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Abstract. We prove that for the relative entropy of faithful normal states ~o and 
co on the von Neumann algebra M the formula 

S(~o, co) = sup {co(h)- log oh(I): h = h* ~ M} 

holds. 

In general von Neumann algebras the relative entropy was defined and 
investigated by Araki [1, 3]. After Lieb had proved the joint convexity of the 
relative entropy in the type I case [10] several proofs appeared in the literature and 
they all benefited from the operator convexity of the function t ~ -  logt [-8, 11]. 
Improving a result of Pusz and Woronowicz [-14] Kosaki [9] obtained a 
variational formula for the relative entropy, which allows to extend the notion also 
to C*-algebras. The expression we are going to deal with is of a different kind. It 
shows that the relative entropy S(q~, co) as a function of q~ is the conjugate convex 
function (i.e., Legendre transform) of the convex function h--*log~oh(I), where O h 
denotes the inner perturbation of the state q~ by the selfadjoint operator h. The 
perturbed state qo h was used by Araki to extend the Golden-Thompson inequality 
([7, 18], see also [15]) to traceless von Neumann algebras. Approaching our 
variational expression for the relative entropy we generalize the Golden- 
Thompson-Araki inequality [2] essentially and we state also the exact condition 
for the equality. 

If q~ and co are faithful normal states of the von Neumann algebra M then the 
relative entropy is defined by means of the relative modular operator A(cp, co). If f2 is 
the vector representative of co in the natural positive cone P then 

S(q~, co) = -- (logA(~o, co)f2, O) .  

The variational expression of Kosaki says that 

S(~o, co)=supsup{logn-~/t-lco(Y(t)*y(t))+t-zq~(x(t)x(t)*)dt}, 
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where y(t) = I - x(t), the first sup is taken over the positive integers and the second 
one is over all step functions x: [l/n,  ~ ) ~ M  such that the range of x is finite and 
x(t) = I for t large enough. 

For a cyclic and separating vector • ~ P and a selfadjoint element h ~ M the 
perturbed vector ~h is defined by 

1/2 t l  t n  - i 

dtl dr2 ... S dt,  dtl-,2h , 
n=O 0 0 0 

where A is the modular operator of ~0. The perturbed functional is the 
nonnormalized vector functional corresponding to ~h. The inequality 

rl ~h II 2 k exp qffh) 

reduces to the Golden-Thompson inequality if the algebra admits a faithful normal 
trace. 

If q~ and to are faithful normal states on the yon Neumann algebra M then co is 
of the form (ph for some h = h* a M provided that there are some constants 2, # > 0 
such that ~o =<2co <#~o [-1]. This h is called the relative Hamiltonian. 

Proposition 1. Let  q~ and co be faithful normal states on the yon Neumann algebra M 
and h = h* ~ M.  Then 

log q~h(I) > co(h) - S( qg, to), 

and the equality holds if  and only if co = ~oh/~oh(I). 

Proof. By Theorem 3.10 of [3] we have S(q?, co) = S(q~, o9)- co(h). The monotonicity 
of the relative entropy gives that S(~o h, co) > co(I) [log co(/) - log q?(I)]. Theorem 4 of 
[-12] tells us that here the equality holds if and only if 

[D(P ~, Dco]t = (~Ph(I)/to(I))U (t ~ ~ ) ,  

that is, q?=2co with a 2 s R  + such that ~oh(I)=2co(I). 

Corollary 2. log cph(I)= sup {co(h)-S(~p, co): co is a faithful normal state}. 

Corollary 3 (cf. [2]). The function h~togq~h(I) is convex on M ~. 

Theorem 4. Let  ~ : Mo ~ M be a unital 2-positive mapping between the yon Neumann 
algebras Mo and M,  and let q~ be a faithful normal state of  M.  Assume that q9 o ~ is a 
faithful normal state o f  M o. Then for  every h = h*a  Mo,  the inequality 

q~(h)( I) < ( q~ o ~)h( I) 

holds. Furthermore, the equality implies Opt(h)o C~ =(~  o ~)h. 

Proof. Let to = tO'(h)/q~(h)(I). Then 

log ~o~(h)(I) = co(a(h)) - S(~o, co) 

by Theorem 3.10 of [2] again. According to the monotonicity of the relative 
entropy [9, 11, 16] we have 

S( ~o, co) >= S( ¢ o ~, coo ~) , 
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and application of Proposition 1 gives that 

log ~o~(h)(I) = (co° ~)(h)- S(~0 o ~, coo ~) < log(q) o ~)h(I). 

If the latest inequality is actually an equality, then co o ~ = 2(q~ o e)h, that is q~(h) o 
= 2(q~ o ~)h. 

Corollary 5. I f  N CM and h=h* s N, then for a faithful normal state q~ on M we 
have 

q~h( I) <= ( q~tN)h( I) , 

and the equality holds if and only if aet(h) ~ N for ever), t ~ ~ .  In particular, if N is 
commutative, then rph(1) <= q~(exp h) and a~°t(h)= h for every t e N is a necessary and 
sufficient condition for the equality. 

Proof. We learn from the proof of the previous theorem that ~oh(I)= (q~lN)h(1) 
implies S(@,q~)=S(rph]N,~oJN), and due to Theorems 4 and 6 of [12] this is 
equivalent to the condition a°~(h) ~ N for every t ~IR. 

For a commutative N we have ~ph(I)=~p(exph) for every state lp on N and 

{aeN:  a~t(a)eg for every t ~ ] R } = { a e g :  a'°~(a)=a for every t e N } .  

Corollary 5 is an extension of the Golden-Thompson-Araki inequality, which 
was proved in [2] by different methods. Our proof is based on the monotonicity of 
the relative entropy. Roughly speaking, the equality in Corollary 5 may occur only 
in a trivial way. It is so also in Theorem 4. The condition ~o ~(h) o ~ = (99 o ~)h is very 
restrictive and its equivalent (formulated in terms of the modular groups) may be 
extracted from Theorems 2 and 8 of [13]. 

Theorem 6. Let (p,) be a sequence of  projections in M such that p, ~ I strongly. I f  
M.  = p.Mp. + 112(1- p.), then 

S(q)IM., colM,)~S(~o, co) 

as n~oo for every faithful normal states q) and co on M. 

Proof. Due to the monotonicity we have S(q~lM,,ogtM,)<=S(q~,co). Using Kosaki's 
formula we assume that 

l o g n -  ~ t -  lco(y(t)*y(t)) + t -  2(p(x(t)x(t)*)dt 
1/n 

approximates S(~o, co) for an appropriate step function x" [1/n, oo)-~M with x(t) = I 
for t large enough. Set x,(t) = p.x(t)p, + ( I -  p.) and y,(t) = 1 -  x,(t). Then 

S(~0, co) > S( q~IM,, olM,) > logn - ~ t -  l co(y,( t)*y,(t)) + t -  z q ~ ( x . ( t ) x . ( t ) * ) d t  , 
1/n 

and since 
a o  

t -  loo(y.(t)*y.(t))t- 2 ~o(x.(t)x.(t)*)dt -~ ~ t -  loo(Y(t)*y(t)) + t -  2 q~(x(t)x(t)*)dt, 
1/n 1/n 

we can conclude the theorem. 
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Lemma 7. I f  q~ and co are positive normal functionals on the yon Neumann algebra 
M, then for every n e N there is a projection p e M such that 

q)(pap)<2"co(pap) (aeM+) 

and 
co(I-- p) < 2-"q~(I) . 

Proof. Let tp + - ~p_ be the Jordan  decomposi t ion  of  ~o-  2"0) and let p be supp~p_ 
[17]. Then  ~o(pap)-2"co(pap)=-~p_(pap)<O if a e M + .  On the other  hand, 
~o(I - p) - 2"co(I - p) = ~p +(I - p) > 0. So co(I - p) < 2-"~o(I - p) < 2-"~o(I). 

Proposit ion 8. I f  ~o and co are faithful normal states on the yon Neumann algebra M, 
then in any strong neighbourhood of the identity there is a projection q such that for 
some constants 2, ta e IR + the estimate 

~o(qaq) < 2co(qaq) < I~o(qaq) 

holds for every a e M+. 

Proof. We use the previous lemma twice. First, we choose a project ion p, 
according to the lemma. Then  we take the restrictions of  q~ and co to the subalgebra 
p, Mp,  and change the roles. So we get a project ion q, < p, such that  

qo(q,aq,) < 2"co(q,aq,), co(q, aq,) < 2"¢p(q,aq,) (a e m)  , 

and 

(o(/9, - q,) < 2 -"co(p, - q,) < 2 - " ,  co(I - p.) < 2 - " .  

To  show that  q,-oI strongly it is sufficient to prove  that  ¢p(I-q,)~O (cf. [6, I. 
Chap. 4, Propos i t ion  4]). Indeed, co(I-p,)-~O means that  p , ~ I  strongly. Hence 
~o(I - q . ) =  q~(p. - q.) + q ~ ( I -  p . ) ~ 0 .  

N o w  we are in a posi t ion to prove the main  result of  the paper. 

Theorem 9. I f  q~ and co are faithful normal states on the yon Neumann algebra M, 
then 

S(~o, co) = sup {co(h)- log ~0h(I): h = h* e m } .  

I f  the supremum is attained at h = h*e M, then co = ~0h/@(I). 

Proof. We know both  the inequali ty 

S( (p, co) >= oX h ) - log Oh(I) 

and the condi t ion for the equali ty f rom Propos i t ion  1. A sequence (p.) of 
project ions is guaranteed  by Propos i t ion  8 such that  p.-~I strongly, and on the 
subalgebra M .  = p.Mp. + Ir~(I-p.) the mutual  major izat ion 

qg(a) < 2,co(a) < #,q~(a) (0 < a e M.)  

holds. Due  to Theorem 6.3 of  [ i ]  the relative Hami l ton ian  for q~,= q~lM. and 
co. = colM. exists. In other  words, there is h. e M. ,  co. = (~o.) h". Hence  

S(¢p., co.) = co(h.)-  log(q~.)h"(I), 
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and by Propos i t ion  1 we have 

S((p,, co,) < o ) ( h , ) -  log ~0h"(I). 

Since S(%, co,) - ,  S(q), co) in consequence of  Theorem 6 we complete  the p roof  by 
establishing oJ(h,) - log q~h-(I)--* S(q~, 09). 
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