The Gurarij spaces are unique

By

WOLFGANG LUSKY

This paper is concerned with a problem mentioned in [2] and [4]. We show that those Banach spaces, which are distinguished by the extension property given below, are all isometrically isomorphic. For this purpose we investigate isometric embeddings from l_{∞}^{n} into l_{∞}^{n+m} ; $n, m \in \mathbb{N}$; where l_{∞}^{n} denotes the Banach space of all n-tupels with the sup-norm. All Banach spaces in this article are over the reals.

Definition. A separable Banach space X is called Gurarij space if for an arbitrary *positive* ε *, arbitrary finite dimensional Banach spaces* $F \supset E$ *and an arbitrary isometric isomorphism (into)* $T : E \to X$ there is a linear extension $\tilde{T} : F \to X$ of T with

 $(1-\varepsilon) \|x\| \leq \|\tilde{T}(x)\| \leq (1+\varepsilon) \|x\|$ for all $x \in F$.

The dual space X^* of a Gurarij space X is an abstract L space (c.f. [3] and also [2]). Hence the following holds:

I1 E, F c X, E $\cong l^n_{\infty}$ *, F a jinite dimensional subspace, and* $\varepsilon > 0$ *, then there is* $\tilde{E} \supset E$, $\tilde{E} \simeq l_{\infty}^{n+m}$ *such that* $\inf \{ ||x-y|| \mid y \in \tilde{E} \} \leq \varepsilon ||x||$ *for all* $x \in F$ ([2] Theorem 3.1.).

Thus, since X is separable, X can be represented in the following way: Let $E \subset X$ with $E \simeq l_{\infty}^m$. Then there are $E_n \subset X$, $E_n \subset E_{n+1}$, E_n isometrically isomorphic to l_{∞}^n , $n \in \mathbb{N}$, such that $X = \cup E_n$ and $E_m = E$ ([2] Theorem 3.2.). Consider the unit vectors $n \in \mathbb{N}$ $(0, ..., 0, 1, 0, ..., 0)$ of E_n , denote them by $e_{i,n}$; $i = 1, ..., n$; where negative signs and permutations are admitted and call $\{e_{i, n} | i = 1, ..., n\}$ an *admissible basis* of E_n .

n It is an elementary fact that there are real numbers a_1, n, \ldots, a_n, n with $\geq |a_{i,n}| \leq 1$ and an admissible basis ${e_{i,n+1} \mid i = 1,..., n + 1}$ of E_{n+1} with $i=1$

$$
(*) \qquad e_{i,n} = e_{i,n+1} + a_{i,n} e_{n+1,n+1}; \quad i = 1, ..., n \quad ([6]).
$$

Conversely such numbers define by (*) an isometry $T: E_n \to E_{n+1}$. Hence X can be described by an infinite triangular matrix $A = (a_{i,n})$ whose n'th column consists of the numbers $a_{i, n}$; $i=1, ..., n$. Gurarij was the first one to prove the existence of a separable Banach space satisfying the condition of the above definition ([1]). In [2] Lazar and Lindenstrauss gave another proof depending on the techniques previously described:

40*

Consider an infinite triangular matrix A whose columns are dense in the unit ball of l_1 with respect to the l_1 -norm. Then the elements $a_{i,n}$; $i = 1, ..., n$; $n \in \mathbb{N}$; of A define *by (*) a Gurarij space.*

It is easy to show that this Gurarij space has the following property (c.f. [2] concluding remarks) :

The set $\exp(X^*)$ of all extreme points of the unit ball $B(X^*)$ of X^* is w*-dense in $B(X^*)$.

Lemma 1. Let X be a Gurarij space and let $E \subset X$ with $E \simeq l_{\infty}^n$. Furthermore let $\{e_1, n, \ldots, e_n, n\}$ be an admissible basis of E and $r_1, \ldots, r_n \in \mathbb{R}$ with $\sum |r_i| < 1$. Then *there is an element* $\Phi \in \text{ex } B(X^*)$ *with* $\Phi(e_{i,n}) = r_i$; $i = 1, ..., n$. $i = 1$

Proof. Consider a representation $X = \overline{\bigcup_{m \in \mathbb{N}}} \overline{E_m}$, $E_m \subset E_{m+1}$, $E_m \simeq l^m_\infty$, $m \in \mathbb{N}$, $E_n = E$. We define by induction a sequence of subspaces $F_m \subset X$ with $X = \sqrt{F_m}$ and a linear

functional Φ on X. For this purpose, take any $E_m \subset X$, $E_m \cong \mathbb{Z}_{\infty}^m$ and an admissible basis $\{e_1, m, \ldots, e_{m, m}\}$ of E_m . Suppose that Φ is already defined on E_m with

$$
\sum_{i=1}^{m} |\varPhi(e_{i,m})| \leq \frac{1}{1+\delta_m}
$$

for some δ_m with $0 < \delta_m < 1/m$.

Embed E_m into a Banach space $\tilde{F}_{m+1} \simeq l^{m+1}$ by

(1)
$$
e_{i, m} = f_{i, m+1} + \Phi(e_{i, m}) (1 + \delta_m) f_{m+1, m+1}; \quad i = 1, ..., m;
$$

where $\{f_{i,m+1}|i=1,\ldots,m+1\}$ is an admissible basis of \tilde{F}_{m+1} . Extend Φ to an element Φ_{m+1} of \tilde{F}_{m+1}^* by defining

(2)
$$
\Phi_{m+1}(f_{m+1,m+1}) = \frac{1}{1+\delta_m}; \quad \Phi_{m+1}(f_{i,m+1}) = 0.
$$

Choose $\varepsilon > 0$ with $\varepsilon < \frac{\delta_m}{1+\delta_m}$ and find a linear extension $T_{m+1}: \tilde{F}_{m+1} \to X$ of $id: E_m \to X$ with the property:

(3)
$$
(1 - \varepsilon) \|y\| \leq \|T_{m+1}(y)\| \leq (1 + \varepsilon) \|y\| \text{ for all } y \in \tilde{F}_{m+1}.
$$

One may choose T_{m+1} such that there is in addition $k(m) \in \mathbb{N}$, $k(m) \geq m+1$ with T_{m+1} $\tilde{F}_{m+1} \subset E_{k(m)}$. This is possible since $\bigcup E_k$ is dense in X. Put $F_{m+1} = T_{m+1} \tilde{F}_{m+1}$ and extend $\Phi_{m+1} \circ T_{m+1}^{-1} \in F_{m+1}^*$ to a linear functional Φ on $E_{k(m)}$ with

$$
\|\Phi\| \leqq \frac{1}{1-\varepsilon} \|\Phi_{m+1}\| \leqq \frac{1}{(1-\varepsilon) (1+\delta_m)} < 1 \text{ by (2) and (3)}.
$$

Starting with $m = n$, $\Phi(e_{i,n}) = r_i$, δ_n such that $\sum_{i=1}^{n} |r_i| < \frac{1}{1+r_i}$, we then obtain

by induction an increasing chain of subspaces $F_m \subset X$ where m runs through a subsequence of N, such that $X = \sqrt{F_m}$ holds. By this construction an element $\Phi \in \text{ex } B(X^*)$ is defined: Indeed, let:

(4)
$$
\Phi = 1/2 x^* + 1/2 y^*, \text{ where } x^*, y^* \in B(X^*).
$$

Let $\rho > 0$ and $x \in \bigcup F_m$ with $||x|| \leq 1$, say $x = \sum_{i=1}^m \lambda_i T_m(f_{i,m})$ for some $m \in \mathbb{N}$ with $\delta_{m-1} < \varrho$, hence for some $0 < \varepsilon < \frac{\delta_{m-1}}{1 + \delta_{m-1}}$:

$$
|\lambda_i| \leqq \frac{1}{1-\varepsilon} < \frac{1}{1-\delta_{m-1}} < \frac{1}{1-\varrho}
$$

by (3) . Then by (2) :

$$
\Phi(T_m(f_{i,m})) = (\Phi_m \circ T_m^{-1}) (T_m(f_{i,m})) = \Phi_m(f_{i,m}) = \begin{cases} 0 & i = m \\ \frac{1}{1 + \delta_{m-1}} & i = m \end{cases}.
$$

Since

$$
1 - \varrho \leq \left\| \sum_{i=1}^{m} \theta_i \, T_m(f_{i,m}) \right\| \leq 1 + \varrho
$$

for all $\theta_i \in \{1, -1, 0\}; i=1,...,m-1; \theta_m = \pm 1$, and

$$
1-\varrho\leqslant \frac{1}{1+\varrho}\leqslant \varPhi\left(T_m(f_{m,m})\right)\leqslant 1,
$$

it follows by (4) that

$$
1-3\varrho\leq x^*(T_m(f_{m,m}))\leq 1+\varrho \quad \text{and} \quad \sum_{i=1}^{m-1}|x^*(T_m(f_{i,m}))|\leq 4\varrho.
$$

Thus

$$
|\varPhi(x)-x^*(x)|\leqq \frac{7\varrho}{1-\varrho}.
$$

Since ρ and x were arbitrarily chosen, $\Phi = x^*$ holds, hence $\Phi \in exB(X^*)$ and our assertion follows. \blacksquare

Lemma 2. *Under the assumptions of Lemma 1 there is an admissible basis*

$$
\{e_{i, n+1} \in X \mid i = 1, ..., n+1\}
$$

of l_{∞}^{n+1} with $e_{i,n}=e_{i,n+1}+r_{i}e_{n+1,n+1}; i=1,...,n$.

Proof. Consider $\Phi_1, \ldots, \Phi_n \in \text{ex } B(X^*)$ with

$$
\Phi_i(e_{j,n}) = \begin{cases} 0 & i = j \\ 1 & i = j \end{cases}, i, j = 1, ..., n.
$$

Such elements exist by the theorems of Hahn-Banach and Krein-Milman. Lemma 1 yields a $\Phi \in \text{ex} B(X^*)$ with $\Phi(e_{i,n})=r_i$; $i = 1, ..., n$. Let H be the absolutely convex hull of the Φ_i , $1 \leq i \leq n$ and Φ . Define $g : B(X^*) \to [0, \infty)$ by

$$
g(x^*) = \min \left\{ \frac{1 - \sum_{i=1}^n \theta_i x^*(e_{i, n})}{1 - \sum_{i=1}^n \theta_i r_i} \middle| \theta_i = \pm 1, i = 1, ..., n \right\}.
$$

Then g is w*-continuous, concave and $f(x^*) \leq g(x^*)$ for all $x^* \in H$, where $f: H \to \mathbb{R}$ is the affine function with $f(+\Phi_i) = 0$; $i = 1, ..., n$; $f(+\Phi) = \pm 1$.

Thus, by [2] Theorem 2.1, there is an element $e \in X$ with

$$
x^*(e) \leq g(x^*) \quad \text{for all } x^* \in B(X)^*,
$$

$$
x^*(e) = f(x^*) \quad \text{for all } x^* \in H.
$$

An elementary computation shows that $e_{i, n} - r_i e$; $i = 1, ..., n$; and e are the elements of an admissible basis satisfying the desired condition. \blacksquare

Corollary. Let X be a Gurarij space, $E \simeq l_{\infty}^n$, $F \simeq l_{\infty}^{n+1}$ such that $E \subset F$ and $\operatorname{ex} B(E) \cap F$ \bigcap ex $B(F) = \emptyset$. Then any linear isometric operator $T : E \rightarrow X$ can be extended to an *isometric isomorphism (into)* $\tilde{T}: F \to X$.

Proof. We may E identify with a subspace of X and regard T as the identity id: $E \to X$. Consider admissible bases $\{e_{i, n} | i \leq n\}$ and $\{f_{i, n+1} | i \leq n+1\}$ of E and F respectively with:

$$
e_{i, n} = f_{i, n+1} + r_i f_{n+1, n+1}; \quad i = 1, ..., n.
$$

From our assumption on E and F we infer $\sum_{i=1}^{n} |r_i| < 1$. Hence there is an admissible basis $\{e_{i, n+1} \in X \mid i \leq n+1\}$ of l^{n+1}_{∞} with $e_{i, n} = e_{i, n+1} + r_i e_{n+1, n+1}, i \leq n$, by Lemma 2. Then we obtain our extension by setting $\tilde{T}(f_{n+1, n+1}) = e_{n+1, n+1}$.

Remark. The above Corollary is not true in general without the assumption $ex B(E) \cap ex B(F) = \emptyset$. The following example may illustrate this : Consider a smooth point $e \in X$, $\|e\| = 1$ (i.e. there is only one $\Phi \in \text{ex} B(X^*)$ with $\Phi(e) = \|e\| = 1$, such an e exists by [7] Proposition 8.4). Embed the linear span E of e into $F \simeq l^2_{\infty}$ by setting $e = e_{1,2} + e_{2,2}$ where $\{e_{1,2}, e_{2,2}\}$ is an admissible basis of F. Then the identity from E into X cannot be extended to an isometric isomorphism T from F into X . Indeed, otherwise two different elements $\Phi_{1/2} \in \text{ex } B(X^*)$ would exist with:

$$
\varPhi_i(T(e_{j,2})) = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}, \quad i, j = 1, 2.
$$

Hence $\Phi_1(e) = \Phi_2(e) = 1$, a contradiction.

Theorem 3. *Let X and Y be Gurarij spaces. Then there is an isometric isomorphism /rom X onto Y.*

Vol. XXVII, 1976 The Gurarij spaces 631

Proof. We construct a sequence of admissible bases of l_{∞}^{n} , $\{e_{i,n}^{(j)} \in X \mid i=1, ..., n\}$ and ${f_{i,n}^{(j)} \in Y \mid i = 1, ..., n}, j \geq n, n \in \mathbb{N}, \text{ with the following properties :}$

There are $a_{i, n} \in \mathbb{R}$, $i \leq n, n \in \mathbb{N}$ such that

$$
(5)
$$

(6) $e_{i,n}^{(1)} = e_{i,n+1}^{(1)} + a_{i,n} e_{n+1,n+1}^{(1)}$ and

 $\sum_{i=1}^{\infty} |a_{i,n}| < 1$,

(6')
$$
f_{i,n}^{(j)} = f_{i,n+1}^{(j)} + a_{i,n} f_{n+1,n+1}^{(j)} \quad i = 1, ..., n; j \geq n+1; n \in \mathbb{N},
$$

 $e_{i,n}^{(j)} - e_{i,n}^{(j+1)} \leq 1/2^j$,

(7')
$$
\|f_{i,n}^{(j)} - f_{i,n}^{(j+1)}\| \leq 1/2^j, \quad i = 1,...,n; \ j \geq n; \ n \in \mathbb{N}.
$$

Let $\{x_n \in X \mid n \in \mathbb{N}\}\$ and $\{y_n \in Y \mid n \in \mathbb{N}\}\$ be dense in X and Y respectively. Take some $e_{1,1}^{(1)} \in X$, $||e_{1,1}^{(1)}|| = 1$, and $f_{1,1}^{(1)} \in Y$, $||f_{1,1}^{(1)}|| = 1$.

Assume, that $\{e_{i,k}^{(j)} | i \leq k\}$, $\{f_{i,k}^{(j)} | i \leq k\}$ are already defined for $k = 1, ..., m$; $k \leq j \leq m$ such that $(5)-(7')$ hold.

Let E_m and F_m be the linear span of $\{e_{i,m}^{(m)}|i=1,\ldots,m\}$ and $\{f_{i,m}^{(m)}|i=1,\ldots,m\}$ respectively.

(I): Consider $E_{m+p} \simeq l^{m+p}_{\infty}$ with $E_m \subset E_{m+p} \subset X$ and

(8)
$$
\inf \{ ||x_k - x|| | x \in E_{m+p} \} \leq 1/m ||x_k||
$$
 for all $k = 1, ..., m$.

Hence there are $E_{m+1} \subset \cdots \subset E_{m+p}$ with $E_{m+k} \simeq l_m^{m+k}; k=1, ..., p; E_m \subset E_{m+1}$ ([6] Lemma 3.2).

STEP($m + 1$): Take an admissible basis ${e^{(m+1)} \atop k, m+1} | i \leq m + 1$ of E_{m+1} with

(9)
$$
e_{i,m}^{(m)} = e_{i,m+1}^{(m+1)} + r_i e_{m+1,m+1}^{(m+1)}, \quad i = 1, ..., m;
$$

where
$$
\sum_{i=1}^{m} |r_i| \leq 1.
$$

If $r_i = 0$ for all $i \leq m$ then put

$$
e_{i,m}^{(m+1)}=e_{i,m}^{(m)}, \quad i=1,\ldots,m.
$$

Otherwise, assume w.l.g. $r_m \neq 0$ and set

(10)
$$
e_{m,m}^{(m+1)} = e_{m,m}^{(m)} - r_m/2^{2m} e_{m+1,m+1}^{(m+1)}, \quad e_{i,m}^{(m+1)} = e_{i,m}^{(m)}, \quad 1 \leq i \leq m-1.
$$

Of course, by (9), $\{e_{i,m}^{(m+1)} | i \leq m\}$ is an admissible basis and

$$
\|e_{i,m}^{(m+1)}-e_{i,m}^{(m)}\| \leq 1/2^{2m} \leq 1/2^m, \quad 1 \leq i \leq m.
$$

Furthermore, (6) holds for $n = m$, $j = m + 1$ and

$$
a_{i, m} = r_i;
$$
 $1 \leq i \leq m-1;$ $a_{m, m} = r_m(1 - 1/2^{2m})$

by (9), (10). Put

$$
e_{i,m-1}^{(m+1)} = e_{i,m}^{(m+1)} + a_{i,m-1} e_{m,m}^{(m+1)}, \quad 1 \leq i \leq m-1,
$$

$$
\vdots
$$

$$
e_{1,1}^{(m+1)} = e_{1,2}^{(m+1)} + a_{1,1} e_{2,2}^{(m+1)}.
$$

Now continue with $\text{STEP}(m+2)$ -- that means, proceed in analogy to $\text{STEP}(m+1)$ with E_{m+2} instead of E_{m+1} -, then with $\text{STEP}(m+3),...$, $\text{STEP}(m+p)$.

 $\text{This procedure yields } a_{i, \ m+i} \in \mathbb{R} \, ; \, 0 \leq j \leq p-1 \, ; \text{ with } \sum^{m+j} \lvert a_{i, \ m+i} \rvert < 1 \quad \text{and} \quad \text{ad} \cdot \text{and}$ missible bases $i=1$

$$
\{e_{i,r}^{(j)}\,|\,i=1,\ldots,r\};\quad r=1,\ldots,m+p;\quad m+1\leq j\leq m+p
$$

such that (6) and (7) hold.

(II): Now consider F_m and set

$$
f_{i,k}^{(j)} = f_{i,k}^{(m)}; \quad 1 \leq i \leq k; \quad 1 \leq k \leq m; \quad m+1 \leq j \leq m+p.
$$

Extend the linear injection, which maps $e_{i,m}^{(m+p)}$ onto $f_{i,m}^{(m+p)}$, $1 \leq i \leq m$, to an isometric isomorphism T from E_{m+p} into Y. This is possible by (5), the above Corollary and induction. Set

$$
f_{i, m+k}^{(j)} = T(e_{i, m+k}^{(m+p)}), \quad 1 \leq k \leq p, \quad m+k \leq j \leq m+p.
$$

Hence (6') and (7') are established for all

$$
f_{i,k}^{(j)}, \quad 1 \leq i \leq k; \quad 1 \leq k \leq m+p; \quad k \leq j \leq m+p.
$$

Then proceed in analogy to (I):

Consider
$$
TE_{m+p} \subset F_{m+p+1} \subset \cdots \subset F_{m+p+q} \subset Y
$$
, $F_{m+p+j} \simeq l_{\infty}^{m+p+j}$; $1 \leq j \leq q$; with

(11)
$$
\inf \{ \|y_k - y\| \, \big| \, y \in F_{m+p+q} \} \leq \frac{1}{m+p} \|y_k\|, \quad k = 1, ..., m+p.
$$

The same method as in STEP $(m+1), \ldots$, STEP $(m+p)$ is applicable for F_{m+p+1}, \ldots , F_{m+p+q} instead of E_{m+1}, \ldots, E_{m+p} , which yields

$$
f_{i,k}^{\prime\prime},\quad \ 1\leqq i\leqq k;\;1\leqq k\leqq m+p+q;\;m+p+1\leqq j\leqq m+p+q
$$

such that (6') and (7') holds.

Finally put

$$
e_{i,k}^{(j)} = e_{i,k}^{(m+p)}, \quad 1 \le i \le k; \ 1 \le k \le m+p; \ m+p+1 \le j \le m+p+q
$$

and extend the linear operator which maps $f_{i,m+p}^{(m+p+q)}$ onto $e_{i,m+p}^{(m+p+q)}$, $1 \le i \le m+p$, to an isometric isomorphism S from F_{m+p+q} into X. Define

$$
\begin{array}{ll}e_{i,m+p+k}^{(j)}=S(f_{i,m+p+k}^{(m+p+q)}),&1\leq i\leq m+p+k; &1\leq k\leq q;\\&m+p+k\leq j\leq m+p+q\,.\end{array}
$$

Replace E_m by $E_{m+p+q} = SF_{m+p+q}$ and begin with (I). Put

$$
e_{i, n} = \lim_{j \to \infty} e_{i, n}^{(j)}, \quad f_{i, n} = \lim_{j \to \infty} f_{i, n}^{(j)}; \quad 1 \leq i \leq n; \ n \in \mathbb{N}.
$$

It follows by (6), (6'), (7'), (7') that $\{e_{i,n} | i \leq n\}$, $\{f_{i,n} | i \leq n\}$ are admissible bases and that

$$
e_{i, n} = e_{i, n+1} + a_{i, n} e_{n+1, n+1},
$$

\n
$$
f_{i, n} = f_{i, n+1} + a_{i, n} f_{n+1, n+1}; \quad 1 \leq i \leq n; \quad n \in \mathbb{N}.
$$

(7), (7'), (8), (11) imply that $\{e_{i,n} | i \leq n; n \in \mathbb{N}\}\$ and $\{f_{i,n} | i \leq n; n \in \mathbb{N}\}\$ span a dense subspace of X and Y resp. Thus the linear operator $R: X \to Y$ with $R(e_{i,n}) = f_{i,n}$, $i = 1, \ldots, n, n \in \mathbb{N}$, is bijective and isometric. \blacksquare

Corollary. *Let X be a separable Banach space such that X* is an abstract L-space.* Let G be the Gurarij space. Then there is an isometry $T: X \rightarrow G$ and a contractive projection $P: G \to TX$ such that the following hold:

(i) $P^*(B((TX)^*)) = \text{conv}(F \cup -F)$ where F is a face of $B(G^*)$ and P^* is the *adjoint mapping.*

(ii) $(id - P)$ (G) *is isometrically isomorphic to G.*

Proof. In [5] and [8] it was shown that there is a Gurarij space G , an isometry $T: X \rightarrow G$ and a contractive projection $P: G \rightarrow TX$ such that (i) holds and (id -- P) (G) is a Gurarii space too. Our Corollary follows then from the preceeding Theorem. \blacksquare

Acknowledgement. I would like to express my appreciation to Prof. B. Fuchssteiner for his helpful advice.

Addendum, 10. 1. 1976.

The purpose of this addendum is to relate the concept of the Gurarij space to Mazur's problem of rotations in separable Banachspaces.

Mazur's Problem. *Let X be a separable Banachspace with the following property: For any* $x, y \in X$, $||x|| = ||y|| = 1$, *there is an isometric automorphism* $T: X \rightarrow X$ with $T(x) = y$. *Is* X then a Hilbert space?

We show:

Theorem. Let G be the Gurarij space and let $x, y \in G$ be smooth points of the unit *sphere of G. Then there is an isometric automorphism* $T: G \rightarrow G$ *with* $T(x) = y$ *.*

Remarks. (i) The above Theorem includes a weaker property of G shown by Gurarij ([1]).

(ii) Notice, that the set of smooth points is dense in the unit sphere of G , but G is not reflexive. Hence G cannot be a Hilbert space.

(iii) The assumption, *x, y* being smooth points, cannot be omitted since the unit sphere of a separable Banachspace X with Mazur's property clearly consists only of smooth points whereas the unit sphere of G has no smooth points.

Proof of the Theorem. The proof of the above Theorem is a modification of the proof of Theorem 3. We retain the numeration of this proof. Again, we construct a sequence of admissible bases of l_{∞}^{n} ,

 $\{e_{i,n}^{(j)} \in G \mid i = 1, ..., n\}$ and $\{f_{i,n}^{(j)} \in G \mid i = 1, ..., n\}, \quad j \geq n, n \in \mathbb{N},$ such that (5), (6), (6'), (7), (7') hold.

Now, we require in addition:

$$
e_{1,1}^{(j)} = x \,, \quad f_{1,1}^{(j)} = y \quad \text{ for all } j \,.
$$

We proceed with (I) and STEP $(m+1)$: We assume that $E_m \simeq F_m \simeq l^m_\infty$ already have been defined and find suitable $E_{m+1} \subset \cdots \subset E_{m+p}$ with $E_{m+k} \cong \mathbb{Z}_{\infty}^{m+k}, k=1,\ldots,p$, and $E_m \subset E_{m+1}$. Firstly, we consider E_{m+1} (STEP($m+1$)): We take an admissible basis ${e^{(m+1)}_{i,m+1} | i \leq m+1}$ of E_{m+1} such that (9) holds.

Now, in the case that $\sum |r_i| = 1$, our perturbation differs slightly from that above: $Induction$ yields $i=1$

$$
\begin{aligned} x = e_{1,1}^{(m)} & = e_{1,m}^{(m)} + \sum\limits_{j=2}^m k_j \, e_{j,m}^{(m)} \\ & = e_{1,m+1}^{(m+1)} + \sum\limits_{j=2}^m k_j \, e_{j,m+1}^{(m+1)} + \bigg(r_1 + \sum\limits_{j=2}^m k_j \, r_j \bigg) e_{m+1,m+1}^{(m+1)} \end{aligned}
$$

where $|k_j| < 1$, $2 \leq j \leq m$, since x is a smooth point. Similarly, $|r_1| < 1$, hence there is an $r_k + 0$, $2 \leq k \leq m$. Assume w.l.g. that $r_m + 0$ and replace (10) by

$$
e_{k,m}^{(m+1)} = e_{k,m}^{(m)} - a_{k,m} e_{m+1,m+1}^{(m+1)} \quad \text{where}
$$

\n
$$
a_{1,m} = r_1 + 2^{-2m} k_m r_m, \quad a_{i,m} = r_i, \quad 2 \leq i \leq m-1,
$$

\n
$$
a_{m,m} = (1 - 2^{-2m}) r_m.
$$

Hence $\sum_{i=1}^{\infty} |a_{i,m}| < 1$.

Our definition of the $a_{i, m}$ yields

$$
e_{1,1}^{(m+1)} = e_{1,m}^{(m+1)} + \sum_{j=2}^{m} k_j e_{j,m}^{(m+1)}
$$

= $e_{1,m+1}^{(m+1)} + \sum_{j=2}^{m} k_j e_{j,m+1}^{(m+1)} +$
+ $\left(r_1 + 2^{-2m} k_m r_m + \sum_{j=2}^{m} k_j r_j - 2^{-2m} k_m r_m\right) e_{m+1,m+1}^{(m+1)} = e_{1,1}^{(m)} = x,$

since the k_j depend only on $a_{i, k}$, $i \leq k \leq m - 1$.

Now, the rest of this proof is a mere adoption of the corresponding proof of Theorem 3, which we do not repeat here. So we obtain admissible bases $\{e_{i,n} \in G | i \leq n\}$, ${f_i, n \in G \mid i \leq n}$ such that in addition to the required properties

$$
e_{1,1} = \lim_{j \to \infty} e_{1,1}^{(j)} = x \,, \quad f_{1,1} = \lim_{j \to \infty} f_{1,1}^{(j)} = y
$$

hold. The linear operator $T: G \to G$ defined by

$$
T(e_{i,n})=f_{i,n},\quad i=1,\ldots,n,\;n\in\mathbb{N},
$$

proves our Theorem. \blacksquare

Relerenees

- [1] V. I. GURARIJ, Space of universal disposition, isotopic spaces and the Mazur problem on rotations of Banach spaces. Sibirsk. Mat. Ž. 7, 1002 -1013 (1966).
- [2] A. J. LAZAR and J. LINDENSTRAUSS, Banach spaces whose duals are L_1 spaces and their representing matrices. Acta Math. 126, $165-193$ (1971).
- [3] J. LINDENSTRAUSS, Extension of compact operators. Mem. Amer. Math. Soc. 48 (1964).
- [4] J. LINDENSTRAUSS and L. TZAFRIRI, Classical Banach spaces. Lect. Notes Math. 338, Berlin-Heidelberg-New York 1973.
- [5] W. LusxY, On separable Lindenstrauss spaces. Gesamthoehsehule Paderborn, Faehbereich Math., 1975.
- [6] E. MICHAEL and A. PELCZYNSKI, Separable Banach spaces which admit l_n^{∞} approximation. Israel J. Math. 4, 189-198 (1966).
- [7] R. R. PHELPS, Lectures on Choquet's Theorem. Princeton 1966.
- [8] P. WOJTASZCZYK, Some remarks on the Gurarij space. Studia Math. 41, 207-210 (1972).

Eingegangen am 24. 4. 1975

Ansehrift des Autors:

Wolfgang Lusky Fachbereich Mathematik der Gesamthochsehule 479 Paderborn