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On commutative Grothendieck categories having a
Noetherian cogenerator

By
Toma Arru

It is well-known the following theorem, discovered independently in 1939 by
C. Hopkins [11] and J. Levitzki [12]: any right Artinian ring with identity element
is right Noetherian. Some attempts were made in the last years with a view to
generalize this theorem to arbitrary Grothendieck categories. Thus, in 1969 J. E.
Roos [16] gave an example of a locally Artinian Grothendieck category which is
not locally Noetherian. However, if R is a commutative ring with unit element
and € is a quotient category of the category Mod-R of R-modules by an arbitrary
localizing subcategory 7~ of Mod-R (i.e. % is a commutative Grothendieck category),
it was proved in [3; 4.7] that if 7'(R) is an Artinian object in € then T (R) is also
a Noetherian object, where T': Mod-E — Mod-R/Z is the canonical functor. The
following problem was raised also in [3; 4.8]: does this result hold for a noncom-
mutative ring B with unit element? This question was solved affirmatively by
M. L. Teply and R. W. Miller [20; 1.4]. A very short and elegant proof of the result
of Teply and Miller was given by C. Nastasescu [14; 1.3], who proved the following
more general theorem: if ¥ is an arbitrary Grothendieck category which has an
Artinian generator U, then U is Noetherian. This statement seems to be the most
natural way to place the Hopkms -Levitzki theorem in the general setting of Grothen-
dieck categories.

The aim of the present paper is to study the dual situation from the Hopkins-
Levitzki theorem in Nastasescu’s version, i.e. the case of a Grothendieck category
having a Noetherian cogenerator. Thus, for a commutative Grothendieck category €
we prove that € has a Noetherian cogenerator if and only if € has an Artinian gen-
erator. As a corollary we obtain that for a commutative Grothendieck category €
holds the dual of Hopkins-Levitzki theorem: each Noetherian cogenerator of ¢ is
Artinian. We end the paper with a list of open questions.

1 wish to thank Dr. C. Nastasescu for many stimulating conversations.

1. Noetherian cogenerators and minimal cogenerators. Throughout this paper %
will denote a Grothendieck category, i.e. an abelian category with exact direct limits
and with a generator.

Recall that an object C of € is said to be a cogenerator if for each nonzero morphism
f: X —Y in ¥ there exists a morphism g: ¥ — C such that go f &= 0. A generator
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of € is defined dually. It is clear that if C is an injective object of €, then C is
a cogenerator if and only if for each nonzero object X of % there exists a nonzero
morphism f: X —C.

It is well-known that in a Grothendieck category each object X has an injective

hull, denoted in the sequel by E (X). It follows then immediately that each Grothen-
dieck category has an injective cogenerator.
" Recall that an object S of € is said to be simple if § == 0 and § has no other sub-
objects than 0 and §. We shall denote throughout this paper by Sim (%) a repre-
sentative system of all isomorphism classes of simple objects in €. Since % has a
generator, Sim (%) is a set, possibly empty.

L.1. Lemma. If € has a nonzero Not eherian cogenerator C, then each nonzero object
X of € has a maximal subobject.

Proof. There exists a nonzero morphism f: X — C, hence D = Im(f) == 0. Let
g: X — D be the morphism canonically deduced from f. Since C is a Noetherian
object, it follows that D is Noetherian, and hence D has a maximal subobject D’.
Then D/D'= 8§ is a simple object of %, and p o g: X — S is a nonzero epimorphism,
p: D — D|D’ being the canonical epimorphism. Therefore Ker(p o g) is a maximal
subobject of X.

1.2. Lemma. Let C be an arbitrary cogenerator of €. Then

@ E(S)cC.
SeSim ()

Proof. If Sim (%) = 0, there is nothing to prove. So, we can suppose Sim (%) == 0.
Let SeS8im (%) and ¢: § ¢ E(S) be the canonical monomorphism. There exists
a morphism f: E(S) — C such that f o ¢ == 0, hence f o ¢ is a monomorphism (since
8 is simple), and then f is & monomorphism (since ¢ is essential). But

S~ & 8
Sefim(®)  SeSm(®)
(i.e. Sim (%) is an independent set of subobjects of C), hence (B (8))sesime) is an
independent family of subobjects of C. (See e.g. [4; 6.17].) Thus we have

@ E@®)cC.
SeSim(¥)

1.3. Proposition. If € has a nonzero Noetherian cogenerator C, then Sim(%) is a finite
non-empty set and € has a minimal cogenerator @D E(S), which is injective
and Noetherian. SeSim(¥)

Proof. By 1.1 and 1.2, Sim(%) is a non-empty finite set, hence

Co= @ E(9)
SeSin(®)

is an injective and Noetherian object of €. Let X be a nonzero object of €; by 1.1,
X has a maximal subobject X', hence 8’= X/X' is a simple object. Let p: X — X/X’

14*
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be the canonical epimorphism and ¢: 8" ¢ Cp be the canonical monomorphism.
Then ¢ o p: X — (g is a nonzero morphism. Hence Cy is a cogenerator of €, and Cy
is a minimal cogenerator by 1.2.

1.4. Remarks. (1) If € is a Grothendieck category, we may have Sim(%) = .
For instance, let R be an infinite direct product of copies of a coramutative field
and let £ be the full subcategory of Mod-R consisted of all Loewy R-modules.
Then, the quotient category Mod-R/.& has no simple objects [2; 2.5.2 and 3.6)].

(2) In general, if € is an arbitrary Grothendieck category, then @ E(S)
SeSim (%)

is not necessarily a cogenerator of ,i.e. the well-known criterion of B. Osofsky [15;
Lemma 1] on cogenerators in a module category does not work in a Grothendieck
category. For example, let R be the ring considered above. By [8; Théoréme 2], the
category Mod-R of R-modules is not locally coirreducible, hence the spectral cat-
egory % of the category Mod- R is not discrete [19; p. 133, Proposition 7.3], in other
words € has at least a non-semi-simple object X. Then X/So(X) is a nonzero ob-
ject of €, where So (X) is the socle of X, i.e. the sum of all simple subobjects of X. Let
Co= & EB®= & 8§.
SeSim(#) SeSim(®)
It is easy to show that each morphism f: X/So(X) — Cy is zero, i.e. Cp is not a co-
generator of €.
However, if ¢ is a locally finitely generated Grothendieck category, then
@ E(S)

SeSim(¥)

is a minimal cogenerator of ¢ [18; 4.5].

2. Noetherian cogenerators relative to a Gabriel topology. Throughout this section R
will denote a commutative ring with identity element, and Mod-E the category of
unital (right) R-modules. If M € Mod-R, x € M, and N is a submodule of M, we
denote Anng(z) = {ac R|za =10} and (N:2)= {ac R|zacN}.

Each Gabriel topology F on R {19; p. 146] (or topologizing and idempotent filter
in Gabriel’s sense [9; p. 412]) defines two classes of R-modules:

Tr={MeMod-R|Amng(z) e F for all ze M},
ZFp={MecMod-R|Amng(x) ¢ F for all zeM, z=0}.
The pair (T r, Fr) is a hereditary torsion theory on Mod-R [19; p. 141], and JF is
a localizing subcategory of Mod-R [9; p. 372]. The hereditary torsion theory (77, #r)
is uniquely determined by the localizing subcategory Jp. By [19; p. 196] there is
a bijective correspondence between the set of all Gabriel topologies on R and the
class of all hereditary torsion theories on Mod-R:

Fs (g- F, Z F ) )
the inverse correépondence being

(7, F)+>F g zy={I|I an ideal of R such that R/IcJ}.
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If F is a Gabriel topology on R, we shall simply write (7, &) for (I, FF) if no
confusion can occur. If M €7, M is said to be a torsion module, and if M e F,
M is said to be a torsion-free module. For each submodule N of an R-module M we
denote N = {we M| (N :2)eF}; it is clear that N = N if and only if M/Ne&.

For each M ¢ Mod-R we shall use the following notations [2]:

Cp(M)= {N|N submodule of M with M/Ne%Z},

Specp(R) = Spec(R) N Cr(R),

Maxp(R) = the set of maximal elements of Cp(R)\{R} ordered by in-
clusion , '

where Spec(R) denotes the set of all prime ideals of E. The set Cr (M) ordered by
inclusion is a complete modular lattice [19]. M is said to be F-Noetherian (resp.
F-Artintan) if the lattice Cy(M) is Noetherian (resp. Artinian); the ring R is F-
Noetherian (resp. F-Artinian) if Cr(R) is a Noetherian (resp. Artinian) lattice.

Let M and V be two R-modules. We say that M is cogenerated by V if M can
be embedded in a direct product of copies of V. We shall denote by Cog(V) the
class of all R-modules cogenerated by V. We say that a class &7 of R-modules is
cogenerated by V if o = Cog(V).

For each hereditary torsion theory (7, #) on Mod-E there exists an injective
R-module that cogenerates the torsion-free class &, and conversely, each injective
R-module @ defines a Gabriel topology

Fo={I|I an ideal of R with Homg(R/I, Q) = 0};

if (Jq, Fo) denotes the torsion theory associated to Fg, then Fy is cogenerated
by @ [19; p. 142, Proposition 3.7]. An injective R-module @ is said to be 2 (resp. 4)-
injective if Cp(R) is a Noetherian (resp. Artinian) lattice [6].

If p € Spec(R), then. the Gabriel topology Fg, g/, defined by the injective R-module
E (R[p) will be denoted throughout the remainder of this paper by Fp. It is well-
known that

Fp={I|I an ideal of R with I¢ p}.

A Gabriel topology F is called semiprime if F = (1) Fp, and then, the torsion-

free class is cogenerated by [ ]| E(R[p).  ?eSpeer(®)
peSpecr(R)
Throughout the remainder of this section F will denote a fixed Gabriel topology

on R, and (7, &) the associated torsion theory on Mod-R.
Let M be an R-module; for each X C R and ¥ C M we shall use the following
notations:

rr(Y)={reR|Yr=0} and Iy(X)={meM|mX =0}.

2.1. Proposition. Let M be an R-module, M € &, X an ideal of R, and Y a sub-
module of M. Then

——

e (X) = o (X) = g (%) and rr(Y) = ra(F) = ra(¥) .
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Proof. Since X C X, then Iyr(X) C Iy (X). Let y € Iy(X) and r€ X; then (X :7)
=1TIekF, hence rIC X, so (yr)I =y(rI)SyX = 0, and therefore yr = 0 since
MeZF. Then yely(X), and so Iy (X) Clu(X).

S’

Let now y e lpr(X); then (I (X):y) = I & F, hence yI C Iy (X), hence (yX)I =
(y )X = 0. Since M e F, this implies y X = 0, that is y € [y (X). Therefore

e (X) = b (X).

Since Y C ¥, we have 7g(¥) Crr(Y). Let rerg(Y) and ye ¥; then (Y:y) =
IeF, hence yICY, hence (yr)I CYr =0, from which follows yr = 0, that is
rerg(¥). Hence rg(¥)Crr(¥).

Since rg(Y) = ) Anng(y) and Anng(y)eCp(R) for all ye M (M is torsion-

vey —

free!), one has rg(Y)e Or(R), i.e. 7r(Y) =7‘R(\Y/).
If M e & is a fixed R-module, we can consider by 2.1 the pair of mappings:
a: Cp(R) > Cp(M) (o(X) =Iy(X)),
B: Cr(M) —~Cp(R)  (B(Y)=rr(T))
between the complete lattices Cr(R) and Cp(M).
It is clear that « and g define a Galois connection [19; p. 77] between Cr(R) and
Cr(M). Let us denote by
Cr(B)={p(Y)|YeCr(M)} (resp. by Cr(M)= {«(X)|XeCr(R)})

the closed elements of Or(R) (resp. Cr(M)). It is then clear that o and f induce
anti-isomorphisms between the lattices Cp(R) and Cr(M).

We are interested into finding R-modules M, M € &, for which Cr(R) = Cr(R).
For this, let us recall the following

2.2. Definition [20]. An R-module M is said to be an F-cogenerator if M € &
and F C Cog(M).

2.3. Lemma. If M is an F-cogenerator, then Cr(R) = Op(R).

Proof. Let I e Cr(R); then R/I € %, hence there exists a set Z and a mono-
morphism f: B/I ¢ MZ. Then I = rg(Y), where Y is the set of all coordinates of
f(1 + I). If Yy is the submodule generated by ¥ in M, and Y, = ¥7, then by 2.1
we bave I =rg(Y)=rg(¥1) = rr(¥2) = B(¥2) e Or(R), since Yse Cr(M).

2.4. Theorem. The ring R is F-Artinian if and only if there exists an F-Noetherian
F-cogenerator R-module.

Proof. Let M be an F-Noetherian F-cogenerator. Then Cr(M) is a Noetherian
lattice, hence Cr(P) is a Noetherian lattice, and then TUp(E) is an Artinian lattice
by Galois connection. By 2.3, Cr(R) = Cr(R), and so Cp(R) is an Artinian lattice,
i.e. R is an F-Artinian ring.

Conversely, if R is an F-Artinian ring, then Specr(R) = Maxp(R) is a finite set
by [3; 4.22 and 4.23], and F is a semiprime Gabriel topology by [3; 4.2], hence &
is cogenerated by the injective module @  E(R[p), which is F-Noetherian
by [3; 4.31]. peMaxr(R)
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2.5. Corollary. Each F-Noetherian F—cogehemtor R-module is F-Artinian.

2.6. Corollary. Let @ be an injective R-module, @ € F. If Q is F-Noetherian, then
Q is A-injective.

Proof. Since @ € &, it follows F C Fg, hence @ is Fg-Noetherian by [2; 1.8].
Clearly @ is an Fg-cogenerator, hence R is an Fg-Artinian ring by 2.4, i.e. @ is
A-injective.

3. The main results. Let € be a Grothendieck category and G an arbitrary
generator of €. Let R = Homg (G, G) be the ring of endomorphisms of G. By the
Gabriel-Popescu theorem [10] there exists a localizing subcategory Zg of the cat-
egory Mod-R of right B-modules such that % is egquivalent to the quotient category
Mod-R/%¢ [9]. '

A Grothendieck category € is called commutative [1], [2; 3.4] if there exists a gen-
erator of ¥ having the ring of endomorphisms commutative. It follows that the
commutative Grothendieck categories are exactly the categories equivalent to quo-
tient categories of module categories over commutative rings with unit by localizing
subcategories.

Let F be a Gabriel topology on R and (7, &) the associated hereditary torsion
theory on Mod-E. We shall denote by 7#: Mod-E — Mod-R/J the canonical func-
tor and by Sp: Mod-E/J ->Mod-R the right adjoint of Tr [9; p. 369]. Almost
all properties of an R-module M relative to the Gabriel topology F' can be translated
in “absolute’ properties of the object T'» (M) in the Grothendieck category Mod-R/,
and conversely. For instance, an R-module M is F-Noetherian (resp. F-Artinian)if and
onlyif T'» (M)is a Noetherian (resp. Artinian) object in the category Mod-E/.7 [2;1.3].

In this section we shall translate the relative properties of E-modules with respect
to a Gabriel topology, established in the previous section, in absolute properties of
objects in an arbitrary commutative Grothendieck category.

3.1. Lemma. Let F be a Gabriel topology on a ring B (not necessarily commutative)
and (7, F) the associated torsion theory on Mod-R. Then

(1) M eMod-R is F-cogenerator = Tr(M)eMod-R/T is cogenerator.
(2) CeMod-R/T is cogenerator = Sp(C) € Mod-R is F-cogenerator.

Proof. (1) Let Y eMod-B/7 ; there exists X e Mod-R, X €%, such that
Y = Tr(X). Since M is an F-cogenerator, there exists a set J and a monomorphism
X ¢ M7; thus we have a monomorphism T#(X) ¢ Tr(M7), since Ty is an exact
functor. But M € &, hence the canonical morphism M — SpTr(M) is a mono-
morphism. Thus we have a monomorphism MY ¢, (SrT%(M))’/, and hence a mono-
morphism

Tr(M7) o Tr((SrTr(M))).

Since the functor Sp preserves limits, one finds
Tr((SrTr(M))) = Tr(Sr(Tr(M)7)) =< TrSp(Tr(M)’) == Tr (M),

and therefore we obtained a monomorphism Y ¢ Tp(M)7; thus Tp(M) is a co-
generator in Mod-R/7 .



216 T. ALsU ARCH, MATH.

(2) Let X € & ; since C is a cogenerator, there exists a set J and a monomorphism
Tw(X) ¢ €Y, and hence a monomorphlsm

X & SpTr(X) o Sp(CY) = Sp(C)/.
Since Sr(C) e &, it follows that Sp(C) is an F-cogenerator.

3.2. Theorem. Let € be a nonzero commulative Grothendieck category. Then the fol-
lowing statements are equivalent:

(1) € has a Noetherian cogenerator.

(2) € has an Artinian generator.

(8) € has an object of finite length which is simultaneous a generator and a cogenerator
of €.

(4) If G is a generator of € having the ring of endomorphisms commutative, then G
15 Artinian.

(8) € is equivalent to Mod-A, where A is a (nonzero) commutative Artinian ring with
unit.

Proof. The sketch of the proof is the following:
(5)

/‘\

(2) (4)
(3)/

(1) = (2). We can suppose that € = Mod-R/J", where (¥, F) is the hereditary
torsion theory associated to a Gabriel topology F on the commutative ring E. If C
is a Noetherian cogenerator of ¥, then Sp(C) is an F-Noetherian F-cogenerator
R-module by 3.1, hence R is an F-Artinian ring by 2.4. Then clearly T#(R) is an
Artinian generator in Mod-R/J .

(2) = (5). We can also suppose that ¥ = Mod-R/J", where R is a commutative
ring, F a Gabriel topology on R, and (77, &) is the associated torsion theory. Let G
be an Artinian generator of ¥. By [14; 1.3], G is an object of finite length. Let

0=GocGic - -cGp=0G

be a composition chain of G. Let S be an arbitrary simple object of %. Since § is
a generator of %, there exists an epimorphism f: G — 8. Let &' = Ker(f); then the
chain 0 c &’ c G of subobjects of @ can be refined to a composition chain. It follows
that there exists 1 < k < n such that S~ G/G’ o2 G4/Gy-1. Therefore Sim (%) is
a finite non-empty set, and then, by [2; 3.6], Maxp(R) is a finite non-empty set.

By [2; 2.4], Maxp(R) C Specp(R); conversely, let p € Specp(R). Since & is an
Artinian generator of €, € is a semi-Artinian category, hence Tw»(R/p) is a Loewy
object of €. Therefore

{p} = Ass(8p Tr (B[p)) C Maxp(R)
by [2; 3.7]. Thus Specg(R) = Maxr(R).
By [3; 4.2], F is a semi-prime Gabriel topology, hence

F = n Fp .
peMaxr(R)
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For each p € Maxz(R) let us denote by (75, %p) the torsion theory defined by F,,.
Then, for each peMaxp(R), I CJp, hence

Mod-Rp = Mod-R[Tp == (Mod-R/IT) (T p/T).
It follows that Mod- R, has an Artinian generator, and then R, is an Artinian ring,

i.e. R is Fp-Artinian for each pe Maxp(R). Then clearly R is F-Artinian, and
moreover,

€ = Mod-E|7 ~Mod-U-1R,
where U is the multiplicatively closed subset
R\ (

of R [3; 4.5]. The ring 4 = U-1R is surely Artinian.

(8) = (1) is well-known. (See e.g. [17; Theorem 5].)

(1) = (3). Let C be a Noetherian cogenerator of €. By (1)} = (2), € has also an
Artinian generator G. Then C @ @ is the desired object.

(3) = (2) is obvious.

(2) = (4). Let G be a generator of ¢ such that B = Homg (G, G) is a commuta-
tive ring. Via Gabriel-Popescu theorem, we may assume that % = Mod-R/7,
where (J, &) is the hereditary torsion theory associated to some Gabriel topology
F on R, and G = Tp(R). By the proof of (2) = (5), R is F-Artinian, i.e. G is an
Artinian object of %.

(4) = (2) since ¥ has at least a generator having the ring of endomorphisms
commutative.

The proof is now complete.

?)
peMaxr(R)

3.3. Corollary. Let R be a commutaiive ring, F a Gabriel topology on R, and (7, F)
the associated torsion theory. Then, R is F-Artinian if and only if Mod-R/T has an
Artintan generator.

3.4. Corollary. Let € be a commutative Grothendieck cotegory. If G and G are two
generators of € having both the rings of endomorphisms commulative, then Gy is Artinian
of and only if Go is Artinian.

3.5. Corollary (Hopkins-Levitzki dual). If € is a commutative Grothendieck category,
then each Noetherian cogenerator of € is Artinian.

4. The noncommutative case. The previous results, established for a commutative
Grothendieck category are far to be true for an arbitrary Grothendieck category.
Thus, even for a noncommutative ring R, the dual of the Hopkins-Levitzki theorem
{8.5) does not hold in general in Mod-E. To see this, let & be a universal differential
field of characteristic zero with derivation D; the ring R = k[y, D] of differential
polynomials over k in the derivation D is among others a principal right ideal domain,
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is not a field, and the category Mod-R of unital right E-modules has a simple injec-
tive cogenerator S [5]. Then € = R @ 8 is a Noetherian generator and cogenerator
in Mod-R, which is clearly not Artinian. However, the minimal cogenerator § of
Mod- R, which is Noetherian, is also Artinian.

4.1. Proposition. Let B be a noncommutative ring with unit element. If the category
Mod-R has a Noetherian cogenerator, then the Jacobson radical J of R is milpotent.

Proof. Let C be a Noetherian cogenerator of the category Mod-R.
It is well known that the mappings

X = le(X),
Y TR(Y)

define a Galois connection between the lattice of two-sided ideals of R and the
lattice of R-submodules of C. Since C is a cogenerator of Mod-R, each two-sided
ideal of R is a closed element, hence the lattice of two-sided ideals of R is an Artinian
lattice (because C is a Noetherian R-module). It follows that if we consider the
descending chain of two-sided ideals of B

JJ2DJ3D D Jm D,

we must have J¥ = Jk+1 for some k.
Hence

OJF = OJk+1 = (OJF)J .

By Nakayama’s lemma, CJ¥ = 0, in other word J* C rz(C). But rg(l¢(X)) = X
for each two-sided ideal X of R, by Galois connection; hence rg(I¢(0)) = rr(C) = 0
and so J¥=0.

5. Some problems. 1. It is known that each injective Noetherian module over
a commutative ring with unit element is Artinian [7; 3.3] or [14; 4.2]. Does this
result extend to a commutative Grothendieck category %, i.e. are injective Noetherian
objects of € Artinian ¢ Equivalently, this problem can be formulated in relative
terms: let F be a Gabriel topology on the commutative ring R, (J, &) the asso-
ciated torsion theory on Mod-R, and @ € & an injective F-noetherian R-module;
is @ an F-Artinian module? An intermediate result was established in 2.6: such
a @ is necessarily A-injective. Let us mention that R. Miller and D. Turnidge [13]
have produced an example of an injective Noetherian R-module which is not
Artinian (R is of course noncommutative!).

2. Let % be a Grothendieck category having a Noetherian cogenerator; then the

minimal injective cogenerator @ E(S)=Cp is also Noetherian. Is Cp Ar-
SeSim(¥) ’
tinian ? This problem, which is an weak form of 3.5, has an affirmative answer in

the following particular case: ¥ = Mod-R, where R is a right Noetherian, fully
right bounded, and right classical ring. Indeed, each localizing subcategory of Mod- R
is stable under taking injective hulls by [19; chap. VII, 3.4 and 4.4], hence () is
a Noetherian Loewy R-module. It follows that Cp is an Artinian R-module.
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3. It would be interesting to determine the Grothendieck categories € for which

@ E(S) is a cogenerator.
SeSim(¥)
4. Does the results from the section 3 of this paper extend to fully bounded

Noetherian Grothendieck categories [21]?
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Eingegangen am 10. 12. 1979
Added in proof (June 1980): (1) I have recently learned that my Proposition 4.1 was ob-
tained earlier by R. W. Miller and D. R. Turnidge in their paper ““Co-Artinian rings and Morita
duality®, Israel J. Math. 15, 12—26 (1973).
(2) C. Nastésescu has recently obtained an affirmative answer to my Problem 1: any injective
Noetherian object of a commutative Grothendieck category is Artinian.
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