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On commutative Grothendieck categories having a 
Noetherian cogenerator 

By 

To~LA A~Bu 

I t  is well-known the following theorem, discovered independently in 1939 by  
C. Hopkins [11] and J.  Levitzki [12]: any right Artinian ring with identity element 
is right l~oetherian. Some a t tempts  were made in the last years with a view to 
generalize this theorem to arbi trary Grothendieck categories. Thus, in 1969 J.  E. 
Roos [16] gave an example of a locally Artinian Grothendieek category which is 
not locally I~oetherian. However, if /~ is a commutat ive ring with unit element 
and ~ is a quotient category of the category Mod-R of R-modules by an arbi trary 
localizing subcategory Y- of Mod-~ (i. e. ~ is a commutat ive Grothendieck category), 
it was proved in [3; 4.7] tha t  if  T(R) is an Artinian object in ~ then T(R) is also 
a Noetherian object, where T:  Mod-R--> Mod-R/Y- is the canonical functor. The 
following problem was raised also in [3; 4.8]: does this result hold for a noncom- 
muta t ive  ring /~ with unit element ? This question was solved affirmatively by 
M. L. Teply and R. W. Miller [20 ; 1.4]. A very short and elegant proof of the result 
of Teply and Miller was given by C. N~st~sescu [14; 1.3], who proved the following 
more general theorem: if  ~ is an arbi trary Grothendieek category which has an 
Artinian generator U, then U is l~oetherian. This s ta tement  seems to be the most 
natural  way to place the Hopkins-Levitzki theorem in the general setting of Grothen- 
dieck categories. 

The aim of the present paper is to s tudy the dual situation from the Hopkins- 
Levitzki theorem in Ns version, i.e. the case of a Grothendieck category 
having a Noetherian cogenerator. Thus, for a commutative Grothendieck category 
we prove tha t  ~ has a l~oetherian cogenerator if and only if ~ has an Artinian gen- 
erator. As a corollary we obtain that  for a commutat ive Grothendieck category 
holds the dual of Hopkins-Levitzki theorem: each Iqoetherian cogenerator of ~ is 
Artinian. We end the paper  with a list of open questions. 

I wish to thank Dr. C. Ns for many  stimulating conversations. 

1. Noetherian eogenerators and minimal eogenerators. Throughout this paper 
will denote a Grothendieck category, i.e. an abelian category with exact direct limits 
and with a generator. 

Recall tha t  an object C of ~ is said to be a cogenerator if for each nonzero morphism 
/:  X --> Y in ~ there exists a morphism g: Y -> C such tha t  g o ] ~ 0. A generator 
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of ~ is defined dually. I t  is clear tha t  if  C is an injeetive object of ~ ,  then C is 
a Cogenerator if and only if for each nonzero object X of ~ there exists a nonzero 
morphism ]: X --> C. 

I t  is well-known tha t  in a Grothendieck category each object X has an injective 
hull, denoted in the sequel by  E (X). I t  follows then immediately tha t  each Grothen- 
dieck category has an injective cogenerator. 

Recall tha t  an object S of ~ is said to be simple ff S ~= 0 and S has no other sub- 
objects than  0 and S. We shall denote throughout this paper by  Sim(~) a repre- 
sentative system of all isomorphism classes of simple objects in ~ .  Since ~ has a 
generator, Sire (~) is a set, possibly empty.  

1.1. Lemma. I / ~  has a nonzero ~Vot eherian cogenerator C, then each nonzero object 
X o / ~  has a maximal subobject. 

P r o o f .  There exists a nonzero morphism /:  X --> C, hence D ~- Ira(/)  ~= 0. Let  
g: X--> D be the morphism canonically deduced from /. Since C is a Noetherian 
object, it follows tha t  D is Noetherian, and hence D has a maximal  subobject D'. 
Then DID' = S is a simple object of c~, and p o g: X --> S is a nonzero epimorphism, 
p : D --)- DID' being the canonical epimorphism. Therefore Ker  (p o g) is a maximal 
subobject of X. 

1.2. Lemma. Let C be an arbitrary cogenerator o / ~ .  Then 

| E(S)cO. 
S~Sim(~) 

P r o o f .  I f  Sim(~) = 0, there is nothing to prove. So, we can suppose Sim(~) ~ 0. 
Let  S e Sim(~) and i: S ~ E(S)  be the canonical monomorphism. There exists 
a m o r p h i s m / :  E (S) --> C such that  / o i =~ 0, hence / o i is a monomorphism (since 
S is simple), and then [ is a monomorphism (since i is essential). But  

S~Sim(~') SeSim(~) 

(i.e. Sim(C~) is an independent set of subobjects of C), hence (E(S))sesim(~) is an 
independent family of subobjects of C. (See e.g. [4; 6.17].) Thus we have 

| E(S)cV. 
S~Sim(~') 

1.3. Proposition. I1 c~ has a nonzero _7~7oetherian cogenerator C, then Sim(~) is a/ ini te 
non-empty set and ~ has a minimal cogenerator G E(S) ,  which is in]ective 
and 2~oetherian. s~s~(~) 

P r o o f .  By  1.1 and 1.2, Sim(~) is a non-empty finite set, hence 

5'o = | E ( 8 )  

is an injective and Noetherian object of c#. Let  X be a nonzero object of c~; by 1.1, 
X has a maximal subobject X ' ,  hence S'  = X / X '  is a simple object. Let  p : X --> X / X '  

14" 
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be the canonical epimorphism and i: S' c~ Co be the canonical monomorphism. 
Then i o p : X --> Co is a nonzero morphism. Hence Co is a cogenerator of ~, and Co 
is a minimal cogenerator by 1.2. 

1.4. Remarks. (1) I f  ~ is a Grothendieck category, we may have S i m ( ~ ) =  ~. 
For instance, let R be an infinite direct product of copies of a commutative field 
and let s be the full subcategory of l~lod-R consisted of all Loewy R-modules. 
Then, the quotient category Mod-R/~  has no simple objects [2; 2.5.2 and 3.6]. 

(2) In general, if  ~ is an arbitrary Grothendieck category, then O E(S)  
SeSirn(~) 

is not necessarily a cogenerator of ~,  i.e. the well-known criterion of B. Osofsky [15; 
Lemma i] on cogenerators in a module category does not work in a Grothendieck 
category. For example, let R be the ring considered above. By [8; Th@or~me 2], the 
category Mod-R of R-modules is not locally coirreducible, hence the spectral cat- 
egory ~ of the category Mod-R is not discrete [19; p. 133, Proposition 7.3], in other 
words ~ has at least a non-semi-simple object X. Then X/So (X) is a nonzero ob- 
ject of ~,  where So (X) is the socle of X, i.e. the sum of all simple subobjects of X. Let  

c0= | E(S)= | ~.  
S~Sim(~) 8eSim(~) 

I t  is easy to show that  each morphism/ :  X/So(X) -+ C0 is zero, i.e. Co is not a co- 
generator of ~.  

However, if ~ is a locally finitely generated Grothendieck category, then 

| E(S) 
SeSim(~) 

is a minimal cogenerator of f~ [18; 4.5]. 

2. Noetherian eogenerators relative to a Gabriel topelogy. Throughout this section R 
will denote a commutative ring with identity element, and Mod-R the category of 
unital (right) R-modules. I f  M e Mod-R, x e M, and fV is a submodule of M, we 
denote AnnR(x) .~ {a e R I xa  ----- 0} and (_N: x) = {a e R ] xa  e 1V}. 

Each Gabriel topology P on R [19; p. 146] (or topologizing and idempotent filter 
in Gabriel's sense [9; p. 412]) defines two classes of R-modules: 

~--F-~ { M e M o d - B I A n n R ( x )  e F  for all x e M } ,  

~ p = { M e M o d - R I A n n E ( x ) ~ F  for all x e M ,  x~=0}.  

The pair (~-F, ~ )  is a hereditary tots(on theory on Mod-R [19; p. 141], and ~--F is 
a localizing subcategory of Mod-R [9; p. 372]. The hereditary torsion theory (~--f, ~F) 
is uniquely determined by the localizing subcategory 9-~. By [19; p. 196] there is 
a bijective correspondence between the set of all Gabriel topologies on R and the 
class of all hereditary torsion thearies on Mod-R: 

the inverse correspondence being 

(~-, ~-) ~-> lv(x,~ ) ----- {I I I an ideal of R such that  R / I  e J - } .  
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I f  F is a Gabriel topology on R, we shall simply write (3-, ~-) for (3-F, ~-F) if no 
confusion can occur. I f  M e 3-, M is said to be a torsion module, and if M e ~ ,  
M is said to be a torsion-]tee module. For each submodule h v of an R-module M we 
denote -~ = {x e M I (N : x) e F}; it is clear that  N ----- ~" if and only if M / N e  ,,~. 

For each M ~ Mod-R we shall use the following notations [2]: 

CF (M) ---- {N I N submodule of M with i / •  e ~ '} ,  

SpecF (R) ~-~ Spec (R) n CF (R), 

MaxF(R) ---- the set of maximal elements of C~(R)\(R} ordered by in- 

clusion, 

where Spec (R) denotes the set of all prime ideals of R. The set CF (M) ordered by 
inclusion is a complete modular lattice [19]. M is said to be F-Noetherian (resp. 
t'-Artinian) if the lattice C~(M) is Noetherian (resp. Artinian); the ring R is F- 
Iqoetherian (resp. F-Artinian) if CF(R) is a Noetherian (resp. Artinian) lattice. 

Let  M and V be two R-modules. We say that  M is cogenerated by V if M can 
be embedded in a direct product of copies of V. We shall denote by Cog(V) the 
class of all R-modules eogenerated by  V. We say that  a class d of R-modules is 
cogenerated by V if d---- Cog(V). 

For each hereditary torsion theory (3-, ~ )  on Mod-R there exists an injective 
R-module that  cogenerates the torsion-free class ~ ,  and conversely, each injective 
R-module Q defines a Gabriel topology 

2'Q = {I[ I an ideal of R with HomR(R/I, Q) ~- 0}; 

if (3-Q, ~Q) denotes the torsion theory associated to FQ, then ~'Q is cogenerated 
by Q [19; p. 142, Proposition 3.7]. An injective R-module Q is said to be • (resp. A)- 
injective if Cry(R) is a Noetherian (resp. Artinian) lattice [6]. 

I f p  e Spec (R), then the Gabriel topology F~(~/~) defined by the injcctive R-module 
E (R/p) will be denoted throughout the remainder of this paper by  ~'~. I t  is well- 
known that  

Fp ~- {I I I an ideal of R with I ~ p ) .  

A Gabriel topology/~ is called semi~rime if  F = ( ~  F~,  and then, the torsion- 
free class is cogenerated by 1--I E(R/p). ~s~er 

p~Specx(-~) 
Throughout the remainder of this section iv will denote a fixed Gabriel topology 

on R, and (3-, ~ )  the associated torsion theory on lY[od-R. 

Let  M be an R-module; for each X C R and Y C M we shall use the following 
notations : 

~ ( r ) - - - - ( r ~ R I r r = 0  ) and l~ (X)- - - -{meMImX-- - -0  }. 

2.1. Proposition. Zet M be an R-module, M ~ ~',  X an ideal o/ R, and Y a sub- 
module o /M.  Then 

IM(X) ~--- lM(~() = 1M(X) and r~(Y) -~ r~(~) = rR(Y). 
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P r o o f .  Since X C J~, then IM(J~) =C lM(X). Let y ~ lM(X) and r ~ • ;  then (X : r) 
= l e F ,  hence t IC=X, so ( y r ) I  = y(rI)  C y X  = 0, and therefore yr = 0 since 
M e ~ .  Then y elM (X), and so IM (X) C 1M (J~). 

Let now y e 1M (X) ; then (IM (X) : y) = I ~ -~, hence y I C 1M (X) ,  hence (yX) I = 
(y I) X ---- 0. Since M e ~ - ,  this implies y X  = 0, tha t  is y e IM(X). Therefore 

lM(X) = 1M (X). 

Since Y C  :~, we have r ~ ( ~ ) C r R ( Y ) .  Let r e r R ( Y )  and y e  :~; then ( Y : y ) =  
I e F ,  hence y I C Y ,  hence (yr) ICYr-- - -0 ,  from which follows yr----0, tha t  is 
r e ra ( I~). Hence ra ( Y) CrR ( ~). 

Since r a ( Y ) =  ( '~AnnR(y) and Anna(y)eCF(R) for all y e M  (M is torsion- 

free!), one has r~(Y)eCF(R),  i.e. r R ( Y ) = r ~ ( Y ) .  
I f  M e ~" is a fixed R-module, we can consider by  2.1 the pair of mappings: 

~: CF(R) --->CF(M) (co(X) =IM(X)) ,  
fl: CF(M)->CF(R) ( f l (Y )=ra (Y) )  

between the complete lattices CF (R) and CF (M). 
I t  is clear tha t  a and fl define a Galois connection [19; p. 77] between CF (R) and 

CF(M). Let us denote by 

CF (R) = {~ (Y) [ Y e CF (M)} (resp. by  CF (M) = {~ (Z)] X e C~,(R)}) 

the closed elements of CF(R) (resp. CF(M)). I t  is then clear tha t  ~ and fl induce 
anti-isomorphisms between the lattices CF (R) and C F ~ .  

We are interested into finding R-modules M, M e ~ ' ,  for which CF(R) = CF(R). 
For this, let us recall the following 

2.2. Definition [20]. An R-module M is said to be an F-cogenerator if M e ~-  
and ~ C Cog (M). 

2.3. Lemma. I / M  is an F-cogenerator, then ~ = CF(R). 

P r o o f .  Let  I~CF(R);  then R / I e ~ ,  hence there exists a set Z and a mono- 
m o r p h i s m / :  R/ I  ~ M z. Then I = rR(Y), where Y is the set of all coordinates of 
/(1 + I) .  I f  Y1 is the submodule generated by  Y in M, and ]72 = Yl, then by 2.1 
we have I = r a ( Y )  = rl~(Y1) = rR(Y2) ---- fl(Y2) ~CF(R), since Y2~Cp(M). 

2.4. Theorem. The ring R is F-Artinian i I and only i/there exists an F-Noetherian 
F-cogenerator R-module. 

P r o o f .  Let  M be an F-1Noetherian F-cogenerator. Then Cp(M) is a 17oetherian 
lattice, hence ~ is a Noetherian lattice, and then 'LTF(//) is an Artinian lattice 
by  Galois connection. By 2.3, CF(R) = CF(R), and so CF(R) is an Artinian lattice, 
i.e. R is an F-Artinian ring. 

Conversely, if R is an F-Artinian ring, then SpecF(R) = MaxF(R) is a finite set 
by [3; 4.22 and 4,23], and F is a semiprime Gabriel topology by [3; 4.2], hence 
is cogenerated by the injective module �9 E(R/p), which is F-Noetherian 
by [3; 4.31]. ~e~ax~(m 
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2.5. Corollary. Each F.Noetherian F-cogenerator R.module is F-Artinian. 

2.6. Corollary. Let Q be an in]ective R-module, Q e ~'.  I / Q  is F-Noetherian, then 
Q is/1-in]ective. 

P r o o f .  Since Q e ~ ' ,  it follows F C=FQ, hence Q is FQ-l~oetherian by [2; 1.8]. 
Clearly Q is an FQ-cogenerator, hence B is an FQ-Artinian ring by 2.4, i.e. Q is 
A-injective. 

3. The main results. Let (r be a Grothendieck category and G an arbitrary 
generator of ~.  Let  R = Hom~ (G, G) be the ring of endomorphisms of G. By the 
Gabriel-Popescu theorem [10] there exists a localizing subcategory ~ of the cat- 
egory Mod-R of right R-modules such that  ~ is equivalent to the quotient category 
Mod-R/.~e~ [9]. 

A Grothendieck category cd is called commutative [1], [2; 3.4] if there exists a gen- 
erator of ~ having the ring of endomorphisms commutative. I t  follows that  the 
commutative Grothendieck categories are exactly the categories equivalent to quo- 
t ient categories of module categories over commutative rings with unit by localizing 
subcategories. 

Let  F be a Gabriel topology on R and (~ ,  .~) the associated hereditary torsion 
theory on iYfod-R. We shall denote by TF: Mod-R -+ Mod-R/~- the canonical func- 
tor and by SF: Mod-R/37- --> Mod-R the right adjoint of TF [9; p. 369]. Almost 
all properties of an R-module M relative to the Gabriel topolog-y F can be translated 
in "absolute" properties of the object TF (M) in the Gmthendieck category Mod-R/9-, 
and conversely. For instance, an R-module M is F-Noetherian (resp. F-Artinian) if and 
only if TF (M) is a Iqoetherian (resp. Artinian) object in the category Mod-R/3- [2; 1.3]. 

In this section we shall translate the relative properties of B-modules with respect 
to a Gabriel topology, established in the previous section, in absolute properties of 
objects in an arbitrary commutative Grothendieck category. 

3.1. Lemma. Let 2' be a Gabriel topology on a ring R (not necessarily commutative) 
and (2T, ~-) the associated torsion theory on Mod-R. Then 

(1) M e Mod-B is F-eogenerator :,. TF(M)e  Mod-R/9- is cogenerator. 

(2) C e l~Iod-R/3- is cogenerator =~ SF( C) eMod-R is F.cogenerator. 

P r o o f .  (1) Let  Y e M o d - R / ~ ' ;  there exists XelVfod-R, X e ~ ,  such that  
Y = TF(X). Since M is an 2'-cogenerator, there exists a set J and a monomorphism 
X r MJ;  thus we have a monomorphism TF (X) c~ TF(MJ), since Te is an exact 
functor. But  M e ~ ,  hence the canonical morphism M---> SFTF(M) is a mono- 
morphism. Thus we have a monomorphism M J c., (SFTF(M))J, and hence a mono- 
morphism 

TF(M J) ~ TF((SFTF(M))J). 

Since the functor SF preserves limits, one finds 

TF((SrTF(M)) J) _~ Tp(SF(TE(M)J)) ~ TFSF(TF(M) J) ~_- TF(M) J , 

and therefore we obtained a monomorphism Y r TF(M)J; thus TF(M) is a co- 

generator in Mod-R/3-. 
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(2) Let  X e ~- ;  since C is a cogenerator, there exists a set J andamonomorphism 
TF(X) ~ C z, and hence a monomorphism 

X c~ SFTF(X) c, SF(C J) --~SF(C)J. 

Since SF(C) e ~-, i t  follows tha t  SF(C) is an _~-cogenerator. 

3.2. Theorem. Let r be a nonzero commutative Grothendieclc category. Then the/ol- 
lowing statements are equivalent: 

(1) ~ has a Noetherian cogenerator. 
(2) cd has an Artinian generator. 
(3) cd has an object o/]inite length which is simultaneous a generator and a cogenerator 

o/(g. 
(4) I f  G is a generator o] ~ having the ring o] endomorphisms commutative, then G 

is Artinian. 
(5) ~ is equivalent to Mod-A, where A is a (nonzero) commutative Artinian ring with 

unit. 

P r o o f .  The sketch of the proof is the following: 

CI) "- (2) , '- :, (4) 

%c3>  
(1) ~ (2). We can suppose tha t  <g = Mod-R/Y,  where (9-, -~) is the hereditary 

torsion theory associated to a Gabriel topology _~ on the commutat ive ring R. I f  C 
is a Noetherian cogenerator of ~,  then SF(C) is an _Y-l~oetherian _F-cogenerator 
R-module by 3.1, hence _R is an _Y-Artinian ring by 2.4. Then clearly TF(R) is an 
Artinian generator in Mod-R/~-. 

(2) ~ (5). We can also suppose tha t  ~d = Mod-R/~-, where R is a commutat ive 
ring, F a Gabriel topology on R, and (~-, ~,~) is the associated torsion theory. Let  G 
be an Artinian generator of ~ .  By  [14 ; 1.3], G is an object of finite length. Let  

0 ---- Go cG1 c ' - -  c G~ ----- G 

be a composition chain of G. Let  S be an arbi trary simple object of ~ .  Since G is 
a generator of ~', there exists an epimorphism /: G --> S. Let  G' = Ker  (/) ; then the 
chain 0 c G' c G of subobjects of G can be refined to a composition chain. I t  follows 
tha t  there exists 1 _< k _< n such that  S ~ G/G" ~--- Gk/G~-I. Therefore Sim (~) is 
a finite non-empty  set, and then, by [2; 3.6], Max~(_R) is a finite non-empty set. 

By  [2; 2.4], Max~(R) CSpecF(R);  conversely, let ioeSpecF(B).  Since G is an 
Artinian generator of ~g, ~ is a semi-Artinian category, hence TF(R/p) is a Loewy 
object of <d. Therefore 

{p} = Ass (sF ~F (R/p)) c= MaxF (R) 

by [2; 3.7]. Thus SpecF(_R)= MaxF(R). 
By [3; 4.2], 2' is a semi-prime Gabriel topology, hence 

F =  ('1 
p ei~IaxP(R) 
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For  each p e MaxF(R) let us denote by  (~q-~, ~-p) the torsion theory defined by  ivp. 
Then, for each p e M a x F ( R ) ,  ~ -C 3-~ ,  hence 

Mod-R~ ~ Mod-R/~-~ ~-- (Mod-R/3")/(3-~/~-). 

I t  follows tha t  NIod-Rp has an Artinian generator, and then /~p  is an Artinian ring, 
i.e. R is Fp-Artinian for each p ~ M a x F ( R ) .  Then clearly /~ is E-Artinian, and 
moreover, 

c~ __ Mod-R/3-  __~ Mod-U-1 R ,  

where U is the multiplicatively closed subset 

of R [3; 4.5]. The ring A ---- U-1/~ is surely Artinian. 

(5) ~ (1) is well-known. (See e.g. [17; Theorem 5].) 

(1) ~ (3). Let  C be a l~oetherian cogenerator of %v. By (1) ~ (2), c~ has also an 
Artinian generator G. Then C O G is the desired object. 

(3) ~ (2) is obvious. 

(2) ~ (4). Let  G be a generator of ~ such tha t  R ---- Homv (G, G) is a commuta-  
tive ring. Via Gabriel-Popescu theorem, we may  assume tha t  r ~-Mod-R/3- ,  
where (fl-, ~ )  is the hereditary torsion theory associated to some Gabriel topology 
F on /~, and G -~ TF (R). By the proof of (2) ~ (5), R is F-Artinian, i.e. G is an 
Artinian object of c~. 

(4) ~ (2) since c~ has at least a generator having the ring of endomorphisms 
commutative.  

The proof is now complete. 

3.3. Corollary. Let R be a commutative ring, F a Gabriel topology on R, and (~-, ~ )  
the associated torsion theory. Then, 1r is F-Artinian i / a n d  only i/Mod-R/gT- has an 
Artinian generator. 

3.4. Corollary. Let ~ be a commutative Grothendieck category. I /G1  and G2 are two 
generators o] ~ having both the rings o/endomorphisms commutative, then G1 is Artinian 
i / a n d  only i /G2 is Artinian. 

3.5. Corollary (Hopkins-Levitzki dual). I / ~  is a commutative GrothendiecIc category, 
then each Noetherian cogenerator o / ~  is Artinian. 

4. The noneommutative ease. The previous results, established for a commutat ive 
Grothendieck category are far to be true for an arbi trary Grothendieek category. 
Thus, even for a noncommutat ive  ring R, the dual of the Hopkins-Levitzki theorem 
(3.5) does not hold in general in Mod-R. To see this, let k be a universal differential 
field of characteristic zero with derivation D;  the ring R ---- k [y, D] of differential 
polynomials over k in the derivation D is among others a principal right ideal domain, 
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is not a field, and the category !~Iod-R of unital right B-modules has a simple injec- 
t i r e  cogenerator S [5]. Then C ---- R Q S is a Noetherian generator and cogenerator 
in l~od-R, which is clearly not Artinian. However, the minimal cogenerator S of 
Mod-R, which is Noetherian, is also Artinian. 

4.1. Proposition. Let R be a noncommutative ring with unit element. I] the category 
Mod-R has a Noetherian cogenerator, then the Jacobson radical J of R is nillmtent. 

P r o o f .  Let  C be a Noetherian cogenerator of the category 1Kod-R. 

I t  is well known tha t  the mappings 

X ~ Ic (X) ,  

Y !--> ra( Y) 

define a Galois connection between the lattice of two-sided ideals of R and the 
lattice of R-submodules of C. Since C is a cogenerator of Mod-R, each two-sided 
ideal of R is a closed element, hence the lattice of two-sided ideals of R is an Artinian 
lattice (because C is a Noetherian B-module). I t  follows tha t  if  we consider the 
descending chain of two-sided ideals of R 

J D  J~D J 3 D . . .  D J,n ~ . . .  

we must  have J~ = j e+I  for some /c. 
Hence 

CJ~ = CJk+1 = (CJ ~) J. 

By Nakayama ' s  lemma, C J  ~ --- O, in other word Jg  C ra(C). But  ra(lc(X)) ---- X 
for each two-sided ideal X of R, by  Galois connection; hence rR (lc (0)) ----- rR (C) ---- 0, 
and so Jg  ---- 0. 

5. Some problems. 1. I t  is known tha t  each injective Noetherian module over 
a commutat ive ring with unit element is Artinian [7; 3.3] or [14; 4.2]. Does this 
result extend to a commutat ive Grothendieck category ~,  i.e. are injective Noetherian 
objects of %0 Artinian ? Equivalently, this problem can be formulated in relative 
terms: let F be a Gabriel topology on the commutat ive ring R, (9-, ~ )  the asso- 
ciated torsion theory on Mod-R, and Q e ~" an injective F-noetherian B-module; 
is Q a n / ' - A r t i n i a n  module ? An intermediate result was established in 2.6: such 
a Q is necessarily/1-injective. Let  us mention tha t  R. Miller and D. Turnidge [13] 
have produced an example of an injective Noetherian B-module which is not  
Artinian (R is of course noncommutative!) .  

2. Let  %~ be a Grothendieck category having a Noetherian cogenerator; then the 
minimal injective cogenerator @ E(S)  = Co is also l~oetherian. Is  C0 Ar- 

S~Sim(~) 
tinian ? This problem, which is an weak form of 3.5, has an affirmative answer in 
the following particular case: ~----1Kod-R, where R is a right Noetherian, fully 
right bounded, and right classical ring. Indeed, each localizing subcategory of Mod-R 
is stable under taking injective hulls by  [19; chap. u  3.4 and 4.4], hence Co is 
a l~oetherian Loewy R-module. I t  follows tha t  Co is an Artinian B-module. 
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3. I t  would  be in te res t ing  to  de te rmine  the  Gro thendieck  categories  ~ for which 
E(S) is a cogenerator .  

s e sire (~g) 
4. Does the  resul ts  f rom the  sect ion 3 of  this  p a p e r  ex tend  to ful ly  bounded  

Noe the r i an  Gro thend ieck  categories  [21] ? 
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Eingegangen am 10. 12. 1979 
Added in proo] (June 1980): (1) I have recently learned that  my Proposition 4.1 was ob- 

tained earlier by R. W. Miller and D. R. Turnidge in their paper "Co-Artinian rings and Morita 
duality", Israel J. Math. 1~, 12--26 (1973). 

(2) C. l~s has recently obtained an affirmative answer to my Problem 1 : any injective 
I%etherian object of a commutative Grothendieek category is Artinian. 
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