On the complexity of *d*-dimensional Voronoi diagrams

By

VICTOR KLEE

Introduction. For *n* points p_1, \ldots, p_n of Euclidean *d*-space E^d , the associated Voronoi diagram $V(p_1, \ldots, p_n)$ is a sequence (P_1, \ldots, P_n) of convex polyhedra covering E^d , where P_i consists of all points of E^d that have p_i as a nearest point in the set $\{p_1, \ldots, p_n\}$. Thus

$$P_i = \{x \in E^d : \|x - p_i\| \le \|x - p_j\| \text{ for all } j\} = \bigcap_{i \ne j} H_{ij},$$

where

$$H_{ij} = \{x \in E^d : \langle p_j - p_i, x \rangle \leq \frac{1}{2} (\|p_j\|^2 - \|p_i\|^2) \}.$$

Note that H_{ij} is the closed halfspace which contains p_i and whose bounding hyperplane passes through the midpoint of the segment $[p_i, p_j]$ and is perpendicular to that segment.

For $0 \leq k < d$, let $\Phi_k(p_1, \ldots, p_n)$ denote the number of sets S such that S is a k-dimensional face of at least one of the polyhedra P_i . Then $\Phi_k(p_1, \ldots, p_n)$ is a natural measure of the complexity of the diagram, and the cases k = 0 and k = d - 1are of special interest. Let $M_k(d, n)$ denote the maximum of $\Phi_k(p_1, \ldots, p_n)$ as (p_1, \ldots, p_n) ranges over all n-tuples of distinct points of E^d . A routine application of Euler's theorem shows

$$M_0(2, n) = 2n - 5$$
 and $M_1(2, n) = 3n - 6$ for all $n > 2$.

for d > 3, all n,

Here it is proved that

$$(1) M_{d-1}(d,n)$$

(2)
$$1 \leq \liminf_{n \to \infty} \frac{M_0(d, n)}{n^r/r!} \leq \lim_{n \to \infty} \sup \frac{M_0(d, n)}{n^r/r!} \leq 2 \quad \text{for even} \quad d = 2r,$$

(3)
$$\frac{1}{re} < \liminf_{n \to \infty} \frac{M_0(d, n)}{n^r/r!} \leq \limsup_{n \to \infty} \frac{M_0(d, n)}{n^r/r!} \leq 1 \quad \text{for odd} \quad d = 2r - 1.$$

Our method can also be used to obtain inequalities for the other M_k 's.

 $=\binom{n}{2}$

V. KLEE

Theorems. Not suprisingly, all our proofs are based on properties of neighborly polytopes. A *d*-polytope (that is, a bounded *d*-dimensional convex polyhedron) is said to be *neighborly* if each set of $\lfloor d/2 \rfloor$ of its vertices is the vertex-set of a face. This implies that for $1 \leq j \leq \lfloor d/2 \rfloor$, each set of *j* vertices is the vertex set of a (j-1)-face. For discussions and constructions of neighborly polytopes, see Gale [4] and Grünbaum [5]. (We use $\lfloor x \rfloor$ and $\lceil x \rceil$ respectively for the largest integer $\leq x$ and the smalest integer $\geq x$.)

Theorem 1. If
$$1 \leq j \leq \lfloor d/2 \rfloor$$
 then $M_{d-j+1}(d,n) = \binom{n}{j}$ for all n .

Proof. The cases in which $n \leq d+1$ are left to the reader. With $n \geq d+2$, let w_1, \ldots, w_{n-1} be the vertices of a neighborly *d*-polytope Q in E^d such that the origin is interior to Q. Then for $1 \leq j \leq \lfloor d/2 \rfloor$, each j facets ((d-1)-faces) of the polar polytope

$$Q^0 = \{x \in E^d : \langle w_i, x
angle \leq 1 \quad ext{for} \quad 1 \leq i < n \}$$

intersect in a (d-j)-face of Q^0 . For $1 \leq i < n$, let $p_i = 2w_i/||w_i||^2$. Then for each $x \in E^d$,

$$\langle w_i, x \rangle = 1 \Leftrightarrow \langle p_i, x \rangle = \frac{1}{2} \| p_i \|^2.$$

Let $p_n = 0$ and $(P_1, \ldots, P_n) = V(p_1, \ldots, p_n)$. Since the affine hulls of Q^{0} 's facets are the sets of the form $\{x : \langle w_i, x \rangle = 1\}$ for $1 \leq i \leq n$, it follows that $P_n = Q^0$ and for $1 \leq i < n$ the intersection $P_i \cap P_n$ is a facet F_i of P_n .

Let $\Im \langle \operatorname{resp.} \mathfrak{I} \rangle$ consist of all *j*-sets $I \in \{1, \ldots, n\}$ such that $n \in I \langle \operatorname{resp.} n \notin I \rangle$, and for each $\Im \in \mathfrak{I} \cup \mathscr{I}'$ let $G_I = \bigcap_{i \in I} P_i$. If $I \in \mathfrak{I}$ then $G_I = \bigcap_{i \in I \sim \{n\}} F_i$, $a \ (d - j + 1)$ face of P_n . If $I \in \mathfrak{I}'$ then $G_I \cap P_n$ is a (d-j)-face of P_n and for each $i \in I$ is the intersection with P_n of a (d-j+1)-face of P_i . Since different members of $\Im \langle \operatorname{resp.} \mathfrak{I}' \rangle$ give rise to distinct sets $G_I \langle \operatorname{resp.} G_I \cap P_n \rangle$, the stated conclusion follows. \Box

A polytope is *simplicial* if all its facets are simplices. It is known [4] that all neighborly d-polytopes are simplicial when d is even, and [5] that the number of facets of a simplicial neighborly d-polytope with n vertices is

$$\gamma(d,n) = \binom{n - \lfloor (d+1)/2 \rfloor}{n-d} + \binom{n - \lfloor (d+2)/2 \rfloor}{n-d}.$$

McMullen [7] proved that $\gamma(d, n)$ is the maximum number of facets of *d*-polytopes with *n* vertices and hence, dually, of vertices of *d*-polytopes with *n* facets.

A *d*-polyhedron is simple if it has at least one vertex and each of its vertices is incident to precisely *d* edges or, equivalently, to precisely *d* facets ((d-1)-faces). A *d*-dimensional Voronoi diagram $V(p_1, \ldots, p_n)$ is simple if it has at least one vertex and each vertex is incident to precisely d + 1 of the P_i 's; this implies that all the P_i 's are simple.

Theorem 2. If p_1, \ldots, p_n are distinct points of E^d such that the Voronoi diagram $V(p_1, \ldots, p_n) = (P_1, \ldots, P_n)$ is simple and u of the P_i 's are unbounded, then

$$\Phi_0(p_1,\ldots,p_n) \leq \gamma(d+1,n) + d - u.$$

Vol. 34, 1980

Voronoi diagrams

Proof. The assertion is obvious when d = 2, so we assume d > 2. A theorem of Davis [2] then guarantees the existence of a real-valued convex function f on E^d such that each P_i is a set X which is maximal with respect to there being an affine function on E_d that agrees with f on X. The epigraph $\{(x, \tau) : \tau \ge f(x)\}$ is a simple (d+1)-polyhedron that has precisely n facets, u of which are unbounded. It then follows from an extension [6] of McMullen's theorem that the number of vertices of the epigraph, and hence of $V(p_1, \ldots, p_n)$, is at most $\gamma(d+1, n) + d - u$. \Box

Theorem 3. If n > d + 1 then $\gamma(d, n - 1) \leq M_0(d, n) < \gamma(d + 1, n)$.

Proof. To establish the lower bound, carry out the construction of Theorem 1 with a neighborly polytope Q that is simplicial. Then Q has $\gamma(d, n-1)$ facets, so $\gamma(d, n-1)$ is also the number of vertices of the polar polytope $Q^0 = P_n$.

For the upper bound, note that whenever p_1, \ldots, p_n are points of E^d (with n > d), they can be perturbed slightly so that the diagram $V(p_1, \ldots, p_n)$ becomes simple and its number of vertices does not decrease. (A formal proof can be based on a semicontinuity theorem of [3].) Then use Theorem 2, noting that the number of unbounded P_i 's must exceed d. \Box

Note that

$$\gamma(d,n) = \frac{n}{n-r} \binom{n-r}{r}$$
 for even $d = 2r$

and

$$\gamma(d, n) = 2 \binom{n-r}{r-1}$$
 for odd $d = 2r-1$.

Thus Theorem 3 yields the following corollary, which in turn implies (2).

Corollary 1. For even d = 2r and for n > d + 1,

$$\frac{n-1}{n-1-r}\binom{n-1-r}{r} \leq M_0(d,n) < 2\binom{n-1-r}{r}.$$

To establish (3) we use an idea of Preparata [8] in conjunction with some special neighborly polytopes.

Theorem 4. If d is odd, s > d and $t \ge 1$, then $M_0(d, s+t) \ge t\gamma(d-1, s-1)$.

Proof. Let d = 2r + 1, and for each angle θ let

$$x(\theta) = (\sin \theta, \cos \theta, \sin 2\theta, \cos 2\theta, \dots, \sin r\theta, \cos r\theta) \in E^{2r}$$

Let

$$C_{\mathbf{r}} = \{x(\theta) : 0 \leq \theta \leq 2\pi\},\$$

a simple closed curve on the sphere in E^{2r} that is centered at 0 and has radius \sqrt{r} . This curve was studied by Carathéodory [1] and also by Gale [4], who observed that the convex hull con X is a neighborly (2r)-polytope for each finite set X of V. Klee

more than 2r points of C_r . Grünbaum [5] noted this is easily proved with the aid of Scott's identity [11] asserting that if $\delta(\theta_1, \ldots, \theta_d)$ is the determinant of the matrix whose *i*th row consists of a 1 followed by $x(\theta_i)$, then

$$\delta(\theta_1,\ldots,\theta_d) = 2^{2r^2} \prod_{1 \leq i < j \leq d} \sin \frac{1}{2} (\theta_j - \theta_i).$$

For $1 \leq i \leq d$, let $\alpha_i = 2\pi(i-1)/d$ and $w_i = x(\alpha_i)$. From neighborlines and a remark of Gale [4], and also from Scott's identity, it follows that the convex hull of the w_i 's is a (2r)-simplex. Since $\sum_{1}^{d} w_1 = 0$, the origin is interior to the simplex. For the given s > d, let w_{d+1}, \ldots, w_s be distinct points of $C_r \sim \{w_1, \ldots, w_d\}$. For $1 \leq i < s$, let $p_i = 2w_i/||w_i||^2$, so that $||p_i|| = 2/\sqrt{r}$, and let $p_s = 0$. With

$$(P_1,...,P_s) = V(p_1,...,p_s),$$

 P_s is the polar of the neighborly (2r)-polytope con $\{w_1, \ldots, w_{s-1}\}$ and hence P_s has $\gamma(d-1, s-1)$ vertices. Let $q_i = (\sqrt{r/2}) p_i$ for $1 \leq i \leq s$, so that $q_s = 0$, $||q_i|| = 1$ for $1 \leq i < s$, and the polytope

$$K = \{x \in E^{2r} : ||x|| \le ||x - q_i|| \text{ for } 1 \le i < s\}$$

is equal to $(\sqrt{r}/2) P_s$.

Now let E^{2r} be embedded in E^d as a hyperplane through the origin, having a line Rz with ||z|| = 1 as orthogonal supplement. For $1 \leq i \leq t$ let $q_{s+1} = 2iz$. Let (Q_1, \ldots, Q_{s+t}) denote the Voronoi diagram $V(q_1, \ldots, q_{s+t})$. We prove

$$M_0(d, s+t) \ge t \gamma (d-1, s-1)$$

by showing for $1 \leq i \leq t$ that Q_{s+i} has $\gamma(d-1, s-1)$ vertices in the hyperplane $J_i = E^{2r} + (2i-1)Z$.

All points of J_i are equidistant from q_{s+i-1} and q_{s+i} , and are closer to these than to any other point of the set $\{q_s, \ldots, q_{s+i}\}$. The point $(2i - 1)_z$ is closer to q_{s+i-1} and to q_{s+i} than to any other point of the set $\{q_1, \ldots, q_{s+i}\}$. Thus J_i contains a facet F of Q_{s+i} , and in fact

$$F = \bigcap_{1 \leq k < s} (H_k \cap J_i)$$

where

$$H_k = \{x \in E^d : \|x - q_{s+i}\| \le \|x - q_k\|\}.$$

To see that F has the same number of vertices as K, note that there is a point $-\mu z$ such that F is the intersection with J_i of the convex cone formed by all rays that issue from $-\mu z$ and pass through points of K. The vertices of F are the intersections of J_i with the edges of the cone, and these in turn correspond to vertices of K. The existence of $-\mu z$, which can be deduced from the lemma below, depends on all the points q_1, \ldots, q_{s-1} having the same norm, and that was the reason for the special choice of neighborly polytopes in this construction (Thus having $||q_1|| = \cdots = ||q_{s-1}||$ appears to be essential here, though having these norms = 1 is merely a computational convenience.)

Vol. 34, 1980

Voronoi diagrams

Lemma. Suppose E is a hyperplane through the origin in a Euclidean space, having a line Rz with ||z|| = 1 as orthogonal supplement. Suppose $q \in E$ with ||q|| = 1, and suppose $0 < \beta < \eta \leq 2\beta$. Let

$$\psi = \frac{\eta(2\beta - n) + 1}{2}$$
 and $\mu = \frac{\beta}{2\psi - 1} = \frac{\beta}{\eta(2\beta - \eta)}$.

Then for each point x of the hyperplane $E + \beta z$, the following two conditions are equivalent:

(i) $||x - \eta z|| \leq ||x - q||;$

(ii) if x' is the point at which the segment $[-\mu z, x]$ intersects E, then $||x'|| \leq ||x'-q||$. To prove the lemma, consider an arbitrary point $x \in E + \beta z - \text{say } z = y + \beta z$ with

To prove the lemma, consider an arbitrary point $x \in D + \beta z = say z = y + \beta z$ with $y \in E$. Consideration of similar triangles shows that $x' = \varepsilon y$ with $\varepsilon = \mu/(\mu + \beta) = 1/(2\psi)$. Using the facts that $\langle z, y \rangle = \langle z, q \rangle = 0$ and $\langle z, z \rangle = \langle q, q \rangle = 1$, both (i) and (ii) are seen to be equivalent to the inequality $\langle q, y \rangle \leq \psi$. That settles the lemma and completes the proof of Theorem 4. \Box

Corollary 2. For odd d = 2r - 1 and for n > d + 1,

$$\frac{n-r-1}{r+1}\frac{nr-r-1}{nr-r^2+1}\binom{[nr/(r+1)]-r}{r-1} < M_0(d,n) < \frac{n}{n-r}\binom{n-r}{r}.$$

Proof. Use Theorem 3 for the upper bound. For the lower bound, apply Theorem 4 with $s = \lfloor n/(r+1) \rfloor$ and $t = \lfloor n/(r+1) \rfloor$, obtaining

$$M_0(d,n) \ge t \gamma (2r-2,s-1) = t \frac{s-1}{s-r} \binom{s-r}{r-1}$$

and hence the stated lower bound. From the latter it follows that

$$\liminf_{\to\infty} M_0(d,n) \ge \frac{1}{r} \left(\frac{r}{r+1} \right)^r n^r > \frac{1}{re} n^r$$

thus settling (3).

n

Comments. For applications of Voronoi diagrams to problems of packing and covering in E^d , and for references to the earlier literature, see Rogers [10]. In recent years, Voronoi diagrams in E^2 have been of interest because of their use by Shamos [12] and Shamos and Hoey [13] in providing efficient algorithms for a number of computational problems. For n points p_1, \ldots, p_n of E^2 , the diagram (P_1, \ldots, P_n) can be computed in time $O(n \log n)$, each P_i being output as its sequence of successive vertices. The same computation in E^d would in worst cases require time $\Omega(n^{[d/2]})$ because of the possible number of vertices. However, it is unknown whether, in time bounded by some polynomial in d and n, one can compute the facets of the P_i 's. For input $p_1, \ldots, p_n \in E^d$, the output would consist of n subsets I_1, \ldots, I_n of $\{1, \ldots, n\}$ such that $i \in I_j$ if and only if the hyperplane $\{x : ||x - p_i|| = ||x - p_j||\}$ contains a facet of P_j . By results of Reiss and Dobkin [9], this can be accomplished in polynomial time if and only if linear programming problems with d variables and n constraints can be solved in polynomial time.

Acknowledgement: Preparation of this paper was supported in part by the U.S. Office of Naval Research.

References

- C. CARATHÉODORY, Über den Variabilitätsbereich der Fourier'schen Konstanten von positiven Harmonischen Funktionen. Rend. Circ. Matem. Palermo 32, 193-217 (1911).
- [2] C. DAVIS, The set of non-linearity of a convex piecewise-linear function. Scripta Math. 24, 219-228 (1959).
- [3] H. G. EGGLESTON, B. GRÜNBAUM and V. KLEE, Some semicontinuity theorems for convex polytopes and cell-complexes. Comment. Math. Helv. 39, 165-188 (1964).
- [4] D. GALE, Neighborly and cyclic polytopes. Convexity (V. Klee, ed.). Amer. Math. Soc. Proc. Symp. Pure Math. 7, 225-232 (1963).
- [5] B. GRÜNBAUM, Convex Polytopes. London 1967.
- [6] V. KLEE, Polytope pairs and their relationship to linear programming. Acta Math. 133, 1-25 (1974).
- [7] P. McMullen, The maximum number of faces of a convex polytope. Mathematika 17, 179-184 (1970).
- [8] F. P. PREPARATA, A nearest-point Voronoi polyhedron for *n* points may have $(O(n^2))$ vertices. Steps onto Computational Geometry (F. P. Preparata, ed.), Tech. Rep., Coordinated Science Lab., University of Illinois, Urbana, pp. 23-24 (1977).
- [9] S. P. REISS and D. P. DOBKIN, The complexity of linear programming. Tech. Rep. No. 69, Yale Univ. Comp. Sci. Dept.
- [10] C. A. ROGERS, Packing and Covering. Cambridge Tracts in Math. and Math. Physics, No. 54, Cambridge 1964.
- [11] R. F. SCOTT, Note on a theorem of Prof. Cayley's. Messenger Math. 8, 155-157 (1879).
- [12] M. I. SHAMOS, Computational Geometry. Ph. D. thesis, Yale Univ. Comp. Sci. Dept., 1975.
- [13] M. I. SHAMOS and D. HOEY, Closest-point problems. Proc. 16th Ann. IEEE Symp. Foundations Comp. Sci. 151-162 (1975).

Eingegangen am 9. 10. 1979

Anschrift des Autors:

Victor Klee Department of Mathematics University of Washington Seattle, Washington 98195