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Abstract. We study the iterations of the mapping 

~4/'[F(s)] = (F(s))2 - (F(0))z + (F(O)) z , 
S 

with the constraints F (1 )=  1, F ( s ) = ~ a , s " ,  a ,>0 ,  and find that, except if 
F(s )=s ,  JVk[F(s)] approaches either 0 or 1 tbr Is[ < 1 as k~oo .  

I. Introduction and Summary of the Results 

In a simplified version of a spin glass model [1] (CEGM), the probability 
distribution of the spin-spin interaction is given by a discrete set of coefficients a., 

a, = 1, a , ~ 0 ,  (1) 
n=0 

and after the operation of the renormalization group, this distribution is replaced 
by a new one. The operation is best described by writing the equation which gives 
the new generating function of the probabilities, Y F ,  in terms of the old one, F: 

~#[F(s)] = (F(s))2 - (V(0))z t- (r(0)) 2 , (2) 
S 

with F ( s ) = ~ a , s " .  This mapping preserves conditions (1). 
We want to study the iterations of (2) and find out what happens to 

jv 'k[F(s)]=~U[JV'[~Z. . . , /g '[F(s)]]] ,  for k--~co, 

k tihaes 

and see whether JC'kF(s) approaches a limit or has a chaotic behavior. In the 
sequel, we use the abbreviation 

JVk[F(s)] = F(k)(S)' (3) 

F<k)(s) = y'.a~k)s" . 
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Let us summarize the results. 
I) There are only two fixed points of the mapping: F(s)=s, which is unstable, 

and F(s)= 1. A pseudofixed point is F(s)="s ~'', i.e., F (s )=0  for 0 N s <  1, and 
F(s) = 1 for s = 1. There is no periodic point, i.e., the equation 

F(k)(s)=F(s), Vs, 

has no new solutions when k > 1. 
2) Only three things happen to the iterations for k~oo :  
i) if F(s)=s, F(k)(s)=s, Vk; 

ii) otherwise, either F(k)(s)~O pointwise for 0 N s < 1, and in fact for Isl < 1 in the 
complex plane, or F(k)(s)~ 1 for Is] __2. 

We see thus that the attractors are "trivial". However, it will be seen that the 
approach to these attractors is complicated. 

3) F(k)(s)~l for k~oo  if and only if the following conditions are 
simultaneously fulfilled: 

i) F(s) :4= s, 
ii) F(s) is analytic in tsl < 2, 

iii) lim F(s) exists and lim U(2) exists, 
s~2 s--+2 

iv) F ( 2 ) -  2F'(2) > 0. 
4) Under conditions 3), F(k)(s) approaches unity in the following way: 
i) if F(2) - 2F'(2) > 0 strictly, Z IF(k)(s) - 1 [ converges for is[ < 2, 

ii) if F(2)-2F'(2)=O,~.lF(k)(s)-- 11 converges for Is] <2, while Y~,IF(k)(2) - 1[ ~ 
converges for any ~ > 1. Furthermore, lira inf k(F(k)(2) - 1) < 2. 

5) If F(s)~ s and if any one of suppress conditions 3) is not satisfied, then 
F(k)(s)~O for Is[ < 1. 

6) Finally, let us indicate that similar results, using similar methods, can be 
obtained for the mapping 

.At [F(s)] = (F(s))"- (F(0))" + (F(0))", n e N ,  n > 3, 
s 

F(s)=Za,s", a,~O, Z a , = l .  
(4) 

There is no unstable fixed point. F (k) approaches 1 for k ~  oo i fF  is analytic in Is[ < n 
and D = F(n)-n(n-1)F'(n)> 0. In the limit case, D =0,  we only know that F (k) 
does not approach zero. In the other cases, F(k)(s) approaches zero for Is[ < 1. 

7) The mapping, 

(F(s))-(F(O)) 
~#[F(s)] = +F(0) ,  (5) 

s 

where again F(s) = ~.a,s", a,__> 0, ~ a ,  = 1, is such that F(k)(s)~ 1 for k ~  0% Is[-5_ 1. 
In the sequel, we shall not discuss separately the problem of fixed points 

(though direct proofs exist !) because the absence of non-trivial fixed points follows 
from the rest of the study. 
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II. Necessary Conditions for Ftk)(s)~0: Analyticity 

First note that from condition (1), we see that if F(s) is defined in 0_< s < l it can be 
extended to [sl < 1. 

Assume that F(so)/S o < 1 for 0 < So < 1, then from (2) we get 

F(k)(SO) (F(so)~ 2k" - - <  
So \ So / 

Hence, if F(so)/S o < 1, F(k)(so)-~ 0 as k ~ ~ ; but since, from the positivity properties 
(1) IF(s)r <= F(so) for Isl = So, we tind also f(k)(s)-~O for k-~ ~ ,  Isl _-< So. However, since 
IF(k)(s)[ < 1 in Isl < 1, Vitali's theorem tells us that tF(k)(s)I-~O for [sl < 1. 

Hence, if F(k)(s) does not approach zero, we have F(s)/s => 1 for 0 _< s_< 1. This 
implies the following necessary conditions: 

F(k)'(1)=<I, for any k. (6) 

Let us now look at the recursion relations for a(, k) following from the definitions 
(2) and (3). They are 

a(k + 1) _ Z .(k).Ck) a- 6.o(a(ok)) 2 (7) n - -  t . tp  ~ q  ~ . 

p + q = n + t  

If 

we get from (7) 

i.e., 

I~  ) = k @k) (notice I{~)= 1), (8) 
p = n  

i(k + 1) > [ ~, + y~ q ~(k)~(k) 
p < n , q > = n + l  q < n , p > n + l  I 

(9) 

I(.k+ 1)> 2I(.~ 1 [ 1 =  --*.+mr(k) 1. (10) 

Assume now that F (k) does not tend to zero for k - ~ .  Then from (6), we get 
Z na~ k) < 1, and hence 

i.e., 

nI~ k) < k p@k) <= k Pa(vk) <~ 1, 
p = n  p = O  

i(k)< --,1 (11) 
n 

and, by inserting in the bracket in (10): 

i(k) 1 n + 1 n + l  

i(k+ 1) < . 2 n 

Iterating this inequality, one gets, using I~ p)< 1, 

a(k) < l(k) < 2n x 2-"  ?z ~ ?$ • (12) 
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Hence  f ( k ) ( s )  : ~ f . a~ ) s  n is analytic in [sl < 2. Fur thermore ,  using the explicit bound  
(12), we get a bound  on F (k) which is independent of  k: 

1 
IF(k)(s)[ < 1 + Isl + 2Is[ 2" (13) 

III. The Condition F ( 2 ) -  2F'(2) > 0 

Consider  the quant i ty  

D(k)(s) = F(k)(s) -- sF(k)'(s) . 

By differentiating (2), we get 

2F(k)(s) ~ ,k~ ,  2 -  s ,  ~,k~ . . . .  2 
D(k + 1)(S) - -  S / ) '  "iS) - -  ~ "  ( P '  "(U)) . 

(14) 

(15) 

Assume thatF(k)(s)4~O for k ~ o e .  Then  the F(k)'s are bounded  by (13). Take  
1 < So < 2, and assume D(k)(so) < 0. Then  from (15) we get D (k + 1)(s0) < 0 and 

D'k+ i)(s°) > 2 V(k)(s°) > 2 > 1 
D(k)(So) So So ' 

since F(k)(so) > 1 for So > 1. Therefore,  if D(°)(s) = F(s)--  sU(s) is negative for one 
part icular  So, 1 __< So < 2, then 

[D(k)(s°)] > [D(°)(s°)[ \ S o /  " 

However ,  F(k)(s) is bounded  by (13) and (2-[s[)F'(k)(s) is also bounded  by (13). 
Fo r  k large enough,  this is a contradict ion.  Hence a necessary condi t ion for F(k)(s) 
not  to approach  0 in 0 < s < 1 is 

D(°)(s) = F(s) -- sF'(s) > 0 ,  V s,  1 < s < 2.  (I 6) 

If (16) holds, we can integrate (16) from 1 to s and get 

F(s) <_ 1 
s - / '  l < s < 2 .  (17) 

F'(s) <__ 1 

This means that  F(s) and F'(s) which are increasing functions of s have limits for 
s = 2 that  we designate as F(2) and F'(2). Hence we have shown the 

Theorem. I f  F(k)(s) does not approach 0 in 0 < s < 1, then 

D(°)(2) -= r ( 2 )  - 2F'(2) > 0.  (18) 

F r o m  the positivity of the a,'s, it is easy to see that  (18) implies (I6). 
Let  us now assume 

D(°)(2) > 0.  
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We can take the limit of Eq. (15): 

D(k + 1)(2 ) = F(k)(2)D(k)(2) , 

and 

D(k)(2) = F (k- 1)(2)F(k- 2)(2) ... F(2)D(°)(2). 

But o(k)(s) is a decreasing function of s, so 

D(k~(2) < F¢k~(0)-- a~0 k~ < 1,  

and 

357 

(19) 

(20) 

1 < I ]  F(k)(2) < 
k=0 D(°)(2) 

We see that the infinite product l~IF(k)(2) is convergent. So F(k)(2)-~ 1 for k ~ o e  
0 

and, since 

(from convexity) 

1 < F(k)(s) < F(k)(2), 1 < S --< 2, 

2 -  F(k)(2) < F(k)(s) ~ 1, 0-%< S ~< 1, 

F(k)(s) ~ 1, 0 <-- S < 2. 

Furthermore, ¥ lsl < 2 the infinite product I~I F(k)(s) converges. Therefore, we 
k = 0  

have the 

Theorem. I f  F(2)--2F'(2)>O, then F(m(s)--,1 as N ~ o e ,  when N<=2, and the 

infinite product FI F(m(s) converges for Ist <= 2. 
N = 0  

This implies, of course, that ~ (F(m(2)- 1) converges. 
N = O  

IV. The Limit Case F(2)= 2F'(2) 

If 

D(°)(2) = 0, (21) 

we get from (19), Dtk)(2) = 0. The only easy result in this case is that D(°)(2)= 0 is a 
sufficient condition to guarantee that F~k)(s) does not approach 0 in 0 <s  < 1. 

,~.(k) s = 2, and by convexity F(k)(s) >= s for 0 < s < 1. Indeed, we still have r ( ) < s for 1 < s < 
Let us show that if F(0) > 0, one can, in fact, get a lower bound on F(k)(O) for k large 
enough. Replacing F and F '  by their power expansion, one gets from (21) 

ao = ~ ( n -  1)2"a,, (22) 
n = 2  
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(23) 

(24) 

&o ¢U 

2/3 ¢/5 
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and hence 4 ~ a, < ao. Combining with ~ a, = 1, one gets 
2 0 

[  o01 
a l >  1 -  4 J + '  

where [x]+ = x  for x > 0 ,  0 for x < 0 .  Hence 

a~o ~÷ ~ > (a~ok~) 2 + 2a~; ~ [1  - 5 a ~ ]  -4_1÷" 
The graph corresponding to this inequality is presented in Fig. 1: 

Fig. 1 a~ k) 

It is easy to see that after a finite number of iterations, one gets 

a(k) > 16 (25) 
0 ~.~-- 2 5 " 

One can generalize this technique to get more refined lower bounds, but we shall 
prefer to use a completely different method. 

The trouble with Eq. (15), in the case D(2)=0, is that it reduces to 0=0 .  
Differentiating (15) leads to an equation on the second derivatives of F(k)(2) and 
F ~k+ 2)(2) which do not necessarily exist. An interesting quantity to consider is 

A = F - sF '  - s 2 ( 2  - S) V" (26) 
2 

It is easy to see that A is monotonously decreasing. Hence 

A(s)  < F(0) N 1. (27) 

We have also 

A ( s ) > ( 2 - - s ) 2 F ' ( 1 )  for s>_l. (28) 
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The iteration of A is given by: 

A (k + 1)(S ) = 2F(k) (s )  A (k)(s) - -  2 - s (F(k) _ sF,(k))2" (29) 
S S 

In Appendix I we prove the inequality 

( F -  sF') 2 < 2FA .  (30) 

Therefore, 

A(k+ 1)(s ) > 2(s-- 1) F(k)(s)A(k)(s). (31) 
S 

Iterating, we get 

A(N+I)(s)> ( 2 ( S s l ) ) N + I  N 
- - - -  1 7  (32) 

k=0 

and using inequalities (27) and (28) together with F(k)(s)/s>F(k)(2)/2, we get, 
assuming F ' ( 1 ) ,  0, i.e., excluding F(s) = s, 

k=N 1 

I ]  F(k)(2) < F"(1)(2 - s)Z(s - 1) N+I" (33) k=0 

Optimizing with respect to s, we find with s = 2 - 2 / N ,  

k=N CNN 2 
I-I F(k)(2) < N > 1. (34) 

k=o F'(1) ' = 

In the limit of large N, we have 

e 2 
(35) 

If we define eN by 

we can rewrite (34) as 

F(m(2) = 1 + eN, (36) 

N 
ek<21nN+cons t .  (37) 

k=0 

This means that, in an average sense, eN goes to zero. However, we cannot exclude 
from (37) the existence of an infinite sequence of eN's not tending to zero. The only 
safe thing we can say is 

lira inf NeN < 2. (38) 
N-*oo 

To prove that eN goes to zero, we will use the fact that successive ~'s are 
correlated. Specifically, from 

2F (N + 1)(2) = (F(m(2)) 2 + (F(m(0)) 2 < (F(m(2)) 2 + 1, (39) 



360 P. Collet, J.-P. Eckmann, V. Glaser, and A. Martin 

we get 

and 

1 z (40) 
~ N +  1 - -  ~)V < 2 ~ N  • 

In Appendix II we exploit this inequality to obtain 

~N 
g N - p >  

I + P~N ' 
2 

(41) 

where 

N 

Y[N(s) = I~ F(k)(s). (47) 
k = 0  

N 1 
1~ F(k)(2) > 2_ (e~.)2(N_ M + 2 )  2 . (42) 

k=M q 

If we combine the inequality (34) with the set of inequalities (42), we get 

CN~> x ( N , + I ) 2 ( N z - - N I + I ) Z . . . ( N p - - N p  a + l )  2. (43) 

In Appendix II we also show that this set of inequalities is very constraining 
and allows us to get an upper limit on v(x), the number of e~ larger or equal to x: 

n 
n_ . t/9\ZnZ2 

(44) 

for any integer n > 1. 
Noticing that v(1)= 0, if F(s)~ s, we get the Stieltjes integral' 

1 1 

(ek)2"= ~ x ' [ -dv (x ) ]  = ~ c~x ~- %(x)dx . (45) 
k = O  0 0 

For  any e >½ we can find an n such that from (44) we get a convergent upper bound 

to the last integral in (45). In particular, to prove that ~ (ek) 2 is convergent, it is 
sufficient to take n = 3. Hence we have shown k = 0 

Theorem. ~-~(ek) 2e converges for ~>½. 

On the other hand, we have the 

Theorem. I f  0(2) = F(2) - 2F'(2) = 0, •ek mUSt diverge. 

We begin the proof  by summing Eqs. (15) to get 

D(s) = 2-s_  ~, (F(U)(0)) 2 (46) 
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Assume that Y.eg converges, then I~N(2) tends to a limit L for N--*o% and 
YIN(s)<L. We can also start after a finite number of iterations so that F(m(0) 
> 16/25, according to (25). 

Then we get, summing the geometric series in (46): 

a contradiction. 
2 The convergence of ~ek 

0 

D(s) > -L \~-~j , (48) 

can now be used to prove the convergence of 

I1--F(k)(S)t, or equivalently f i  F(k)(s)for N<2.  
k = 0  k = O  

From (39) we have 

1 - ( F ( m ( 0 ) )  2 = 2 ( e N  - -  e ~  + , )  + e 2 . 

Hence 

N N 

Z (1 - -  ( F ( k ) ( 0 ) )  2 )  ----- 2Co - 2eN+l + Z e2- (49) 
k = 0  0 

The right-hand side is bounded for arbitrary N and this therefore convergent. It is 

also obvious from the monotonicity of F that ~ (1 -(F(k)(s)) 2) is convergent for 
0_<s_<l. k=0 

For 1 < s < 2 we have to use a more complicated argument. If we write F(k)(s) 
= 1 + ek(S), we get from the mapping equation 

ek + I(S) > 2ek(S)-- ~s  l ( t --(F(k)(o))Z) . (50) 

xk = ~(s ) ,  (51) 

Introducing 

we notice that x , ~ O  for k~oe ,  and we get 

s - I  ~ (s'] k+l 
x~, < ~ - -  k =~, \ 2 /  0 - (F(k)(0))2]- (52) 

Thus we get a bound on ek(s ) and can establish the inequality 

k = N  S k = N  

s--1 
< ~ k~N(1 --(F(k)(0))2). (53) 

Therefore, the infinite product f i  F(k)(s) converges for 0__< s < 2 and this can be 
k = O  

extended, using positivity, to lsl < 2. 
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We have already said that when D(2) = 0, the product f i  F(k)(2) must diverge. 
k=O 

One could ask how fast. This depends on details of the initial F(s). 
If F'(2) and F"(2) exist (as limits from s < 2), one can obtain the equation 

3F (N + 1)"(2) + 2F (N + 1)"(2) = F(m(2) [3F(m'(2) + 2F(m"(2)]. (54) 

By exploiting this equation, we prove in Appendix III that 

C1N2<I--[N(2)<C2 N2 , C1>0 .  (55) 

Then, assuming that the F(m's are sufficiently smooth functions of N, one can 
obtain their asymptotic behaviour: 

s - 1  8 
F(m(s) ~ 1 -~ N N(2-- s) + 4 '  (56) 

where the relative error on F (m-  1 is uniformly in s of the order of 1/N. This is 
again explained in Appendix III. 

If F'(2) or F"(2) and U'(2) do not exist, the situation is more complex. If F" 
exists but F"(s) .~(2-s)  -~, I~N(2)~N 2-~, if F"~ (2 - - s )  -~, I-IN(2)~N I-~. 
However, this is far from covering all possibilities! F" can be singular at s = 2  
without behaving like a definite power of 2 - s. This is described in Appendix IV. 

V. Generalization of the Results to Other Mappings 

First, for completeness, we treat the simple case 

F(s)-F(O) 
X F ( s ) -  +F(0) ,  F= ~.a,s", 

S 

ff  jVkF = F (k) = ~ a~,k&, the recursion relation reduces to 

a(k+ l ) _  ,,(k) ±~i  a (k), 
n - - ~ n + l t  n,0 0 

and by iterating this relation from k = 0, we find 

k 
a~ )= E a , -~l  for k ~ o o .  

n=0 

Hence 

a , > 0 ,  Z a , =  1. (57) 

(58) 

(59) 

F(k)(s)~I for k ~ ,  0 _ s _ < l .  

Now, consider the mapping 

(F(s))"-(F(O))" 
JffV(s) = + (F(0))", n > 3. (60) 

s 

Here things are very similar to the case n = 2, except that there is no unstable fixed 
point analogue to F(s)= s. The results are as follows: 

i) If F(s) is analytic in [s[ <n,  and if F(n) and F'(n) exist, and if F(n) 
- n (n -  1)F'(n) > 0, the iterates F(k)(S) approach 1 for k ~  o% [sj < n. 
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ii) In the limit case F ( n ) =  n ( n -  1)F'(n), F(k)(s) remains finite and F(k)(0) is 
lower bounded by 1 - ( 1 / n -  1), but we have not carried out a detailed analysis to 
see if F (k) approaches unity. 

iii) Otherwise, F(k)(s) approaches zero for Isl < 1. 
The methods being essentially the same as in the case n = 2, we feel that we only 

have to give a few indications. First, one shows that if F(so)/S~/"- 1 < 1 for a given 
0 <So < 1, necessarily F(k)(s) goes to zero for k ~ .  Taking the limit So~ I one 
deduces that if F (k) does not approach zero, 

1 
F'(k)(1) _.< - -  (61) 

n - - l '  

which is the analogue of (6). Then, using the recursion relations 

a ( k +  1 ) :  ~ ,  f/(k)/l(k) ~(k)~_,~ [rv(k)'ln (62) 
~'r l - - r2  " "" I'~rn T Vq0kU~ 0 ] • --q 

r~,+r2+ ...  +rn =q+ 1 

One proves the analyticity o f F  (k) inside Isl < n and one obtains inside this domain a 
bound independent of k. Next, one introduces the analogue of (14): 

O(k)(s) = F(k)(s) -- (n -- 1)sF'(k)(s) , (63) 

which satisfies the recursion relation 

D (k + 1)(s) _ n(F(k)(s)),- 1 D(k)(s) _ n --S (F(k)(0))," (64) 
S S 

One proves that D (k) has to be positive for 1 < s < n and one deduces that i fF  (k) does 
not go to zero, then 

D(k)(n)>O, (65) 

F N 7 . -1  
and, then, if D(k)(n)#O, one proves that l~Nn F(g'(n)l has an upper bound 

L - ~  

independent of N. This leads to the desired result. In the limiting case, one cannot 
exactly carbon-copy the reasonings because more terms appear when one 
differentiates equations more than once. Our guess is that nothing changes, but we 
leave it as an exercise for the reader. 

VI. Concluding Remarks 

Returning to the case n = 2, we see that if we forget the origin of the problem and 
think of the equation as describing a dynamical system, we see that there is no 
room for a chaotic behaviour, irrespective of the choice of the initial F. In a naive 
way, one could say that the behaviour F(k)--+O for 0 < s < 1 is infinitely more likely 
than F ( k ) ~ l .  However, we should remember that in this initial problem a, 
represents the probability for the variable x to be in the interval 2-",  2 - " -  1 So if x 
has a bounded probability distribution near x = 0, the analyticity ofF(s) in Is] < 2 is 
automatic. What is not automatic is D(2)> 0. F(k)~O corresponds to a free system 
in the limit. F (k)-~ 1 is more difficult to interpret since ao corresponds to a large slice 
½< Ix[ < 1. This means that the interactions are either strongly ferromagnetic or 
strongly antiferromagnetic. 
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Appendix I 

Proof  of the inequality ( F - s U ) 2  < 2FA. From F(2)=  2U(2) we get 

a o = ~ (n-- 1)2"a,. 
. = 2  

We have 

F-sF '= ~ a,(n- 1 ) [2" - s " ] ,  
n = 2  

F = ~ a,[s" + (n-  1)2"3, 

A= ~2a,(n-1)[2"-(n+ l)s" + ns~2~l- 1 . 

To prove (Zui)2 < ~viZwi, for ui, v i, w i > 0, it is sufficient to prove u~ < viw i. If we 
call x = s/2 it is sufficient to prove 

P(x) = 2[1 - ( n +  1)x'+nx'+l][n - 1 +x" ]  - ( n -  1)(1 - x ' ) 2  =>0 

for 0 < x < 1, n_>_ 2. One has to study the roots of P(x), which, fortunately, has at 
most four positive roots, since the polynomial has only five terms different from 
zero. For  n >  6 one proves that 

x,_l]  < 0 ,  

and, with the boundary conditions, 

\ ~ J l x = l  > 0 ,  P'(1) = 0 , P(1) = 0, 

one succeeds to prove that F is positive. The cases n = 2, 3, 4, 5 are more delicate, 
but the positivity can still be established. 

Appendix II 

From 

we get, with 

and hence 

2F (N + *)(2) N (F(N)(2)) 2 + 1, (AII.1) 

F(m(2) = 1 + eN, (AII.2) 

1 2 (AII.3) eN+ 1 <eN -b~SN, 

1 (AII.4) F'N + 1 - -  ~N < 2 ~NSN + 1 " 
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Indeed, either eN + a < eN and the latter inequality is obvious, or e~r + 1 > eN and then 
eN+ leN > eg. From (AII.4) we get 

1 1 1 
<~ .  (AII.S) 

8N 8N + 1 

By merely adding (AII.5) for successive N's, we get 

1 1 P 
< (AII.6) 

eN-P ~N 2 ' 

and hence the inequality (41) follows. Now, we want to get a lower bound on 
M M 

[ I  F(k)(2), i.e., on Z log(1 + ek). We use 
k=N k=N 

X 
log(1 + x ) >  - - -  

X 
1 + -  

2 

and 
N N + I  

Z / ( k ) >  I f ( t ) d t  
k=O 0 

and get, from (AII.6) or (41): 

for x > 0, (AII.7) 

if i f ( x )  < O, (AII.8) 

~N(p + 1) 1 

1+ 
:,~ e 2dq 2 

ln(1 +ek)> j" ~21n . 
o ~3 N k=N-P+I 2 + q + l  l + ~ -  

8N 

(AII.9) 

Hence, using e N < 1 in the denominator of the argument of the logarithm, we get 

I~ F(k)(2)> e~(P+ 1) 2. (AII.10) 
k = N - P +  I 

N 

Combining this inequality with (34), which says that 1~ F(k)(2) grows at most like 
0 

N 2, we get (43), which we repeat here in a slightly weakened form 

(1; 
N n > N . - ~ >  ... > N a - _ l .  

The bracket is a monotonously increasing function of the N i  + 1 - N i  considered 
as independent variables (including N1 = N1 -0) .  Suppose now that v(x) numbers 

2 ep are larger than x. It is always possible to pick n of them, e21, eN2,2 ..., e~,, in such a 
way that 
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where Ix] = integral part of x. Hence 

(x ,Fv(x>12, . - , ,  i c> L-U3 

Hence 

and 

Vn=>l. 

n 

n 

n / 9  \2(n~ 1) 
v(x) <n~=i-f~x ) +n. (AII. 11) 

Appendix III 

There is no need to prove in detail the equation 

3F (N + 1)"(2) + 2F (N + 1)"(2) = F(m(2) [3F(m"(2) + 2F(N)'(2)], (AIII. 1) 

with, naturally, F(m(2)=2F(m'(2). It is straightforward algebra. This equation 
shows that if F"(2) and F ' (2 )  are finite, we get 

F{N)'(2) < CI-[N(2), (AIII.2) 

and, from (34) 

F(m"(2) < CN 2 . (AIII.3) 

A similar bound holds for F(m"(2) but the latter one can be greatly improved by 
using the following trick: from the Cauchy inequality we have 

1 
F(m"(s)<2_[s--~l , since IF(m'(s)l<l in ]sl<2,  

and hence 

1 
F{m"(2) < F{U)"(s) + ( 2 -  s)F(m"(2) < ~ + C(2 - s) I-In- 1 (2). 

Optimizing with respect to s, we get 

F{m"(2) < C ~ 2 )  < C'N. (AIII.4) 

On the other hand, we have, in the case F(2)=  2F'(2) 

F~'(2) (F(2) - 1) > ¼(F(O)) 2 . (AIII.5) 
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This inequality can be proved by substituting the expansions 
00 

F'(2) = Z n ( n -  1)2"-2a,, 
2 

cO 

F(O) = ~2 (n-- 1)2"a,, 
2 

oo 

F(2)-- 1 = ~2 (n-- 1)2"a,, 
1 

and using the Schwarz inequality. 
So from (AIII.4), (AIII.5), and FN(0)> 16/25, we get 

I~N+ I(2) > i +  C 
HN(2) l//1-[N(2) ' 

and since I-[N~oo for N ~  

] ~  >1-~ C 1 
V [I~(2) 2 [/-~N(-2) ( l - e ) '  

arbitrarily small for N big enough, and hence 

Therefore, 

(AIII.6) 

(AIII.7) 

N 
C1N z < 1-[ F(k)(2) < C2N 2. (AIII.8) 

k=0 

At this point it is tempting to assume that FIn(2) behaves like N 2 and to assume 
that 8N-----eN(2) has a smooth behaviour in N: 

2 2 C @( ) =  ~ + N~- + . . . .  (nlII.9) 

Substituting into the recursion equation for F(m(2) [Eq. (39)], we get 

Substituting this in turn into inequality (52) we get, for s < 2 

s - 1  8 
@(s) < 2-~- s × N ~ - '  

and, in fact, since (eN(s)) z =  0(1/N4), we find 

s--1 8 
en(s) "~ 2 -- s N 2" (AIII. 11) 

It is clear that this asymptotic behaviour holds for fixed s < 2. However, we can also 
investigate the neighbourhood of s = 2 for N large. We remark that eN(s) and eN(2) 
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will be of the same order  of magni tude  for s > 2 - 2 because F'(m(2) < 1. Therefore,  
N we use a scaling variable, 

z = (2 -- s)N, (AIII. 12) 

and assume 

¢(z) ~(z) 
eN(s) = - ~ -  + ~ + . . . ,  (AIII.13) 

and substitute into the recursion equation,  using (AIII.10). We get a Riccati 
equat ion  for ~b: 

2z~b'(z) = (z + 2)~b(z) + ~b2(z) - 8. (AIII.14) 

This equat ion [2] has a unique regular solution at z = 0: 

8 
~b(z) - 4 + z '  (AIII.15) 

This solut ion has all the right properties:  ~b(0)= 2, hence F(m(2)= 1 + (2/N) 
+ O(1/N2), ¢(0) = -½, 

(1) 
F¢m'(2) = ~b'(0) d--N = 2 + 0 , 

"N),, N 
F '  (2 )=  ~- + 0 ( 1 ) .  

We can find an interpolat ing formula for (AIII.11) and (AIII.15) 

8 s - 1  
@(s) - N N(2 - s) + 4" (a l I I .  16) 

Appendix IV 

The cases F"(2)  = ~ ,  F"(2) = ~ .  Here  FIN(2) does not behave like N z. Consider  
first F " ( s ) ~  for s ~ 2 .  We have the representat ion (46) 

with 

Using 

F - s F ' -  2 - s  ~ (F(N)(0)) 2 (AIV.1) 
- - - S -  N o / 2 \  N + 1 ,  

HN (s) < HN (2) [ 
(AIV.2) 

25/] < (F(N)(0))2 ~ l ,  
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it is not difficult to get 

and if F" ~ C / ( 2 -  s) ~ 

F - s F ' _  >C, ~ i (AIV.3) 
2 - s  ~=2 ~ .=oHp(2) '  

F - s F "  < N 1 
2--s ,=2-~ C2p~=O l ~ P ( 2 )  ' (AIV.4) 

F - sF',-~ C(2 - s) 1 ~, 

and, using the above inequalities, one gets 

CIN I -~ < I-IN (2) < C2N' -~. (AIV.5) 

I fF"(2)  is fimte, F (s) o% the situation is more complicated. We shall only give a 
very succinct account. 

From the recursion relation 

3F "(~ + 1)(s) + sF ''(N + ')(s) - 2F(m(s) [3F"(m(s) + SF"(N)(s)] 
S 

_ 6F,,(m(F(m_ sF'(m), 
S 

we get, by summation 

3F" + sF" = 6 
S N = 0  

(AIV.6) 

F'(m( s) [ F (m - s F'(m] 

I_IN(s) (~)N+ 1 , (AIV.7) 

as well as the inequality 

(7 3F"(N)+sF"(m<Y[N-I (S)  s [ 3 F ' + s F " ] .  (AIV.8) 

If we assume F " ( s ) ~ C / ( 2 - s )  ~, we can use (AIV.8) together with F'(m(s) 
< 1 /2- -s  to get a bound on 

2 

F'(m(2) = f ' (m(s )  + ~ f"(m(s ' )ds  ". 
s 

After optimization, one gets 

F"¢0(2) < CVI~N-1(2)N=1-[NTI~- (2+ C 1 ~ ! 2 ) '  ] 
(AIV.9) 

F"(m(2) < gN + C(0 , ~ ,  =1 ) ,  

where e can be chosen arbitrarily small. 
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Insert ing in the r ight -hand side of  (AIV.7), up  to a certain N,  using F - - s F ' <  1, 
and  adjusting s, one can manage  to get 

N k 
N ~ <  £ . (AIV.IO) 

k = 0 I lk  (2) 

The  converse is obta ined by using (AIV.9) together  with 

F"{m(2) (F~m(2) - 1) > ¼(F{m(0)) z . 

This leads to the inequality 

I l~+1(2 )  1 > - -  C 
1-IN(Z) N ' -  11-IN (2) + N = / 2 ( I ' - I N ( 2 ) ) I / 2 ,  

which can be shown to imply 

I~N (2) > C N 2  - =, 

which, in turn, can be reinjected into (AIV.10) to get 

I-IN (2) < C ' N  2 - =. (AIV. 12) 
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In memoriam 

This work, to which Jurko Glaser contributed more than his share, will be his last one. Jurko 
died on 22 January 1984. Although he knew he had an incurable illness, he continued to 
collaborate very actively with us, showing great courage and unfailing enthusiasm. We shall 
always remember him as a remarkable physicist, a man of great culture, and a wonderful friend. 
P.C, J.-P.E., A.M. 

(AIV. I I )  
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