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O n  t h e  c o m p l e x i t y  o f  d - d i m e n s i o n a l  V o r o n o i  d i a g r a m s  

By 

VICTOR KLEE 

Introduction. For n points p l  . . . . .  Pn of Euclidean d-space E d, the associated 
Voronoi d iagram V ( p l  . . . . .  Pn) is a sequence (P1 . . . .  ,-Pn) of convex polyhedra 
covering E d, where P~ consists of all points of E d tha t  have pi as a nearest point 
in the set {pl . . . . .  Pn}.  Thus 

P ,  = {x  e Ea  : l] x - -  pili < [I x - -  p~ I[ for all ?') ---- [ '~ Hi3", 
j v i  

where 

H~j = {x ~ E~: <pC -- p~, x> < .~ (IlPJ 112 _ II P~ iI 2)). 

Note that  Hi1 is the closed halfspaee which contains pt and whose bounding hyper- 
plane passes through the midpoint of the segment [Pi, Pi] and is perpendicular to 
tha t  segment. 

For 0 ~ k <  d, let r  . . . . .  Pn) denote the number  of sets S such tha t  S is 
a k-dimensional face of at least one of the polyhedra Pi-  Then ~bk(pl . . . . .  Pn) is a 
natural  measure of the complexity of the diagram, and the cases k---- 0 and k ~- d - -  1 
are of special interest. Let  M ~ ( d ,  n) denote the maximum of ~b~(px, . - - ,Tn) as 
(P l ,  . . .  Pn) ranges over all n-tnples of distinct points of E d. A routine application 
of Euler 's theorem shows 

M0(2, n ) = 2 n - - 5  and Ml(2,  n ) = 3 n - - 6  for all n > 2 .  

Here it is proved tha t  

(1) Ma-1 (d, n) = 2 

M0 (d, n) M0 (d' n_ )_ _< 2 
(2) 1 __< lira inf - - -  ~ lira sup 

n~r162 nr/r!  n->:r nr/r!  - -  

1 Mo (d, n) Mo (d, n) 
(3) - -  < lim inf ~ lim sup --~ 1 

re  n - ~  nr/r!  --n~r nr/r!  - -  

for d > 3 ,  all n ,  

Our method can also be used to obtain inequalities for the other Mk's. 

for odd d = 2 r - - 1 .  

for even d-----2r, 
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Theorems. No t  suprisingly, all our proofs are based on properties of  neighborly 
polytopes.  A d-polytope ( that  is, a bounded d-dimensional convex polyhedron) is 
said to be neighborly if  each set of  [d/2] of  its vertices is the vertex-set  of  a face. 
This implies t ha t  for 1 ~ ] ~< [d/2J, each set of?" vertices is the vertex set of  a (?"- 1)- 
face. For  discussions and constructions of  neighborly polytopes,  see Gale [4] and 
Grfinbaum [5]. (We use [x] and  [xJ respectively for the largest integer ~ x and the  
smalest integer ~ x.) 

Theorem 1. I /  l < = ? " < - - [ d / 2 j t h e n M ~ - j + l ( d , n ) = ( ~ ) / o r a l l n .  

P r o o f .  The cases in which n ~ d -~ 1 are left to the reader. With  n ~ d ~- 2, 
let wl . . . . .  Wn-1 be the vertices of  a neighborly d-polytope Q in E g such tha t  the 
origin is interior to Q. Then for 1 <= ?" ~ [d/2], each ?" facets ( ( d -  1)-faces) of  the  
polar polytope 

QO--__{xeE a : ( w ~ , x ) ~ l  for l ~ i < n }  

intersect in a (d - -  j)-face of  Q0. For  1 ~ i < n, let p~ -= 2wi/]Iw~][ 2. Then for each 
x ~ E a, 

Let  Pn : 0 and (P1 . . . . .  Pn) = V(pl  . . . . .  Pn). Since the affine hulls of  Q0's facets 
are the sets of  the form (x : <wi, x> = 1} for 1 _~ i g n, it follows tha t  Pn = Q0 
and for 1 g i < n the intersection Pi (~ Pn is a f a c e t / " i  of  Pn. 

Let  ~ (resp. ~ ' }  consist of  all ~-sets I c (1 . . . . .  n} such tha t  n e I (resp. n ~ I ) ,  
and for e a c h ~ e ~ L )  J ' l e t  G z : ( ' ~ P i .  I f l e ~  then G x = ( ' ~ F t ,  a ( d - - ] - ~  1)- 

i e I  i e I ~ { n }  

face of  Pn.  I f  I e ~ '  then  Gz n Pn is a (d - -  ?")-face of Pn and for each i e I is the 
intersection with Pn o f a  (d - -  ?" -~ 1)-face ofP~.  Since different members  o f ~  (resp. ~ ' )  
give rise to dist inct  sets G/ (resp. Gx c~ Pn), the s ta ted conclusion follows. [ ]  

A polytope is simplicial if  all its facets are simplices. I t  is kno~-n [4] tha t  all 
neighborly d-polytopes are simplicial when d is even, and [5] t ha t  the number  of 
facets of  a simplieial neighborly d-polytope with n vertices is 

},(d,n) -~ n - -  d ] + n - -  d " 

McMullen [7] proved tha t  y (d, n) is the max imum number  of  facets of  d-polytopes 
with n vertices and  hence, dually, of  vertices of d-polytopes with n facets. 

A d-polyhedron is simple if it has at  least one vertex and each of its vertices is 
incident to precisely d edges or, equivalently,  to  precisely d facets ((d--1)-faces).  
A d-dimensional Voronoi diagram V (Pl . . . . .  Pn) is simple if  it has a t  least one ver tex 
and each ver tex is incident to  precisely d ~ 1 of  the P i ' s ;  this implies t ha t  all the 
P~'s are simple. 

Theorem 2. I] Pl ,  . . . .  Pn are distinct points o / E  a such that the Voronoi diagram 
V (pl . . . . .  Pn) -~ ( P1 . . . . .  Pn) is simple and u o/ the  Pi'  s are unbounded, then 

qSO(pl . . . . .  Pn) ~ ?(d--~ l ~ n ) ~ d - - u .  
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P r o o f .  The assertion is obvious when d = 2, so we assume d > 2. A theorem of  
Davis  [2] then guarantees  the existence of  a real-valued convex function / on E a 
such t h a t  each Pi  is a set X which is maximal  with respect to there being an affine 
funct ion on Ea  t h a t  agrees with ] on X.  The epigraph ((x, T) : T ~ / ( x ) }  is a simple 
(d + 1)-polyhedron t h a t  has precisely n facets, u of  which are unbounded.  I t  then  
follows f rom an extension [6] o f  MeMullen's theorem tha t  the number  of  vertices 
o f  the epigraph, and  hence of  V (Pl . . . . .  Pn), is at  most  y (d -+- 1, n) + d - -  u. [ ]  

Theorem 3. I]  n > d + 1 then ~ , ( d , n - - 1 )  ~ Mo(d ,n )  < y (d  + 1,n). 

P r o o f .  To establish the lower bound,  car ry  out the construct ion of  Theorem 1 
with a neighborly polytope Q t h a t  is simplicial. Then Q has ~,(d, n - - l )  facets, so 
y(d,  n - -  1) is also the number  of  vertices o f  the polar polytope Q0 ___ Pn. 

For  the upper  bound,  note t h a t  whenever  Pl  . . . . .  Pn are points of  E a (with 
n > d), t hey  can be per turbed slightly so tha t  the d iagram V ( p l  . . . . .  Pn) becomes 
simple and  its number  of  vertices does not  decrease. (A formal proof  can be based 
on a semieontinui ty theorem of  [3].) Then use Theorem 2, not ing tha t  the number  
of  unbounded  P~'s mus t  exceed d. [ ]  

Note  t h a t  

n ( n - - r ) f o r e v e n  d = 2 r  
~,(d,n) - -  n - -  r r 

and  (n-- 7") 
( d , n ) = 2  r - - 1  for odd d = 2 r - - 1 .  

Thus  Theorem 3 yields the following corollary, which in tu rn  implies (2). 

Corollary 1. For even d ---- 2 r and ]or n > d + 1, 

To establish (3) we use an  idea of  P repa ra ta  [8] in conjunct ion with some special 
neighborly  polytopes.  

Theorem 4. I ] d  is odd, s > d and t >= 1, then M o ( d , s  + t) ~ t T ( d - -  1 , s - -  1). 

P r o o f .  Le t  d ---- 2 r  + 1, and for each angle 0 let 

x (0) ---- (sin 0, cos 0, sin 2 0, cos 2 0 . . . . .  sin r 0, cos r 0) e E 2r. 

Let  

C~ = {x(O) : o < 0 _< 2:~) ,  

a simple closed curve on the  sphere in E 2r t h a t  is centered at  0 and has radius V ~. 
This curve was studied b y  Carath6odory [1] and also b y  Gale [4], who observed 
t h a t  the  convex hull con X is a neighborly (2r)-polytope for each finite set X of  
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more than  2 r  points of  Cr. Gri inbaum [5] noted this is easily proved with the  aid 
of  Scott 's  ident i ty  [11] asserting tha t  if 8(01 . . . . .  0a) is the determinant  of  the 
matr ix  whose i th  row consists of  a 1 followed by x(O~), then  

8(01, . . . ,  Oa) = 22r'~ 1-~ sin�89 - -  0~). 

For  1 <_ i <_ d, let ~l = 2zz(i - -  1)/d and  w~ = x(~) .  F r o m  neighborlines and  a 
remark of  Gale [4], and also from Scot t ' s  identity,  it follows t h a t  the convex hull 

d 

of the wi's is a (2r)-simplex. Since ~ w l  ----- 0, the origin is interior to the simplex. 
1 

For  the given s > d, let wa+l, . . . ,  ws be distinct points of Cr ~ {wl . . . . .  w~}. For  
1 ~ i < s, let 19~ = 2wi/I] w~ I] 2, so tha t  I]P~ II = 2/Vr, and let ps = 0. Wi th  

(P1 . . . . .  P,) = V(p l  . . . . .  p , ) ,  

Ps is the polar of  the neighborly (2r)-polytope con {wl . . . . .  ws-1} and hence Ps  has 
y ( 4 - -  1, s - -  1) vertices. Let  q~ -~ (I/r/2) p~ for 1 --< i ~ s, so t h a t  qs = 0, ]]q~]] = 1 
for 1--< i < s, and the polytope 

K = {~: e E ~  : II �9 ]l ----< ]l ~ - -  q~ ]l f o r  1 ____ ~ < ~} 

is equal to (y r /2 )Ps .  
Now let E 2r be embedded in E ~ as a hyperplane th rough  the  origin, having a line 

R z  with ]lzH = 1 as orthogonal  supplement.  For  1 _--_ i _< t let qs+~ = 2 iz .  Let  
(Q1 . . . . .  Qs+t) denote the Voronoi diagram V (ql . . . . .  qs+t). We prove 

Mo(d,  8 -4- t) >= t r ( d  - -  1, 8 - -  1) 

by  showing for 1 ___ i --< t t h a t  Qs+i has 7(d  - -  1, s - -  1) vertices in the hyperplane 

J~ =: E2r + (2i  - -  1)Z.  

All points of  J~ are equidistant  f rom qs+i-1 and qs+i, and are closer to  these than  
to any  other point  of  the set {qs . . . . .  qs+t}. The point  (2i - -  1)z is closer to qs+i-1 
and to qs+~ t han  to any  other  point  of  the se t  {ql . . . . .  qs+t}. Thus J~ contains a facet  
F of  Qs+i, and in fact  

F = ( ' ]  (~ a J~) 
l ~ k < s  

where 

H ~  = {x  e E ~ :  ii x - -  g~+~ II ----< iI ~ - -  q~ II }- 

To see tha t  2 '  has the same number  of  vertices as K, note t ha t  there is a point  - -  tt z 
such tha t  F is the intersection with J i  of  the  convex cone formed by  all rays tha t  
issue from - - / zz  and pass th rough  points of  K. The vertices of _Y are the inter- 
sections of  J i  with the edges of  the cone, and  these in tu rn  correspond to vertices 
of  K. The existence of - - t t z ,  which can be deduced from the lemma below, depends 
on all the points q l , . . . ,  qs-1 having the same norm, and t h a t  was the reason for 
the special choice o f  neighborly polytopes in this construct ion (Thus having II ql II 
--  --]lqs-l l l  appears to be essential here, though having these norms = 1 is 
merely a computat ional  convenience.) 
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Lemma.  Suppose E is a hyperplane through the origin in a Euclidean space, having 
a line R z  with IlzH : 1 as orthogonal supplement. Suppose q e E  with Hqll - -  1, and 
suppose 0 ~ fl ~< ~ ~ 2 ft. Let 

~7(2/~ - -  n) @- 1 /~ fl 
Y~-~ 2 and i t - -  2 ~ - - l - - v ( 2 f l - - ~ )  

o] the hyperplane E ~- flz, the ]ollowing two conditions are Then /or each point x 
equivalent : 

(i) l l x - -  ~zI[ ~ I I x - -  ql[ ; 

(ii) i / x '  is the point at which the segment [--[~z, x] intersects E,  then ]1 x' l] ~ II x ' - - q  I]. 
To prove  the lemma,  consider an a rb i t r a ry  point  x e E ~- flz - -  say z ~ y + flz wi th  

y e E.  Considerat ion of  similar tr iangles shows t h a t  x '  = sy  with s = #/(/~ + fl) 
= 1/(2 vp). Using the  facts  t h a t  <z, y> = <z, q> = 0 and  (z, z> = <q, q> ~ 1, bo th  
(i) and (ii) are seen to be equivalent  to the  inequal i ty  <q, y} ~ ~. T h a t  settles the  
l emma  and completes the  proof  of  Theorem 4. [ ]  

Corollary 2. For odd d = 2 r - -  1 a n d / o r  n > d + 1, 

n - - r - - 1  n r - - r - - 1  ( [ n r / ( r - - ~ - l : ] - - r )  - n l  ( n - - r )  
r -t- 1 n r  - -  r 2 ~- 1 - -  ~ Mo(d, n) ~ r r " 

P r o o f .  Use Theorem 3 for  the  upper  bound. For  the lower bound, app ly  Theorem 4 
with  s -~ [nr/(r + 1)] and  t ----- [n/(r ~- l J, obta ining 

Mo(d ,n )  ~ t y ( 2 r - -  2 , s - -  1) = t 
8 - - r  

and hence the s ta ted  lower bound. F r o m  the la t ter  i t  follows tha t  

lira inf  21//0 (d, n) > - -  n r > - -  n r 
n ~ r 1 6 2  = r r -~-  1 r e  

thus  set t l ing (3). [ ]  

Comments.  For  appl icat ions of  Voronoi d iagrams to problems of packing and  
covering in E d, and  for references to the  earlier l i terature,  see Rogers  [10]. I n  recent  
years,  Voronoi d iagrams in E 2 have  been of  interest  because of their  use b y  Shamos 
[12] and  Shamos  and  H o e y  [13] in providing efficient algorithms, for a n u m b e r  of  
computa t iona l  problems.  :For n points  P l ,  . . . ,  Pn of E 2, the  d iagram (P1 . . . . .  Pn) 
can be compu ted  in t ime  0 (n log n), each P i  being ou tpu t  as its sequence of suc- 
cessive vertices.  The same computa t ion  in E ~ would in wors t  cases require t ime  

(n [d/2]) because of the  possible n u m b e r  of  vertices.  I-Iowever, i t  is unknown whether ,  
in t ime bounded  b y  some polynomial  in d and  n, one can compute  the  facets of  the 
P~'s. :For input  pl  . . . . .  Pn ~ E ~, the  ou tpu t  would consist of  n subsets I1 . . . . .  I n  
of  {1 . . . . .  n} such t h a t  i e I 3. if and only if the hyperp lane  {x: i]x --Pil l  ---- ]!x --PJ'I]} 
contains a facet  of  P j .  B y  results of Reiss and Dobkin  [9], this can be accomplished 
in polynomial  t ime if and  only if l inear p rogramming  problems with  d variables  
and  n constraints  can be solved in polynomial  t ime.  
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