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On the complexity of d-dimensional Voronoi diagrams

By

Victor KLEE

Introduction. For n points pi1, ..., p, of Euclidean d-space E¢, the associated
Voronot diagram V(pi, ..., pn) is a sequence (P, ..., Py) of convex polyhedra
covering E¢, where P; consists of all points of E¢ that have p; as a nearest point
in the set {p1,...,94}. Thus

Pi={zeE?: |z —pif < |z —py| for all j} =\ Hy,
ixi

where
Hy={zeB:{pi—pi, o =3(p 2 — |22}

Note that Hj; is the closed halfspace which contains p; and whose bounding hyper-
plane passes through the midpoint of the segment [p;, p;] and is perpendicular to
that segment.

For 0 = k< d, let Dr(p1,...,pn) denote the number of sets § such that § is
a k-dimensional face of at least one of the polyhedra P;. Then @y(p1, ..., pa) is a
natural measure of the complexity of the diagram, and the cases k=0 and k=d—1
are of special interest. Let My(d, ») denote the maximum of Dy(pi, ..., Pn) as
(p1,... pn) ranges over all n-tuples of distinet points of E¢. A routine application
of Euler’s theorem shows

My2,n)=2n—5 and Mi(2,n)=3n—6 forall n>2.

Here it is proved that

(1) Md_l(d,n)=(Z) for d>3, alln,
. . A Mo(d,n) . Mo(dan)

(2) 1 <lim inf — <lim sup—— -2 for even d=2r,
n->00 ‘n"/T! n—o0 7'1"'/7‘!

3 ! o gimine 2%y Moldm) _ 1 tor 0dd d—2r —1

® < TE S oy ST S o odd 42—

Our method can also be used to obtain inequalities for the other M’s.
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Theorems. Not suprisingly, all our proofs are based on properties of neighborly
polytopes. A d-polytope (that is, a bounded d-dimensional convex polyhedron) is
said to be neighborly if each set of |d/2] of its vertices is the vertex-set of a face.
This implies that for 1 < j < [d/2], each set of § vertices is the vertex set of a (j — 1)-
face. For discussions and constructions of neighborly polytopes, see Gale [4] and
Griinbaum [5]. (We use |z] and [z| respectively for the largest integer < x and the
smalest integer = z.)

Theorem 1. If 1 <j < [d/2] then My_js1(d, n) = (;’) for all n.

Proof. The cases in which » < d - 1 are left to the reader. With n = d + 2,
let w1, ..., wy—1 be the vertices of a neighborly d-polytope @ in E¢ such that the
origin is interior to . Then for 1 < j < |d/2], each j facets ((d —1)-faces) of the

polar polytope
Q= {recBl:{w;,zy) <1 for 1 =<i<n}

intersect in a (d —j)-face of Q0. For 1 < ¢ < n, let p; = 2w;/| w; 2. Then for each
xec K,
(wi, &) =1 <= <{pi, 2> =] pi?.
Let pp =0 and (Pi,..., Py) = V(p1, ..., pn). Since the affine hulls of Q%s facets
are the sets of the form {x:<w;,z) = 1} for 1 < ¢ < u, it follows that P, = Qo
and for 1 <7< n the intersection P; N P, is a facet F; of P,.

Let & (resp. ') consist of all j-sets I c {1,...,n} such that ne I (resp. n¢ I),

and for each SeJ U F'let Glszi. If I €3 then Gf =nF¢, a(d—j-+1)-
tel ’ el ~{n}

face of P,. If 1 €3 then Gy N Py is a (d—j)-face of P, and for each i € I is the
intersection with Py of a (d — j -+ 1)-face of P;. Since different members of ¥ (resp. 3>
give rise to distinct sets Gy <résp. G1 N Py, the stated conclusion follows. [J
A polytope is semplicial if all its facets are simplices. It is known [4] that all
neighborly d-polytopes are simplicial when d is even, and [5] that the number of
facets of a simplicial neighborly d-polytope with » vertices is

— l(d + 1)/2 —|(d+2)/2
y(d,n):(n 5::1 )/J>+(n g_d)/J)_

McMullen [7] proved that y(d, ») is the maximum number of facets of d-polytopes
with n vertices and hence, dually, of vertices of d-polytopes with » facets.

A d-polyhedron is simple if it has at least one vertex and each of its vertices is
incident to precisely d edges or, equivalently, to precisely d facets ((d — 1)-faces).
A d-dimensional Voronoi diagram V (p1, ..., pp) is simple if it has at least one vertex
and each vertex is incident to precisely d 4+ 1 of the P;’s; this implies that all the
Py’s are simple.

Theorem 2. If py., ..., pn are distinct points of E% such that the Voronoi diagram
Vip1,....p0n) = (P1,..., Pp) is simple and w of the P;s are unbounded, then

Do(p1,.-sPn) Sy d+1,m) -d—wu.
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Proof. The assertion is obvious when d = 2, so we assume d > 2. A theorem of
Davis [2] then guarantees the existence of a real-valued convex function f on E¢
such that each P; is a set X which is maximal with respect to there being an affine
function on E; that agrees with f on X. The epigraph {(x, 7): 7 = f(x)} is a simple
{d + 1)-polyhedron that has precisely » facets, » of which are unbounded. It then
follows from an extension [6] of McMullen’s theorem that the number of vertices
of the epigraph, and hence of V(pi, ..., ps), is at most y{d +1,n) +d —u. [

Theorem 3. If n >d -1 then y{d,n— 1) = Mo(d,n) < y(d+ 1,n).

Proof. To establish the lower bound, carry out the construction of Theorem 1
with a neighborly polytope @ that is simplicial. Then @ has y(d, n—1) facets, so
y{(d, n — 1) is also the number of vertices of the polar polytope @0 == P,.

For the upper bound, note that whenever 1, ..., p, are points of E¢ (with
n > d), they can be perturbed slightly so that the diagram V(pi, ..., p») becomes
simple and its number of vertices does not decrease. (A formal proof can be based
on a semicontinuity theorem of [3].) Then use Theorem 2, noting that the number
of unbounded P;’s must exceed d. [

Note that

) 7 n—7 P d—2
y(d,n)= - , oreven d=2r

—_
and
n—r
y(d,n):Z(T_l) forodd d=2r—1.

Thus Theorem 3 yields the following corollary, which in turn implies (2).

Corollary 1. For even d = 2r and for n>d + 1,

n—1 n—1—r n—1—r
( ) §Mo(d,n)<2( , )

n—1—r r

To establish (3) we use an idea of Preparata [8] in conjunction with some special
neighborly polytopes.

Theorem 4. If d is odd, s >d and t = 1, then Mo(d,s +t) =tyd—1,s—1).
Proof. Let d = 2r 4 1, and for each angle 0§ let
z(0) = (sin 6, cos 0, sin26, cos 20, ...,sinrh, cos rf) e E2r.
Let
Cr={x(0):0=6 <=2},

a simple closed curve on the sphere in 2?7 that is centered at 0 and has radius }/7.
This curve was studied by Carathéodory [1] and also by Gale [4], who observed
that the convex hull con X is a neighborly (27)-polytope for each finite set X of
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more than 2r points of Cr. Griinbaum [5] noted this is easily proved with the aid
of Scott’s identity [11] asserting that if §(0:,..., 04) is the determinant of the

matrix whose ith row consists of a 1 followed by z(6;), then

8(1,...,0q) =22 T sind(6; —0;).

1si<isd

For 1 £¢<d, let oy =2n(—1)/d and w; = x{«;). From neighborlines and a

remark of Gale [4], and also from Scott’s identity, it follows that the convex hull
d

of the wys is a (27)-simplex. Since > wy = 0, the origin is interior to the simplex.
1

For the given s > d, let wq+1, ..., ws be distinct points of Cr ~ {w1, ..., wg}. For

1=i<s, let py=2wyf| w2, so that | ;] = 2/)/r, and let ps = 0. With
(Pi,.-s Bs)y = V{p1,...,ps),
P; is the polar of the neighborly (27)-polytope con {w1, ..., ws—1} and hence P has

y(d —1,s—1) vertices. Let ¢; = ()/r/2) p; for 1 <i < s, so that ¢; =0, |¢] =1
for 1 <i<(s, and the polytope

K={zecE¥:|z| <|z—gq for 1 £i< s}
is equal to ()/7/2) P;.

Now let E27 be embedded in E¢ as a hyperplane through the origin, having a line
Rz with |z} =1 as orthogonal supplement. For 1 < i < let gsi1 == 272, Let
(@1, ..., @s+) denote the Voronoi diagram ¥V (g1, ..., ¢s+:)- We prove

Mo(d, s +8) =ty(d—1,8—1)
by showing for 1 <¢ < ¢ that Qss has y(d — 1, s — 1) vertices in the hyperplane
Ji=E?r 4+ (2:—1)Z.

All points of J; are equidistant from ¢s.;-1 and gs+;, and are closer to these than

to any other point of the set {gs, ..., gs+s}- The point (2¢ — 1), is closer to gsps-1

and to ¢s+; than to any other point of the set {g1, ..., gs1:}. Thus J; contains a facet
F of Qs+, and in fact ‘

I’::r\(f&tﬂzh)

1sk<s

" where

Hy={geE%: |z — ¢si| =] —qi]}.

To see that F has the same number of vertices as K, note that there is a point — uz
such that F is the intersection with J; of the convex cone formed by all rays that
issue from — pz and pass through points of K. The vertices of F are the inter-
sections of J; with the edges of the cone, and these in turn correspond to vertices
of K. The existence of — uz, which can be deduced from the lemma below, depends
on all the points g1, ..., gs—1 having the same norm, and that was the reason for
the special choice of neighborly polytopes in this construction (Thus having | g1 ]
=--- = | ¢s-1| appears to be essential here, though having these norms =1 is
merely a computational convenience.)
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Lemma. Suppose E is a hyperplane through the origin in o Euclidean space, having
a line Rz with |z| = 1 as orthogonal supplement. Suppose g€ E with [q| = 1, and
suppose 0 << B<<n =2f. Let

_n@f-m+1 B _ g
2 TR T R
Then for each point z of the hyperplane E -+ Bz, the following two conditions are
equivalent :

Q) lz—nz[=]z—ql;

(i) if @’ is the point at which the segment [— uz, x] intersects E, then || < [|[2'—q¢].
To prove the lemma, consider an arbitrary point x € £ -+ fz — say z =y -+ fz with

y € B. Consideration of similar triangles shows that 2’ = gy with ¢ = u/(u + §)

= 1/(29). Using the facts that {(z,y> = <{z,¢> = 0 and {z,2> = {g,¢> = 1, both

(1) and (ii) are seen to be equivalent to the inequality <{g, y> = u. That settles the

lemma and completes the proof of Theorem 4. [J

Corollary 2. For odd d =2r — 1 and for n >d + 1,
n—r—1nr—r—1 ({[nrfr+1)]—r n (n—»r‘
r41 nr—72+1( r—1 )<M0(d’n)<n—r r )

Proof. Use Theorem 3 for the upper bound. For the lower bound, apply Theorem 4
with s = [ar/(r -+ 1)] and ¢ = [n/(r + 1], obtaining

\

s§—1{s—r
Moy@d,n)=ty2r—2,s—1)=t ( )

s—r \r—1

and hence the stated lower bound. From the latter it follows that

liminf Mod,m) = —( | ) w>-"tw
im inf Mo(d, n) = — ot n>mn

n-—>00 r

thus settling (3). [J

Comments. For applications of Voronoi diagrams to problems of packing and
covering in E%, and for references to the earlier literature, see Rogers [10]. In recent
years, Voronoi diagrams in £2 have been of interest because of their use by Shamos
[12] and Shamos and Hoey [13] in providing efficient algorithms for a number of
computational problems. For n points pi, ..., pn of E2, the diagram (Pi,..., Pp)
can be computed in time O(zn log n), each P; being output as its sequence of suc-
cessive vertices. The same computation in £¢ would in worst cases require time
0 (n/¥21) because of the possible number of vertices. However, it is unknown whether,
in time bounded by some polynomial in d and =, one can compute the facets of the
Py’s. For input p1, ..., ps € E%, the output would consist of » subsets I, ..., I,
of {1,...,n} such that i € I; if and only if the hyperplane {z: |z — p;|| = ||z — p;]}
contains a facet of P;. By results of Reiss and Dobkin [9], this can be accomplished
in polynomial time if and only if linear programming problems with d variables
and n constraints can be solved in polynomial time.
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