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A n  e a s y  w a y  t o  t h e  c o m m u t a t o r  in  m o d u l a r  v a r i e t i e s  

By 

H. PETEB GUMM 

O. The purpose of this note is to present an elementary approach to the com- 

mutator in modular varieties and to derive some new results connected with this con- 

cept. 

The theory of commutators  in universal algebra was introduced and thoroughly 
studied in the framework of permutable varieties by  g. D. H. Smith [8]. Then 
J.  Hagemann and C. Her rmann in [6] studied this concept in modular varieties 
and were able to prove many  of its important  properties. Their results were used 
by  R. Freese and R. MeKenzie [1] to derive some deep results about modular vari- 
eties, also solving Some longstanding problems. 

Since we feel that  not only the definitions and the proofs in [6] are unusually 
difficult but also the geometrical meaning and intuition still inherent in [8] is lost, 
we feel tha t  a simplification of this concept is needed. 

Our new approach was possible due to the translation of congruence modulari ty 
(a projective notion) into the affine geometries of the algebras involved, which is 
given mainly in [2]. 

1. Basic notions and prerequisites. We denote universal algebras with gothic letters 
and congruences with greek letters. Note tha t  a congruence ~ on an algebra 92 may  
be viewed as a special subalgebra of 92 • 92. I f  ~ is a subalgebra of 92 • ~ then the 
kernels of the canonical projections will be denoted with ~1 and g2. ~(92) denotes 
the lattice of congruences on 92. For (x, y) e ~ we frequently write xo~y. 

For a subset S of 92 X 92 we denote with <S>~ the smallest congruence relation 
on 92 containing S. A description of <S>,~ is given by  Mal'cev in [7]. 

I f  ~: 92 --> ~ is a homomorphism and g is a congruence on 92 then ~ ~ denotes the 
induced congruence on ~,  i.e. ~ -~ <(~ • ~v)g>~. I f  fl is a congruence on ~ then 
~f l  : =  {(x, y) e 92 • 921(q~(x), cp(y)) e fl) is a con~uence on 92. Note tha t  for ~ onto 
we have ~# = ~ and ~ = ~ v k e r  ~. 

Now for the main (conceptual) tools we use: The first one is a siml~le observation, 
see [3]: 

1.1. Shifting Lemma. Let 92 be an algebra with a modular congruence lattice. Let 
0o ,  01 and ~ be congruences on 92 and x, y, z, u elements o/ 92. Then 
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y 6"u implies �9 6"u 

with q5 = (0o A 01) v ~ .  
(In the  pictures we f requent ly  use, points  denote  elements of  9 / a n d  two points  

are joined with  a line if  t hey  are congruent  modulo a congruence c~, in which case 
the line is labelled with  the let ter  c~. Paral lel  lines are always supposed to be equally 
labelled.) 

Secondly we recall f rom [2] the  

1.2. Cube Lemma.  Let 91 be an algebra in a modular variety (i. e. all subalgebras o/ 
powers o/ 91 have modular congruence lattices). Let x, y, z, u, x', y', z', u' be elements o/ 
9i and 0o, 01, ~ congruences on 91 with Oo A 01 <= ~.  Then 

X' q Z '  X~,.( 
" v - /  
/ 

y' y', 

implies 

el O~ 

y 
Oo Oo 

,25' 

2. The Commuta tor :  Definition and simple properties. Le t  cr and fl be congruences 
on 91. Define a congruence zJ~ on :r (viewed as a subalgebra of  91 • 9/) by  

2~ : =  ({((x, x), (y, y))]xfly}}~. 

and 

{(x, y)] (x, (x, y)} 

[~, fl] is called the c o m m u t a t o r  of  ~ and ft. 
I t  is a simple exercise to show t h a t  this concept  coincides with the  well known 

c o m m u t a t o r  for groups,  v ia  the t rans la t ion of  congruences into normal  subgroups.  

2.1. Properties of A~. 

a ~ c 

(i) (a,b)A:(c,d) implies aid [~' 

(ii) (a, b) zJ~ (c, d) implies (b, a) zJ~ (d, c) 

(iii) a fl b implies (a, a) A~ (b, b). ' 

P r o o f .  (iii) being p a r t  o f  the  definition, (ii) follows immedia te ly  f rom the sym- 
m e t r y  of  =, or fancier, note  t h a t  (x, y) -> (y, x) yields an  au tomorph i sm of  =, l ea r -  
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ing invariant the generating set of A~. For (i) note that  zJ~ ~ ~ • ~I~ where fl • flI~ 
is the congruence on ~ given by (x, y)fl X fll~(z, u) iff (x, z) e fl and (y, u) e ft. 

2.2. Properties of [~, fl]. 

(i) [~, ~1 = fix, y) l (x, x ) ~ ( y ,  x)}, 
(ii) [~,fl]----{(x,y)13z( ( z , x ) A ~ ( z , y ) ) }  

---- {(x, Y)! 3z( (x, z)A~(y, z) )}. 
(iii) [~, fl] is a congruence relation on ~. 

(iv) [~, t~] -<- ~ ~ ~. 

Proof .  (i) follows from 2.1 (ii). 
(ii) follows with the Shifting lemma applied to 

(x,xL !̂.z,x) 

(x,y) ~ 

(iv) is immediate from the definition and from 2.1 (i). For (iii): All properties of 
a congruence relation are immediate with 2.1. For transitivity we use 2.2, namely 
x[~, fl]y[cr ~]z implies (x, y)A~(y,  y)zl~(z, y) hence x[:r fl]z with 2.2. 

From Mal'eevs description of congruences generated by a binary (symmetric) 
relation on an algebra [7] we obtain 

2.3. An alternative description of the commutator. The statement "(x, y) e [~, fl]" 
in equivalent to "there exist unary algebraic /unctions To . . . . .  Tn on r and (so, to), 
. . . . .  (s , ,  tn) e fl with 

zo (s0, so) = (~, x ) ,  
T~:(t~, ti) ~- v~+i (s~+l, si+i), 0 ~ i < n,  

Tn (tn, tn) ~- (x, y )" .  

With the foregoing description at hand, the verification of the following proposition 
is routine: 

2.4. Proposition. Let q~: ~ ---> ~ be a homomorphism and o~, fl congruences on ~i. 

Proof .  Consider the homomorphism ip x ~: m->~m and apply it to the equa- 
tions of 2.3. Each ~i, which is an algebraic function of (the algebra) :r will be trans- 
formed by !p • iv into an algebraic function T~ of (the algebra) ~m. Thus we get 

u (~ (so), ~ (so)) = (~ (x), ~ ( x ) ) ,  
Ti(~)(ti), ~(ti)) = Ti+l(~O(S~+l), ~(8t+1)) ,  for 0 ~ i <  n ,  
~ (~ (t~), ~ (t~)) = (~ (x), ~ (y)).  

Hence with 2.3 we have (tp(x), ~(y)) e [~zr ~fl]. 
The following corollary is well known for groups: 
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2.5. Corollary. The commutator o//uUy invariant congruences is again/ully invariant. 

As we go on we need the following technical result: 

2.6. Theorem. Let ~ be a subalgebra o] 9.I X ~ (with ~ (~ )  ]modular). Let z~, i ~ I 
be a ]amily o/congruence relation~ on ~ with the property: 

(x, y) ~ (z, u) implies (x, x) ~ (z, z). 

Then ]or all x, y, z e ~ we have: 

(x, x) V u~ (y, z) implies (y, y) V (ui ^ ~1) (y, z). 

P r o o f .  I f  (x,x) V z~(y,z) then there exist w.l.o.g, no . . . . .  ~n-1 and (uo, v0) . . . . .  
(u~ , v,O e ~ with 

(u0, v0) = (x, x) ,  (u . ,  v . )  = (y, z) 

and 

(v~, v~)z~(u~+l, Vl+l) for 0 ~ i < n.  

By induction we show tha t  

( U t ,  Ui)  V (g~ h ~'~i)(U~, V i ) ,  

Indeed this is trivial for i = 0. In  passing from i to i ~- 1 we note tha t  

(u~, u~) ~ (u~+~, u~+~) 

and, using the induction hypothesis we have the situation: 

( Ui, LI i )l 
i 
i 
i 
l 
i 

i 

(u i ,  vi ) 

(UI+I,Ui+I) 

XI 

/ (Ui+1~Vi+1) 

Thus the induction step is achieved with the Shifting lemma. Setting now i----n 
the theorem is proved. 

2.7. Corollary ([6]). [~, V fl~]---- V [u, fl~]. 

P r o o f .  ~ is clear since fl~ ~ V fl~. Trivially A v ~ ' =  VAt,. Hence supposing 
(x, y ) ~  [~, V fli], i.e. (x, x)V/ l~ ' (x ,  y) we conclude with 2.6 the relation 
(x, x) V (A~' ̂  7~1) (x, y) which clearly means (x, y) ~ V [~,/~l]- A second apphcation 
of 2.6 yields a result of R. Freese and R. 1KcKenzie: 
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2.8. Theorem ([1]). Let qJ: ~ -+> ~ be an onto homomorphism and o~, fl congruences 
on ~. Then ~[r162 = [~r ~/~] v ker ~. 

P r o o f .  Using 2.4 we get t ha t  (x, y) e [ ~ ,  ~fl] implies 
= 

because ~ is onto. For  the reverse inclusion suppose (a, b) e ~ [~, fl], i.e. (x, y) e [~, fl] 
with x = ~ (a) and y : ~ (b). The last relat ion can be wri t ten  down as in 2.3. Since 
~0 is onto  there  exist  (~, ~ ) e ~ f l  with ~(~i) -----~ and ~(ti) ----t~ and there are sim- 
ilarly algebraic functions ~ on ~0r which arise from the ~ v e n  ~, by  substi tuting 
any constant  (i. e. an element of a) by  an arb i t rary  preimage under  ~ • ~ (i.e. an 
element  of ~ ) .  Since ~ X ~ is a homomorphism we obtain:  

~0 (~0, ~0) ker ~ • ~ (a, a) ,  
u ~) ker ~ X q)~/+1($~+1,8t+1) for 0 ~ i < n ,  
vn (tn, tn) ker ~ • ~0 (a, b). 

Hence (a, a) z] ~ v ker ~ • ~(a,  b). Application of 2.6 yields 

(a, a) (zJ ;~ ~ ~ri) v (ker ~ • ~0 ̂  ~r~) (a, b) 

which immedia te ly  gives the missing inclusion. 
Another  impor tan t  p roper ty  of  the commuta to r  is commutat iv i ty .  To prove it 

we use for the first t ime the  Cube lemma. 

2.9. Theorem ([6]). [0~0 fl]----[/~, ~]. 

P r o o f. Our proof  uses the Cube lemma to imitate  Smith 's  proof  in the permutable  
case. We define 

: =  y) ,  v)) l  v ) ) .  

Clearly (x, y) e [cr fl] implies (x, x)-j~ (x, y), hence we are done if we can show tha t  

Obviously ~ is a b inary relation on / )  containing ((x, x), (y, y)) whenever (x, y) e o~. 
Reflexivi ty  and Symmet ry  are precisely properties 2.1 (iii) and 2.1 (ii). 

For  t rans i t iv i ty  suppose (x, u)A~(y, v )~ ( z ,  w) which means (x, y)zJ~(u, v) and 
(y, z) A~ (v, w). Fur the r  the relations (z, y) A~ (w, v) and (z, z)2~ (w, w) come from 2.1. 

We thus  have the  following si tuation 

iulw)l (w.w) 

(w,v) 

, ~ ( z , y )  



Vol. 34, 1980 The commutator in modular varieties 225 

The Cube lemma thus yields (x, z)zl~(u, w) i.e. (x, u)'A~(z, w). Compatibility of ~ 
is trivially seen, hence ~ is a congTuence relation on fl, containing ((x, x), (y, y)) 
whenever x fly. 

Hence 2~ ~ A~. We conclude A~ = ~ = A~ => zl~ and therefore zl~ = 2~. 

We note as a corollary another result from [6] : 

2.10. Corollary ([6]). Su1010ose 9: 9.I "-~ ~ is an onto homomorphism and cr 8, Y are 
congruences on !8. I] there are congruences a and ~ on ~ with a A v ~ ~},, a v ~ y  
>-_ >= then 8] <-- 7. 

P r o o f .  [ a v 9 2  , T v ~ y  ] ~ [a, z] v~y  =<~2 applying 2.7, 2.9 and 2.2. Hence 
[ ~ ,  "~fl] =< 9Y- From 2.8 we get ~[~, fl] = [ ~ ,  ~fl] vker  9 ~ 9Y, and after ap- 

plying ~ the result follows. 

2.11. Corollary. For congruences ct, fl, Y o/ the algebra ~ we have [~, fl] <= y i/  and 
only i / [ ~ ,  ~fl] = 0 where 9 is the canonical homomor10hism /rom 9~ onto 9ft/y. 

P r o o f .  [ ~ ,  ~fl] = 0 implies with 2.4 that  ~[a,  fl] = 0 which is equivalent to 
[a, 8] ~ ker 9 ~ Y. On the other hand 

~ [ ~ ,  ~fl] = [~9~, 9~/~] v ker 9 = [:r v ker 9, flv ker 9] v ker 9 

[~, fl] v ker 9- 

Assuming [~, 8] =< Y = ker 9 we get that  [ ~ ,  ~fl] ----- 0. 

With 2.11 in mind we may be interested in 

2.12. A syntactical description of [:c, fl] = 0. The statement "[~, fl] = 0" is equiv- 
alent to "/or all t erm/unc t ions  29 (xl . . . . .  xn) on 9~ and (a2, b2) . . . .  , (an, bn) ~ o~ and 
(x, y) ~ fl we have 

10 (x, a2 . . . . .  an) = 10 (x, b2 . . . .  , bn) 

implies 

10 (Y, a2 . . . . .  an) = 1o (y, b2 . . . . .  bn)". 

P r o o f .  According to Mal'cev [7], the right hand side states precisely, that  
5~ : =  {(y, y) l x f l y }  is a class of some congruence on the algebra ~ for any arbitrary 
x e 9~. I f  so it is certainly a class of A~, hence [a, fl] = 0. On the other hand, if it 
were not a class of any congruence we might assume (x, x)zl~(u, v), yielding 
(u, u) / I f (u ,  v) with 2.6 and hence (u, v) e [~, 8]. 

3. Groups connected with the commutator. We recall from [3] tha t  in every modular 
variety V there exists a 6-ary polynomial q (xl . . . . .  x6) with the following property:  
Let  Oo, O1, h TM be congruences on the algebra 9~ with Oo A O1 ~ ~ .  Let al . . . . .  a6 
be elements of 9~. Then 
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Q1 Q2 flS 

a 4. a-i  Q6 
implies 

al Q2 Q5 

gl 

q I:1~ 6 

with q : =  q (ax . . . . .  a6). 
We define a new polynomial  2 (x, y, z) by  

T ( x , y , z )  : = q ( x , z , z , x , y , y ) .  

Then  2(x,  y, y) - x is an equat ion valid in V (see [3]). Suppose now we have  con- 
gruences ~, fl wi th  :r ~ fl and  elements  x, y, z with x ~ y fl z. 

Then  clearly (y, y)LJ~(z, z) 
q (xl . . . .  , x6) to the  s i tuat ion 

and  with  to : =  A~ we m a y  app ly  the  polynomial  

(x,z) (z,z) (y,z) 

and consequent ly  find t h a t  

(w (x, y) A~ (p (x, y, z), z) . 

Sett ing x -  y we obtain  

2 (x, x, ~) [~,/~] z .  

Moreover  since LJ~ is a congTuence we find for ~ : =  (Xl . . . .  , Xn), y := (yl,  . . . ,  yn), 
-z := ( z l , . . . ,  zn) with x~y~flz~ and any  n -a ry  operat ion ] 

(I (~), ] (~)) a t  (I(2 (xl, yl ,  Zl) . . . . .  2 (~ ,  y~, z,,)), l(7))- 
Using (w again  we get 

(/(~), ] (y)) A~ (2 (1 (x), l (Y), / (~)), l (~)) 

and  hence 

(w167 l (p (x : ,  y: ,  zz) , . . .  , 2 (xn ,  Yn, Zn))[~, f l ]2 ( / (x ) , / (Y) , / ( : ) )  - 

Th is  yields one direction of 

3.1. An equational description of [~, fl] ---- 0 with :r ~ ft. Suppose ~ ~ fl then 
[~, fl] = 0 i / and  only i / /or  all x~y~flz~ with x~, y~, z~ ~ 9~ the equations 2 (Y~, Yi, z~) = z~ 
and 

/ ( 2  (xl,  Yl,  z l ) , . . . ,  2 (xn, yn, zn)) = 2 (/(-x), ] (Y), ] (-z)) 

hold. 
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For  the  proof  of the  missing direction we define a congruence 0 on ~ by  

(x ,y)O(u,z) : .~x:cyf lz  and p(x , y , z )  : u .  

To show s y m m e t r y  we suppose p (x, y, z) = u and x~yf l z  and  compute  

p(u , z , y )  = p (p (x , y , z ) ,  p(y, y,z),  p(y,  y, y)) 

= T(p(x ,  y, y), p(y,  y, y), p(z,  z, y)) = l~(x, y, y) -.~ x.  

For  t r ans i t i v i ty  suppose x~yflz ,  uzczfls, ~(x, y, z) = u, p(u ,  z, s) = r and compute :  

p (x, y, s) ---- Io (p (x, y, y), p (y, y, y), Io (z, z, s)) 

---- 1o (p (x, y, z), p (y, y, z), lO (y, y, s)) = p (u, z, s) = r .  

Using t h a t  p (x, x, y) = y for xf ly  we find (x, x)0 (y, y) for xf ly  and hence 0 ~ A~. 
Hence  suppose x [a, fl] y, t hen  (x, x) A~ (x, y), therefore (x, x) 0 (x, y) hence p(x, x, y)-~x 

which implies x = y. Thus  [~, fl] = 0. 
We pause  for a s imple application.  

3.2. Definition (Nilpoteney, Solvability). S tar t ing  with  1, the universal  congruence 
on 9 / w e  define: 

11 = 1, 1 n+l : =  [1 n, 1] and  1(1) :---- 1,  1 (n+l) : =  [l(n), l(n)].  

We  say  t h a t  9 / is  nilt)otent (solvable) o] degree ~1r i / a n d  only i / 15  ~- 0 (1(~) ---- 0). 
9 / i s  called nilpotent (solvable) ff for some na tu ra l  number  k 9/ is  n i lpotent  (solvable) 
of  degree ~ k. 

I t  is a simlcl~ exercise to  convince oneseff t h a t  wi thin  a given modular  va r i e ty  
the  class of  algebras n i lpotent  (resp. solvable) of  degree ~ k forms a subvar ie ty  V k 
(resp. V(~)). 

Now 3.1 allows us to give an equat ional  descript ion of the  variet ies V ~ and  V(~). 
~Tamely, define sets of  equat ions :  

d l  : - -  All : =  {x ---- y}.  

d~+:  : =  { / (p (~ l ,  a : ,  ~:) . . . . .  P (7~ ,  a s ,  ~n)) -= p( / ( y :  . . . . .  yn), 
/ ( a l  . . . .  , an ) , / (T :  . . . . .  Tn)) ]] is n -a ry  opera t ion and 

�9 ~r for O < k < : n } t 3  
{ p ( a ,  o ,  a = ,}. 

X~+: : =  { l (p (x : ,  a : ,  ~:) . . . . .  p (xn ,  an,  T,)) = p ( / ( x :  . . . . .  xn), 

/ ( a :  . . . . .  Tn ) , / ( a l  . . . . .  Tn)) I / is n -a ry  opera t ion and  
~ / ' l ~ - a z - =  ~ for 0 - - - k ~ < n } w  

{p(o, -- Tix  -a- T}. 

Then  the  equat ions ~ k  (resp. Afz) together  wi th  the  equat ions of  V describe the 
algebras in V which are solvable (resp. ni lpotent)  of  degree ~ k. 

After  this interlude we keep on supposing [~, fl] -~ 0 wi th  ~ ~ ft. Then f rom 3.1 
we conclude t h a t  on every  class of  fl p (x, y, z) is a ~Ia l 'cev  polynomial ,  commut ing  

15" 
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wi th  itself. Hence  on eve ry  class of fl a n  abe l i an  group fF is defined (use 4.7 (iii) of 
[4]) wi th  19 (x, y, z) = x - -  y ~- z. I n  fact ,  /~ is an  affine congruence,  see [5]. F o r  
a e ~ let  us deno te  the  a lgebra  ([a]fl, x - -  y -~ z) b y  ~ [a ] .  Then  we c la im:  

3.3. For (u, v ) e  ~, ~ [ u ]  and ~[v]  are isomorphic. 

P r o o f .  Define a m a p  ~u,v  b y  Tu, v(x) : =  p(v ,  u, x). Clear ly  Tu, v is a m a p  from 
~ [ u ]  to ~[v] .  N e x t  we claim t h a t  ~u,v  o Tv,  u = id for (u, v) e ~ .  N a m e l y  for xflv 
we have  (v, u)LJ~(x, 19(u, v, x)) since (u, 19(u, v, x)) e fl and  hence 

(v, u) z]~ (19 (v, u, p (u, v, x)), 19 (u, v, x)). 

Thus  we find t h a t  19(v ,u ,~(u,v ,  x))[~, fl]x. Thus  the  mapp ings  Tu, v are bi jec t ive .  
!~Ioreover 

Tu, v(x - - y  -~ z) = Wu, v(p(x,  y, z)) = 19(v, u,19(x, y, z)) 

= ~o (19 (v, v, v), p (u, u,  u) ,  2 (x, y,  z)) 
= 19(p(v, u, x),  19(v, u, y), p(v ,  u, z)) 

= T~,~(z )  - -  T~ ,~(y )  + T~ ,~( z ) .  
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