. Define Mt = 5 b(W~)dWs, 
0 

~ ,= in f{ t>0 :WtCD},  and assume supx~D EX[(M)(~D)] < 0% where ( M ) t =  
t 

S]b(Ws)[2ds. The transformation of drift formula tells us that if we define 
0 

Nt = exp { M r - - l ( M ) t }  and the measure QX by dQX/dp~[vt = N, on {t < ~D}, then 
(W, Q~) and (X, P~) are different descriptions of the same process, even up to the 
exit time ~D- In particular, px(x~Dsdz ) = PX(N,~; t4~D~dz), or in the briefer notation 
of the analysts co[(dz) = H(x, z)co~(dz), where oJ[(dz) is L-harmonic measure on D, 
o~X(dz) is harmonic measure on D and H(x,z)= E~[N(zD)]. Our main result, 
Theorem 3.1, states that under appropriate conditions on b there is a positive 
constant c such that c "~ <= H(x,y)< c for all x, y~/5. 
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The lower bound does not hold on general domains D even for b(.) = b, though 
lbl may be arbitrarily small. In Cranston, McConnell (1983) an example of a 
bounded domain D ___ ~3 was  given for which P~(zD = ~ ) =  1 occurred for a 
particular boundary point z, the domain was not N.T.A. For  this b, D and z, 

[ {~i ~i }]-Xexp{b'(z x)--½]b]2zD}" Ez ~ exp b . d W s -  ½ ]bl2ds - E ~  

= 0 .  

On the other hand, the upper bound H(x, y)<~ c cannot hold even on nice 
domains without some assumption on b. Let, for example, D = {z: Izl < 1} _= ¢ 
and K(.,z) be the Poisson kernel with pole at z and normalized so that 
K(0, z) = 1, setting b(x) = VK(x, z)/K(x, z), we have H(, z) - oo. To see this observe 

' i that logK(W~,z)=fVK/K(W~,z)dW~--  ½ [VK/KI 2 (Ws, z)ds. Thus, if ~ =  
0 0 

inf{t > 0: K(Wt, z) = r}, then H(x, z) = limc~ E'~K(W~, z) = oo. 
We shall use the John-Nirenberg inequality which may be found in Delacherie, 

Meyer (1980). 
1 M In the present context if Z e = M ~ -  ~(  )t^~, where ~ is a stopping time, set 

Z*=sup~lZ¢l .  The John-Nirenberg inequality tells us that if for any pair of 
stopping times S __< r we have E~ [[Z r - Z s II fs] < c a.s., then in fact E~ exp {2Z*} ~< 
(1 - 42c)- 1. In particular, we would have E~N~ <~ (1 - 4c)- 1 provided c < ¼. 

3. Main Results 

We shall need the following assumptions on b and D: 

D is a bounded Lipschitz domain, (3.1.1) 

sup ~ [b(y)[ z G(x, y)dy < oo, (3.1.2) 
x~D D 

]b(')l 2 is uniformly integrable with respect to the measures 

~ G(x, z)- 1G(x, y)G(y, z)dy, for (x, z)eD x D, 
#(x, z; dy) = I K(x, z)- 1G(x, y)K(y, z)dy, for (x, z)e D x 0D. 

(3.1.3) 

I b(')l is uniformly integrable with respect to the measures 

G(x, z)- 1G(x, y)VG(y, z)dy, z ~D, 
v(x, z; dy) = ~ K(x, z)- 1 G(x, y)VK(y, z)dy, z ~ OO. (3. 1 ~4~ 

The condition (3.1.1) is a rather mild boundary condition which insures 
P~(r/~ < oo) = 1 for x~D, z ~ D .  For this purpose N.T.A. would suffice for d > 3, 
see Cranston (1985). In the case d = 2, m(D) < ~ is enough where m is Lebesgue 
by Cranston and McConnell (1983). 

In (3.1.3) and (3.1.4) we mean that a function f is uniformly integrable with 
respect to a family of m e a s u r e s  {#).}&EA if given e > 0 there is a 5 > 0 such that 

whenever re(C)< fi then ~ [f(y)lUa(dy ) < s for all 2cA. Our main result is 
C 
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Theorem 3.1. Suppose b and D satisfy (3.1.1)-(3.I.4). Then there is a positive constant 
c, depending on b and D such that 

c -1 <_H(x,y)<c for all x,y~D. (3.1.5) 

Remark. If we do not assume aD is Lipschitz (actually nontangentially accessible 
suffices) the measure P~ may not exist for x, ye8D, see Salisbury (1985) for the 
existence of P~. In d = 2 if only re(D) < oo is assumed then the conclusion (3.1.5) 
holds for all (x, y)s / )  x / ) \ S ,  where S is a of co x x ~o x measure zero, again by results 
of Salisbury (1985). 

Proof We shall give the proof only for the case xsD, z~OD. The proof foUows 
Chung (1985) and in the present case we use the transformation of drift formula 
and John-Nirenberg inequality in place of the Feynman-Kac  formula and 
Khasminski's 1emma. The reader is referred to Cranston, Fabes, Zhao (1986) for 
the remaining cases and should be able to make the appropriate modifications. 
We begin with the following 1emma from Chung (1985). 

Lemma 3.2. Given ¼ > e > O, there exists a 6 = (~(e) > 0 such that if C is an open 
connected subset of D with ODc aC and m(C) < (5, then 

sup E~[I M(~c) - (M)~cl ] < e. (3.2.1) 
x~C 
zeOD 

and 
1 

sup E~[N(zc) ] < ......... . (3.2.2) 
~c = I - 4e 
zOD 

Proof By the strong Markov property and the John-Nirenberg inequality, the 
estimate (3.2.1) implies (3.2.2). Thus we estimate, for ze~D we have 

e~J M(~c) l  = E x iCb(w~)dW~ 

<E x 

[ ~c ]l/2 G(x,y)lb(y,l[VK(y,z)l dy 
<- E~ ! Ib(Ys)[2ds +[  K(x,z) 

=< ~[ [~ G(x, y)[b(y)12K(Y,K(x,z) z) dYA[-]~/2 

+ ~ G(x, y) Ib(y)I! VK(y, z)~ dy. 
c K(x, z) 

Now invoking assumptions (3.1.3) and (3.1.4) we can select 5 = 6(e)>0, so that 
E~[M(zc) I < e/2 whenever re(C) < 5 (m denotes Lebesgue measure). Also, in a similar 
manner 

t x~C 2 < ~ G(x,y) lb(y)12K(y,z) 
E~(M)~c=~E. ~ Ib(W~)l ds = ~  dy. 

o c K(x ,  z) 
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Thus, by (3.1.3), there is a 8, possibly smaller than the previous 6, such that 
E'~<M>~c<e/2 whenever re(C)<& Combining the estimates for E~M(tc) and 
E~(m>~c gives (3.2.1). 

We now fix a connected subdomain C c D  with 8D c 8C and m(C)< 6(~), so 
sup~vE ~ [N(tc) ] < 2. Set that E~[Im(zc)[ + <M>~ c] ~ ~ and consequently ~c 

D~ = D\C and let D 2 be a subdomain of D such that/5~ c D 2. Then as in Chung 
(1985) we have 

Lemma 3.3. There exist positive constants c~ and c 2 depending on D and b such that 

cl < E~{N(ZD);ZD = ZC} < C2, xe8Dz,zeSD. 

Proof Exactly as in Chung (1985) it holds that, for some positive constant c 
depending on D alone, P~[ZC=tD] >~c for yeSD2, zeSD. Thus by Jensen's 
inequality, 

E~z[N(vD) ltc - ro] ~ exp [E~ [ -  [ M(zD) -- ½ <M>~oll~cc = to3 } 
~ e x p { -  1 x 

~Ez I M(rc) - ½(M>,cl 3" 

> e-~/c. 
On the other hand, 

x 1 x 1 1 
Ez[N(zo)[Zc = to] < cE~ [N(zc)] < . . . . . . .  (3.2.2) 

= c  1--4e" 

This proves the lemma. 
We now complete the proof of Theorem 3.1. Define the sequences of stopping 

times starting with To - 0, 

Tzn_ 1 = T2,_ z + zoz°Orz,_z, 

Tzn = Tzn- 1 + Zc ° OT2n-1, n > 1. 

Then since P'~(z o < ~ )  = 1, we have a.s., T2, = t o for some finite n. Thus, by the 
strong Markov property, 

H(x, z) = ~ EX(N('co): Tz. = zo} 
n = l  

l~X f ~ Is'W(T2n- 1) = ~zl~'t~t2n-1)~z~rl'"r [ [N(Z l ) ) ; t  c = ZD]; Tzn. 2 < t o ] .  
n = l  

Noticing that when T2.-2 < ro we have W(T2._x)eSDz, it follows from Lemma 
3.3 that 

_ _ _  cl Ez{N(T2n-1), T2n-2 < zo} G H(x, z) < c a Ez{N(T2n-I), T2n-2 < to}. 
n = l  n = l  

(3.3.1) 

The definition of Pz ~ gives the following expression for the n th term in (3.3.1), 

E'~{N(Tzn- 1); Tzn-z < to} = K(x, z)- tU'[K(W(T2._ 1), z)N(T2n- 1); T2n- 2 < to}" 

(3.3.2) 
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Suppose first that x d ) 2 .  On {T2,-2 < zD}, W(T2,- 0~/)2. The function K(x,z) is 
jointly continuous and bounded from zero on / )  2 x OD so for some positive constant 
c we have 

K(y, ~ < K(y, z') 
K(x,z) = CK(x,z')' x 'y~D2'z 'z '  E~D" 

Consequently, from (3.3.2) 

sup E~{N(T2._ 1); T 2 . -  2 < zo} < c inf  E~{N(T2._ O; T2,- 2 < Zo}. 
z~OD' z~OD 

Furthermore, since 1 = E~[N(zD)] = ~ H(x, z)co~(dz), 
aD 

inf H(x, z) < 1 < sup H(x, z). (3.3.3) 
z~OD zEc3D 

Thus, from (3.3.1), (3.3.2) and (3.3.3) 

sup H(x, z) < c. 
z~D 
x~D 2 

When xeD\D2, write 

H(x, z) = E~{N(zc); Zc = ZD} + E~{H(X,cZ); Zc < ZD} 

< c~ + sup H(x, z) 
Y~ED 2 
z~c)D 

<= C 2 + C, 

and the proof of the upper bound is complete. The lower bound follows using 
Jensen's inequality. 

Theorem 3.4. Assume (3.1.1)-(3.1.4) hold. Then 

oo~(dz) = n(x,  z)og~(dz), x e D, z e OD, (3.4.1) 

GL(x, y) = H(x, y)G(x, y), x, yeD, (3.4.2) 

and there exists a positive constant c depending on b and D such that 

c- t e)X(dz) _-< o9~(dz) < ccoX(dz), (3.4.3) 

c- 1G(x, y) < GL(x, y) <= cG(x, y). (3.4.4) 

Proof. Formula (3.4.1) is a restatement of the transformation of drift formula. The 
consequences (3.4.3) and (3.4.4) follow immediately from (3.4. t), (3.4.2) and Theorem 
(3.1). Thus we only need prove (3.4.2). First observe, by applying L to both sides, that 

GL(x, y) = G(x, y) + S GL(x, co)b(co)VG(co, y)doo. (3.4.5) 
D 
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Next notice that dNt = NtdMt, N O = 1, so 

z D 

H(x, y) = 1 + E~ I N flM~ 
0 

z D 

= 1 + E~ ~ N~b(WOdW ~ 
0 

zD 

= 1 + E ~ ; Nr~b(Y~)d Y,,  
0 

z D 

= I + E ~ !  

gD 

=I+E~ l 
0 

(where by N Y we mean 
substitute Y for W in the 
definition of N) 

tx~,y) 

N~b(W~) ~-W~'--Y) ds 
(W~,y) 

E . . . . . .  VG(Ws,y);s< ]ds =l+i ,[l~so, w A ~ o  

= 1 + G(x, y)- 1 ~ GL(x, w)b(w)VG(w, y)dw, or 
D 

n(x, y) = 1 + G(x, y)- 1 ~ GL(X ' w)b(w)VG(w, y)dw. (3.4.6) 
0 

Comparing Eqs. (3.4.5) and (3.4.6) yields GL(X, y)= H(x, y)G(x, y) as desired. 
We now give consequences of Theorems 3.1 and 3.4 all of which assume 

(3.1.1)-(3.1.4) hold. 

Theorem 3.5. (Stron9 Harnack). Given 3, 0 < 6 < 1 there exists a positive constant 
c = c(3, b, D) such that if B(x, r ) c  D and u is a positive solution of  Lu = 0 in D, then 

u(y) <= cu(z) .for y, zeB(x, fir). 

Proof Denote by H, the H for B(x,r). Then (3.1.5) holds for H, with the same c 
used for H. Also denote by O~L. ~ and co, the harmonic measures on B(x, r) for L and 
½A. Then 

u(y)= .[ u(w)wL#lw) 
aB(x,r) 

= ~ u(w)H,(y,w)w~(dw) 
~B(x,r) 

< C ~ u(w)w~(dw), by (3.1.5), 
aB(x,r) 

< c ~ u(w)w~(dw), by Harnack for ½A, 
0B(x,r) 

<e S u(w)n~(w,z)w~(dw), by (3.1.5), 
~B(x,r) 

= CU(Z). 



620 M. Cranston and Z. Zhao 

Theorem 3.6. (Boundary Harnack). Given 3, 0 < 6 < 1 there exists a positive constant 
c = c(6,b,D) such that whenever u and v are positive L-harmonic functions in D 
vanishing continuously on OD c~ B(z, r ) for  some z6OD, then 

U 
u_ (x) < c -  (y), x, y ~ B(z, g~r) c~ D. 
V V 

Proof Select a Lipschitz subdomain/ ) r  c D with the same Lipschitz character as 
D and with D c~ B(z, r ) ~  D r ~ D c~ B(z, 6r). Let Hr be the H for D r, and again H r 
satisfies (3.1.5) without a change in the c there. Similarly, denote by wr the harmonic 
measure for Dr. Thus for x, y s D  c~B(z, fir), 

u(w)H,(x, w)w~(dw) 
U_(x) = < 

v ~ v(w)Hr(x, w)wX(dw) 
~?D r 

f u(w)w~(dw) 
G ODr 

v(w)w;(dw) 
OD r 

u(w)w~(dw) 

<__ c ~-°~ , by Boundary Harnack for ½A 

v(w)w~(dw) 
OD r 

U 
<_ c-  (y), 

V 

by reinsertion of Hr(Y, w) in numerator  and denominator at the expense of another 
constant. 

Warning: The following result is not true in d = 2 if we only assume m(D) < co. 

Theorem 3.7. (Martin Boundary). The minimal Martin boundary for L on D is the 
Euclidean boundary. Every positive L-harmonic function u on D has the unique 
representation 

u(x) = ~ KL(X, z)la(dz) 
OD 

for some unique Borel measure kt on ~D and KL(X, z) = limy_, z GL(X, y)/GL(X o, y), zE~D, 
is a H61der continuous function of  zE~3D. In addition, 

H(x, z) (3.7. I) 
K~(x, z) = H(xo, z) K(x' z) 

and there exists a positive constant c = c(b, D) such that 

c -1K(x ,  z) < KL(x, z) < oK(x, z). (3.7.2) 

Proof  This follows from Theorem 3.6 and our previous results using the techniques 
of Jerison, Kenig (1981). 

Our  next result says positive solutions to the two problems Du = O, Lv = 0 
vanish at the same rate at the boundary. 
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Theorem 3.8. Suppose W c_ Nd is open and K c W is compact. I f  u and v are positive 
harmonic and L-harmonic functions, respectively, on D both of which vanish 
continuously on OD n W, then u/v extends to a continuous function on OD ~ K. 

Proof We require a lemma: 

Lemma 3.9. The function H(x,.) is continuous on D for each xsD. 

Proof Since G(w,y)/G(xo,y)~K(w,z ) as y-~zeOD uniformly on compacts it 
follows that VG(w, y)/G(x o, y)-~ VK(w,z) on compacts. Thus for a.e. 
w, VG(w,y)/G(xo,y)-~VK(w,z). Now by (3.4.7) and the uniform integrability 
assumption (3.1.4), we have, taking the limit under the integral, 

lim H(x, y) = 1 + ~ GL(x' w)b(w)VK(w, z) 
r-*z u K(x, z) dw = H(x, z). 

For continuity in D we only need the continuity of VG(w,y)/G(x, y) for ysD\{w} 
and (3.1.4). 

Proof(Theorem 3.8). Using Lemma 3.9 for z e K n  ~?D, xe}K, 

lim u, , _ lira [- u(y) -] [- GL(x, y) -] F G(x, y) ] ,  

and the limit of each factor exists, the first two by the Boundary Harnack and 
weak maximum principles for ½A and L, the third by Lemma 3.9, and formula 
(3.4.2). 

Theorem 3.10. All points on aD are regular for the Dirichtet problem for L. 

Proof A result of Brelot states that minimal Martin boundary points are regular 
for the Dirichlet problem. Theorem 3.7 says 8D is equal to the minimal Martin 
boundary. 

We can also prove Fatou's nontangential limit result for positive solutions of 
Lu = 0. Let D = B(0, 1) be the unit ball in ~d and for ~, 0 < ~ < 1, take F~(z) 
to be the convex hull of { z ) c  0D and B(0, o-). Define u*(z)= maxx~&(~lu(x ) and 
for a positive finite Borel measure v on 0D, set 

v(V(z, r)) 
Jtu(v)(z) = sup-7_,7 ~c,, 

r> o #tvtz, r)) 

where # is a fixed positive finite Borel measure on OD and for zet?D, 
V(z, r) = OD c~ B(z, r). Then we have 

Theorem 3.11. Suppose v is a finite positive Boret measure on ~B(0,1) and 
u(x) = ~ KL(X , z)v(dZ). Then there exists a positive c = c(b) such that 

OB(O,~) 

u*(z) < cdg~o(v)(z), zeOB(O, 1). (3.11.1) 

Furthermore, the nontan#ential limits lim r-,~ u(y) exist a.s. for each 0 < a < 1. 
yeFa(z) 

Proof Denote by v the harmonic function v(x) = ~ K(x, z)v(dz). Then by (3.7.2) 
OB(0,1) 
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there is a two-sided inequality c-lv*(z)<u*(z)<cv*(z) .  Also, by (3.4.3) 
c-  iJ#o,0(v)(z ) < ~/~o(v)(z) < cJgo, o(V)(Z) holds. It is classical that v*(z) < cJ/go~o(V)(z), 
zeaB(O, 1) and (3.11.1) follows from this and the two-sided inequalities above. The 
nontangential limit statement is a consequence of the maximal function inequality 
(3.11.1). 

When 0D is C i'1 we can give analytic conditions under which (3.1.3) and (3.1.4) 
are satisfied. 

Theorem 3.12. l f  ~D is C l'l then there exists a positive constant c, depending on D 
alone, such that 

G(x, w)G(w, y) < e{ lx - w l  2 - d  q_ tW _ y 1 2 - 2 ) ,  (3.12.1) 
~(x, y) 

G(x, w)11VG(w, y)II 
< c(]x - wl ~-a + Iw - yl ~-d), (3.12.2) 

G(x, y) 

G(x, w)II VK(w,z)II < c{ Ix - w] 1-d + [w - z[ i -2}. (3.12.3) 
K(x, z) 

Proof The inequality (3.12.1) is actually valid when dD is Lipschitz and is given 
in Cranston, Fabes, Zhao (1986). For (3.12.2) and (3.12.3) we use the following 
known estimates 

( 1  6(x) ~(x)6(w) ) 
G(x, w) < min ~ _  w[ a- z 't x - w ] d- 1,1 x - wl 2 ' Widman (1967), (3.12.4) 

( ~ y  1 )Widman(1967) ,  (3.12.5) l lVa(w,y) l l<min  I I d ' l w - y l  a- i  ' 

1 
11VK(w, y)11 < I w - yl 2" Widman (1967), (3.12.6) 

1 _6(x)6(y) ~ Zhao (1986), (3.12.7) G(x,y)>=min ~__y]a-2' i x _ y l d  }, 

~(x) Zhao (1984). (3.12.8) K(x, y) > Ix - y] d' 

We prove only (3.12.3), that for (3.12.2) being similar. The proof is split into two 
cases. 

Case 1. I x -  z[ < 2 [ w -  z I. By (3.12.3), (3.12.5) and (3.12.7), 

G(x, w)]I VK(w, z) ]1__ < 6(x) 1 Ix -- z 12 < 22 
K(x,z)  = [ x - - w l 2 - 1 ] w - - z l  2 6(x) = i x - - w ]  2-i"  

Case 2. Ix - z ] > 2 [ w - z l. Notice that in this case, since 

I x -  zl _-< I x -  wl + Iw-  zl <_- I x -  wl + ½Ix-  z[, 

it follows that 
Ix-zl<21x-wl.  
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Thus, by (3.12.3), (3.12.5) and 

G(x,w)llVK(w,z)[[< 6(x) 1 I x - z [ e <  2 a 

K(x,z) = [ x - w l a - a l w - z l  a ~(x) - - I w - z l  a-x" 

Combining Cases t and 2 gives (3.12.2). 
Theorems 3.1, 3.2, and 3.12 give the following. 

Theorem 3.13. Suppose OD is C l'l and the vector field b on D satisfies both 

Ib(y)l z 
limsup ~ t x : y ~ _ 2 d y = O ,  
r--,O x e D  Ix-yl<r 

and 

(3.13.1) 

lim sup S x ]b(y)] , o x~D ix-yj<r Z- f i~- i  dy=O. (3.13.2) 

Then there is a constant c such that 

c -1 <=H(x,y)<c, x,y~D. (3.13.3) 

Furthermore, the conclusions of Theorems 3.4 through 3.11 hold. 

Corollary 3.14. l f  aD is C 1"1 and Ibl~LV(D,m) for some p > d, then there is a constant 
c such that 

e-  i < H(x, y) < c. 

Proof Since ]b[eL v for some p > d, it follows that ]b]ZeK~ °~ (see Simon (1982)) 
which is equivalent, by the definition of K~ °~, to saying that (3.13.1) is satisfied. For 
the proof that (3.13.2) is satisfied set q = p / ( p -  1) and observe that (1 - d ) q  + d > 
(1 - d)d/(d - t) + d = 0. Thus for any xeD,  

lb(y) 1 (f / \ l / v /  . x] (1-a)qdy)l/q 1 

.~]b(Y)[VdY. { J [Y-  ~< _yla-laY<= 
ly_xl=r I x \D / \ly-xi<r 

/ ~ \ l / q  
<= ]] b ]l, ~ ca ! t(1-d)q+d- l dt ) 

= It b ]lye(d, q)'r (1 -a)q+a, 

and since (1 - d)q + d > 0, we see (3.13.2) holds. 
Finally we can apply our results to extend the Conditional Gauge Theorem 

to operators of the form L = ½ A  +b(-)-V on Lipschitz domains D for which 
(3.1.2)-(3.1.4) hold. More specifically let # be a Borel measure on D which is in 

K~°~(D), namely, limr~oSUpx~D ~ ]#](dy) / lx-y la-2=O. Let A be the additive 
Ix-yl<r 

functional associated to # and set e.(zD)= e -ar~. More specifically, A satisfies 

E~A,~ = ~ GL(x, y)#(dy). Set M = L - / . t  and F(x, y) = E~e.(zo). 
D 

Theorem 3.15. I f  F(xo, Yo) < oo for some xo # Yo Xo, Yo e/), then there exists a positive 
constant c such that 

c -1 ~ F ( x , y ) < c ,  x, yeD. (3.15.1) 
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Also the following identities and inequalities hold: 

og~t(dz) = V(x, z)co~(dz) = F(x, z)H(x, z)ogX(dz), (3.15.2) 

GM(x, y) = F(x, y)Gz(x, y) = F(x, y)H(x, y)G(x, y), (3.15.3) 

c-%oX(dz) < og~(dz) < cogX(dz), (3.15.4) 

c- 1 G(x, y) < GM(X , y) < cG(x, y). (3.15.5) 

Furthermore, the conclusions of Theorems 3.5 through 3.it hold for M. 

Proof The conclusions (3.15.4) and (3.15.5) follow from (3.15.1), (3.15.2), (3.15.3), 
(3.13.3), (3.4.3) and (3.4,4). The inequality (3.15.1) and identities (3.15.2) and (3.15.3) 
follow exactly as in Cranston, Fabes, Zhao (1986) once one knows the estimate 

GL(x, y)GL(y, z) < c ~ 1 ÷ 1 
GL(x,z ) = ~ x - - y  a - 2  l Y _ z l  a-2 J 

holds, where c depends on L and D. But in the above mentioned work it was 
shown that 

G(x, y)G(y,Z) < c { 1 1 } 
G(x,z) = I x - y l  a-2 ÷ l y - z t  d-2 ' 

and c-  1GL(x, y) ~ G(x, y) ~ cGL(x, y) by (3.4.4). Thus trivially G L satisfies a similar 
estimate and everything follows. 
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