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Abstract. We study the theory ofc = 1 torus and Z2-orbifold models on general 
Riemann surfaces. The operator content and occurrence of multi-critical 
points in this class of theories is discussed. The partition functions and 
correlation functions of vertex operators and twist fields are calculated using 
the theory of double covered Riemann surfaces. It is shown that orbifold 
partition functions are sensitive to the Torelli group. We give an algebraic 
construction of the operator formulation of these nonchiral theories on higher 
genus surfaces. Modular transformations are naturally incorporated as 
canonical transformations in the Hilbert space. 

I. Introduction 

Both in the study of two-dimensional critical phenomena and in string theory one 
of the major goals is to find a complete description of all conformal field theories 
[1 ]. In the first context these describe all universality classes of critical models [2], 
while in string theory they are known to correspond to all possible compactifica- 
tions [3-1. The conformal field theories with central charge c less than I have been 
successfully classified. The combined constraint of unitarity and one loop modular 
invariance selects a discrete set of models [4]. The extension of the analysis to c 
values larger than I appears to be a much harder problem and will surely reveal a 
quite different structure. For c > 1 there is the possibility of a continuum of 
inequivalent models, since marginal operators can be present in the spectrum that 
generate continuous deformations of the conformal field theory. 

In [5] an elegant formulation of two-dimensional conformal field theory has 
been given in terms of the behaviour of the partition function on the space of all 
inequivalent compact Riemann surfaces. The basic characteristics of the theory are 
translated into consistency conditions on the partition function, defined as the 
hermitian norm on a flat holomorphic vector bundle over this moduli space. The 
correlation functions are obtained through factorization of the partition function 
at the boundary of moduli space. Crossing symmetry of the amplitudes is then a 
consequence of modular invariance. 
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Related to this approach is the proposal to set up an operator formalism for 
conformat field theories on general Riemann surfaces [6] using techniques 
developed in the theory of soliton equations, notably the KP-hierarchy [7]. In this 
program one associates to any punctured Riemann surface a state in the Hilbert 
space, which encodes all information of the correlation functions on the surface. It 
provides a natural and powerful method for the analysis of the behaviour of 
partition functions on degenerate surfaces. On the other hand modular invariance 
seems much more difficult to formulate in this approach. 

In this paper we will study with the above techniques the structure of the class 
of gaussian e =  1 eonformal field theories which consists of the torus and 
Z2-orbifold models. The torus model describes a free massless scalar field q~(z, if) 
compactified on the circle N./2~R2g with action 

s [4 ]  = f d2z ae  (1.1) 

The line of models parametrized by the compactification radius R describe 0(2) 
invariant statistical systems at criticality [8]. The 2gz-orbifold models [9-11] are 
obtained from the corresponding torus model by identifying 4) with - 4~. This line 
is known to describe the critical line of the Ashkin-Teller model [12-14], i.e. two 
Ising models coupled by a four spin interaction. Both lines are invariant under an 
electric-magnetic duality transformation relating the models at R and 2/R. The 

torus model at R=½]/2 and the orbifold model at R = ] / ~  can be seen to 
correspond to one and the same theory. This equivalence is a well-known 
phenomenon in the context of string compactifications [9], and will turn out to be 
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Fig. 1. The moduti space of gaussian c = 1 conformal field theories. The crosses indicate multi- 
critical points 
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a useful tool in the analysis of the orbifold model. In terms of critical models this 
point corresponds to the Kosterlitz-Thouless transition point of the XY-model 
[-12]. Thus the space of conformal field theories we consider has the structure as 
displayed in Fig. 1. We will show it to be complete in the sense that there exists no 
marginal deformation of any of these theories that brings it out of this class of 
models. 

At many special values of the parameters, in fact one can argue at any rational 
value of R 2, the model will have an enhanced symmetry. This will show both in the 
higher multiplicities in the spectrum and the finite dimensionality of the 
corresponding vector bundle over moduli space. We mention here the R = ~/'2 
torus model, which has a SU(2) x SU(2) symmetry, and the R = 1 orbifold model, 
which is equivalent to two decoupled Ising models and consequently carries a 
representation of two c = ½ Virasoro algebras [,-14, 15]. 

The main objective of this paper is to gain insight in the structure of these 
gaussian theories on higher genus surfaces, and especially we will investigate how 
this structure is influenced by the local properties of the theory, i.e. its operator 
content, symmetries, etc. To analyse the Zz-orbifold models we will use the theory 
of double coverings of Riemann surfaces and of theta-functions defined on Prym 

varieties [16,17]. The equivalence of the R = V ~ orbifold and R = ½~/2 torus model 
provides the necessary equations to solve for the quantum contributions to the 
partition and correlation functions, and gives a physical interpretation of various 
nontrivial mathematical identities known as Schottky relations [,16]. We will show 
that the absence of momentum conservation in the orbifold theory has important 
consequences for the behaviour of the partition function under the modular group 
and near the boundary of moduli space. In particular in contrast with toroidal 
models the Torelli group acts nontrivially on the chiral constituents of the 
partition function. 

The gaussian c = 1 theories naturally admit an operator formulation on general 
Riemann surfaces. The Hilbert states representing these nonchirat theories on the 
surface can be constructed both within the path-integral formalism and in an 
abstract algebraic way, an approach which up to now was only well understood for 
chiral fermionic theories. The discussion of modular invariance in this context will 
give rise to an identification of modular transformations with a special set of 
canonical transformations in the Hilbert space. 

The paper is organized as follows. In Sect. 2, after a short review of the basic 
properties of marginal operators and multi-critical points, we give the analysis 
leading to Fig. 1 and discuss the operator content of the various models and their 
mutual relations. In Sect. 3 we will analyse the partition functions on arbitrary 
Riemann surfaces and their behaviour under the modular group. The correlation 
functions of vertex operators and the factorization properties of the torus and 
orbifold model on higher genus surfaces are described in Sect. 4. In Sect. 5, we 
present the twist field correlation functions. The operator formalism on Riemann 
surfaces for both the torus and orbifold models is constructed in Sect. 6. We further 
give an extension of this formalism to include twist operators and discuss the 
relation with the tau-functions of the KP and the BKP-hierarchy. Finally, Sect. 7 
contains some concluding remarks. 
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2. Operator Content and Multi-Critical Points in c = 1 Gaussian Models 

In this section we discuss the structure of the operator content of the lines of torus 
and ;EE-orbifold models. We will analyse the multi-critical points on these lines and 
their mutual relations. To this end we first briefly review some basic properties of 
marginal operators and multi-critical points. 

2a. Marginal Operators and Multi-Critical Points 

A two-dimensional conformal field theory (CFT) [1] is fully specified by the value 
of the central charge c, the weights (h~, ffa) and multiplicities of the primary fields ~p~ 
and their operator product relations. The two-point functions can be normalized 
as  

<~p~(z, z-)~pp(w, ~)> : 6,p(z - w)-  2h~(e- ~)-  2~,. (2.1) 

The operator product coefficients c,pr defined by 

W~(z, z3~pp(w, ~ ) ~  Z c~pr(z-W)h~-h'-h~(~ - ~)~-~-ha~r(W, ~') (2.2) 

are then symmetric in all indices. 
In general one can consider deformations of a conformal field theory, 

preserving the infinite conformal symmetry and the value of the central charge. In 
first order these perturbations are generated by the marginal operators ~p~, i.e. the 
primary fields with conformal weight (1, 1) [12]. In a path-integral formulation of 
the theory these perturbations can be represented by an additional term in the 
action 

Equivalently, the correlation function of any product of operators (9 is modified 
according to 

6gi ((9) = I d2z(~Pi( z, e) (9). (2.4) 

In string theory this corresponds to a condensate of on-shell string modes 
described by the background field 6g~. We will call those weight (1,1) operators 
~pi(z, ~) for which Eq. (2.4) can be integrated to finite perturbation integrable 
marginal operators. Locally, their coupling constants g~ can serve as a coordinate 
system for the space of conformal field theories in the neighbourhood of the 
unperturbed theory. In the string context this "theory-space" can be interpreted as 
the moduli space of classical solutions to the string equations of motion. One can 
visualize the motion in CFT-space generated by these marginal operators as a flow 
of the weights and operator product coefficients of the primary fields. The change 
in the conformal weights can be derived from the variation of the two-point 
functions. Combining (2.4) and (2.2) one finds [12] 

6 
6g~ (~p,(z, ~)~p~(w, ~)) = 2ci,~,(z- w)-Zh~(~ - ¢¢)-2T,~ log Iz-w[ z . (2.5) 
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where we absorbed an infinite term in a wavefunction renormafization of the h%. 
Comparing with (2.1) we see that the weights (h,, K,) are shifted by 

6h~ = 6i(~ = -5"  %~6g,. (2.6) 
i 

Note that in case there are several operators with the same weight one has to 
diagonalize the matrix ci~ to find the variation of the weights. In a similar way one 
can derive variational formulas for the operator product coefficients c~¢~. 

Following [12] we can now formulate the conditions a marginal operator tpi has 
to satisfy in order to be integrable to first order in g~. First of all, it is evident that its 
weight must not be changed by the perturbation generated by ~0~ itself. So from 
(2.6) we see that at least cm must vanish. An additional constraint arises if there are 
more weight (1, 1) primary operators ~pj. An easy application of degenerate 
perturbation theory shows that if cui 4 0 for some of these ~pj then in the perturbed 
CFT ~p, becomes a linear combination of primary fields with different weights and 
its marginality is destroyed by the perturbation. So, in summary, we have the 
following necessary conditions for an integrable marginal operator ~p~: 

i) h i = h i  = 1, 
ii) c , i=0  , for any primary field ~vj of weight (1, 1). Note that, because of 

condition ii), linear combinations ofintegrable marginal operators need in general 
not be integrable. 

In a local neighbourhood of a generic conformal field theory the space of CFT's 
connected to this theory has the structure of a smooth manifold, which can be 
parametrized by the couplings g~ of the marginal operators. It can happen, 
however, that at some value of the g~ the number of integrable marginal operators 
in the theory, through accidental degeneracy, jumps to a larger value. The points 
where this happens are called multi-critical. In general, the extra integrable 
marginal operators signal the presence of new independent directions in which the 
theory can be deformed. In this case the multi-critical point ties at the intersection 
locus of two or more submanifolds of CFT space. However, it often happens that in 
such a point the conformal field theory has an enhanced symmetry. This symmetry 
group can reduce by its action on the marginal operators the number of 
inequivalent deformations of the theory. The coupling constants g~ then give a 
redundant coordinatization of the CFT space, which can have an orbifold type of 
singularity at the multi-critical point. 

2b. Structure of Torus and Z2-Orbo~'old Models 

We will now apply the concepts of integrable marginal deformations and multi- 
critical points to the free scalar field compactified on a circle with radius R. We first 
give a short description of the spectrum of primary operators in this model [12, 14, 
18]. 

The easiest way to determine this operator content is to compute the one loop 
partition function, 

Z = tr[q L°- 1124~Lo- 1/243, (2.7) 

and to decompose it into characters of irreducible representations of the e = 1 
Virasoro algebra. The partition function of a compactified scalar field is well- 
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known to be 

Z(R)=ltl(q)]-2 y, ql/2v2F~l/2p2 ; q(q)=q,/24 ]-I [ l - q " ] ,  (2.8) 
(p,p)erR n> 1 

where the momentum summation runs over the lattice 

FR={(P")=(R+½mR'n-½mR~;R i n ,  m~TZ,} . (2.9) 

FR is an even self-dual lattice if we adopt  a lorentzian metric. This property of FR 
ensures that (2.8) is modular invariant [19]. We can decompose Z into characters 
gh)~, using [20] 

,(q)-  ql/2.2 = p ¢ z/VS, (2.10) 
' 

The resulting spectrum can be described in terms of the quantum field ~b(z, 2) = q~(z) 
+ q3(~) as follows. We have normalized vertex operators 

v.+..(z. = V 5  c o s  Lo 0(z) + 
(2.11) 

V,~,(z, 2) = ~/2 sin [p~o(z) + iO~(~)], 

where (p,/5) is related to (n, m) by (2.9). The combinations V, + ___ iV,~, create states 
with momentum + ~ +/~) and winding number _+ (p-/~). The allowed values of 
the momenta p,/~ follow from the requirements that 11,,, has to be invariant under a 
shift 2zcR of ~b(z, 23 and that ~b(z, z-) must be single-valued (modulo 2rcR) in the 
presence of a vertex operator. The operators V,o and Vo,, are usually called electric 
and magnetic respectively. 

If p2 equals ½k 2 for some integer /¢ extra primary fields of the form 
f(~q~,02~0, ...)Vnr n are present where the polynomials f are given by Schur 
polynomials [20]. Similar considerations can be made with respect to /5. In 
particular we always have the (1, 0) and (0,1) conformal fields Oq~ and ~-~which can 
be integrated to give the conserved left and right momenta. These chiral currents 
generate a U(1) × U(1) symmetry; the full symmetry group of the torus model is 
extended to 0(2) × 0(2) by the discrete Z2 symmetries (~0, q3)~( -  ~o, - ~) and (q~, ~) 
~ (~ ,  q~). The vertex operators V,,, are singled out as the primary fields of the U(t) 
current algebra. 

For all R we have the primary (1, 1) tensor Oq~3~0, which can easily be seen to 
satisfy the conditions of an integrable marginal operator. In fact an additional 
term in the action of the form 

~ ~ d2z O~ff~ (2.12) 6S= 

can be absorbed by a redefinition of ~b changing its compactification radius as 6R 2 
= 6gR2. Indeed according to (2.6) the resulting shift in the weights h,,, of the vertex 
operators 11,,, is [12] 

L h  m= 1'12 
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where we used the operator product relation 

_ _  m2R 2 
[a(o&,o] .  IV, , , ]  ,-, ~-2 ~- - I-V.,,]. (2.14) 

The motion induced on the momentum lattice F g corresponds to a SO(l,  1) boost  
E193. 

The different radii R do not all correspond to different theories. As can be seen 
e.g. from the partition function, there exists an electric-magnetic duality [18] 
relating 

R ~ 2 /R ,  

V,,, ~.- Vm,, (2.15) 

8q~ Oq) <=~ - 0q~ &p.  

All correlation functions and operator product relations are invariant under this 

duality transformation. From now on we will choose R < ]/2. 
Let us now look for the multi-critical points on the line of torus models. For  R 

or 1/R equal to a multiple of V~ extra marginal operators appear in the form of 
vertex operators. However, because of the operator product relation (2.14) we find 
that the condition ii) of integrability can only be met if there are both electric and 
magnetic weight (1,1) vertex operators present. This condition leaves as only 
possible multi-critical points R = ½1//2 and R = V22. 

The model at R = ]//2, which in some sense can be regarded as the limit c ~ 1 of 
the discrete unitary series, is the fixed point of the duality transformation. It has an 
enhanced symmetry group SU(2)xSU(2) .  The associated conserved chiral 
currents 

Jl  = cos~/2q~, 

j2 = sin~/2q~ (2.16) 

i½ a , 
generate the k = 1 A] 1) Kac-Moody algebra 

1 1 
- ( 2 . 1 7 )  Ji(z)JJ(w) ~ ~3iJ (z -- w) 2 ieiJ~jk(W) Z-- W" 

As is well-known, this R =~f2 torus model can be identified with the k = 1 SU(2) 
Wess-Zumino-Witten model. For each weight there is an enlarged set of primary 
fields which can be arranged into one SU(2)x SU(2) multiplet of dimension 
(2s + 1) (2g+ 1), where (h, h)= (s 2, g2). Modular  invariance of the one loop partition 
function implies that (s,s-)eZ z or (;g+½)2 [21]. In total there are 9 marginal 
operators ji(z)~(~). Imposing the conditions of integrability and using the OPE  
(2.17) one finds that all linear combinations of the form 
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generate a continuous deformation of the SU(2) model. But, since all these 
operators are related by the symmetry group to j a~= lOq0~ ,  every marginal 
perturbation is equivalent to a modification of the compactification radius R. Note 
that the electric-magnetic duality can als__o be understood as a consequence of the 
SU(2) x SU(2) symmetry, since _+Oq~&p are equivalent marginal operators at 

R=V~.  
Our second candidate multi-critical point is at R = ½]/2, i.e. the continuum limit 

of the XY-model at the Kosterlitz-Thouless point [12]. Let us analyse this model 
using its relationship with the SU(2) model. Quite generally one implements the 
transformation R ~½R on the spectrum by projecting onto even momentum states 
and adding extra sectors with half-integer winding numbers. These sectors have 
ground states created out of the vacuum by the magnetic operators V@ In the case 
R=~/2  we can be more explicit about this. Let us introduce the projection 
operators 

1-1 k =~(1 + OkOk), (2.1%) 

Ok = exp [½ ~ dZjk(z)]. (2.19b) 

The operators Ok, which satisfy 

OiO ~ = 6ij + leijkt Ok, (2.20) 

generate the following involutive transformations of q)(z)(modl//2r0: 

01q?01 ~----  q) , 02@02 ~ - -  @ ~ - ½ ~ 7 ~ ,  03 ~003 = ~0 -1- ½V27"C. (2.21) 

The appropriate projection operator in our context is Ha, since it evidently reduces 
the compactification scale to R = ½~/2. The half-integer winding number sectors are 
created by the weight , 1 @g,~) vertex operators V~cos¼V2(q0-qs) and 
~/2 sin¼t/2(q~- 4)- The projection H 3 leaves a total of 5 independent marginal 
operators, out of which the following integrable at least to first order - 
combinations can be formed 

ja~;(k~=,e~jk)(kZ=1~kE 0 . (2.22' 

All the elements of the second set are related by the U(1)x U(1) symmetry 
generated by the two chiral currentsja andS. These marginal deformations, which 
in a moment we will show to be Jntegrable to all orders, are inequivalent to the one 
induced byja~. This implies that at this particular point R = ½l/2 a new continuous 
deformation of the theory exists that changes the nature of the compactification. 
The meaning of this new direction becomes clear when we use the obvious 
invariance under permutation of the three projections Hi. In particular we can 
repeat the above construction with H 1 as the projection operator. As seen from the 
action of 01 on ~0, this construction results in an identification of (p with - q~. So in 
fact we have constructed a Z2-orbifold compactification with R = ~/2. This radius 
is varied by the action of the marginal operator Ja~- Thus the new marginal 
direction is seen to correspond to the line of ZE-orbifold models. The equivalence 
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of torus and orbifold models has been noted previously [9], see also [22]. It will 
proof to be very useful in the subsequent analysis. 

We now briefly review some basic facts of the conformal field theory of 7Z z- 
orbifold models [9-11]. The spectrum of operators of a scalar field on a 
Zz-orbifold consists of a twisted and untwisted part. The untwisted states are 
found by projecting the spectrum of the corresponding torus theory onto even 
states under q ~  - q~ using the projection operator H =12-(1 + O). Here O generates 
the 2g 2 symmetry 

O %(z, ff)O = - c~(z, e) . (2.23) 

Of the vertex operators only the V, + are left. In addition we have a twisted sector, 
corresponding to antiperiodic field configurations. The two-fold degenerate 
twisted ground state is created out of the vacuum by the twist fields al and 0-2 with 
conformal weights (~6, ~)- These 0-i and their partners z~ defined by 

1 
8q~ Qq~(z, ~)a~w, ~) ~ {z_ w( zi(w' #) (2.24) 

are the only relevant operators in the twisted sectors. The weights of the -ci are 
( 9  ~) .  In fact, the weights of all twisted operators are independent over the radius 
R. One way to see this is to note that the OPE  of the marginal operator O~o0q~ with 
any twisted field ,p only contains operators with weights which differ from that of,p 
by a half-integer, since both 8~o and Op acquire a branch cut starting at ,p. This 
forces the three point function (Sq)O~o(zl),p(z2),p(z3)> to be zero, and consequently 
Oq~0-~ does not change the weight of tp. The scale independence of the twisted 
sector implies that the one loop partition function of the orbifold models is of the 
form 

Zorbifola(R) = ½Z(R) + Ztwis , . (2.25) 

Here Z(R) is the torus partition function (2.8). The twisted part Ztwist can be 
determined at the multi-critical point R =~/2, using the equivalence with the 

R =½V~ torus model: 

Zt,,,~st= Z(½I/2)-½Z(]/~), (2.26) 

in accordance with the results of [14]. 
There also exists an electric-magnetic duality for the line of 7l~-orbifold models. 

As for the untwisted part of the spectrum this transformation acts similarly as in 
the torus model. The action of duality on the twisted part can most easily be 

understood at the selfdual point R = l f 2 .  Here the twist fields o-, and 0- 2 are 
equivalent to the half-integer magnetic operators Vo~ and V~ of the SU(2) model. 
In this correspondence duality translates into shifting ~ ~ (~ + ½1/2re, ~o ~ q~, since 
that changes the sign of the marginal o p e r a t o r j ~  = coslf2q~ cosl//2qS. The effect of 
this shift is easily calculated and the resulting duality transformation is seen to act 
on the twist fields as 

0-1 ~ --/~-~_ (0-1 + 0 - 2 ) '  0-2 '¢:> (0-1--0-2)" (2.27) 
V 2 
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The two twist fields al and 0-z and their respective sectors correspond to the 
two conjugacy classes (or equivalently fixed points) of the ~E2-twist: 
4~ ~ - ~b (mod4rcR) respectively ~b-~ - q~ + 2rcR (mod 4rcR). From this we conclude 
that the product of two operators in the same twisted sector produces operators 
which create an even winding number, whereas the product of two operators in 
different twist sectors creates odd winding numbers. In combination with electric- 
magnetic duality this implies the following form of the operator product relations: 

[0-1]" [0 -1 ]~  ~ c2n'2m[v~n, 2m.] -JV Z c2n+ l'2m[V~n+ l,2m], 
n~m n,m 

[0-2]" [0-2]~ Z C2"'2"[!~+,2,,] - Z C2"+1"2"[Vz++ 1,2,,], (2.28) 
n,?~ n,m 

[0- , ] "  Z - 

The numerical values of the coefficients C "m are given by [23, 11]: 

(c°° )  2 = 1 ,  
(2.29) 

(C"") 2 =2.16-(h""+~"'); (n,m)~(o,o). 

The symmetry group of the Z2-orbifold model is the discrete group D4 (the 
symmetry group of the square) generated by 

(0-1, 0-2, a l ,  (--)m 

( rl, 0-2, 0-1, (--)" 
(2.30) 

The invariance under these transformations follows from (2.28). Of course, the 
duality transformations (2.15), (2.27) should be read modulo ID 4. 

The twisted sector does not contain any weight (1, 1) conformal fields, so we can 
copy the arguments applied to the torus model to show that besides R = ~ the 
only other multi-critical orbifold model is R=½I/~. This model is known to 
correspond to the continuum limit of the 4-state Potts model [8, 18]. It contains 
the following relevant and marginal operators: 3 × (~6,~6), 1 x (¼, ¼), 3 × (~, 9) ,  and 
3 × (1, 1). The frequent occurrence of the multiplicity 3 can be understood from the 
fact that this model can be obtained from the SU(2)-model by twisting with all 
three 0i of Eq. (2.19). The integrable marginal operators which are not projected 
out are j f ( i  = 1, 2, 3). It is clear from this construction that the SU(2) invariance is 
broken to a discrete symmetry which permutes the three operators. In this picture 
we have, besides the projected SU(2) spectrum, three extra sectors generated by the 
operators 0-1, 0"2, and o-3 =l/~cos¼]/~(~0-q3 ) with OPE 

aa(z,~)0-2(w,~)~2-1/4lz-wl-1/saa(w,v~) (and cyclic). (2.31) 

These three twist operators correspond to the spins $1, S 2, and S 182 of the Ashkin- 
Teller model. The full symmetry is $4 (the permutation group of 4 elements) which 
acts on the 0-i according to 

(a l, 0-2, 0-3)~ (( - )~'0-il, ( - )qa,2, ( - )P + q0-i3). (2.32) 
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Indeed, S ,  is the symmetry group of the 4-state Potts model. Before the 
projections, each twisted sector is an irreducible representation of the (twisted) A] t) 
algebra. The fact that all three representations are isomorphic is known in the 
mathematical literature as triality of A~ 1) [24]. 

The orbifold theory with R = 1 corresponds to the decoupling point of the 
Ashkin-Teller model, where the model reduces to two independent Ising systems 
[14,15]. The continuum limit of the Ising model is described in terms of a free 
massless Majorana fermion 0p(z), 0,5(5)) and its spinfield i(z ,  5). The analytic part of 
the stress-energy tensor 

T(z) = - ~p(z)&p(z) (2.33) 

satisfies the Virasoro algebra with c = ½. A mutually local set of operators is given 
by [1], 

{[13, [a], [e]}, (2.34) 

where e is the energy operator e(z, 5)= ~(5)~p(z). The OPE's  are 

[a ] .  [ i ]  ,-~ [ t ]  +½[el,  [~]. [e] ~ [ 1 ] .  (2.35) 

In the orbifold model we can indeed identify in the spectrum two sets of the above 
operators. The identifications are 

T(1)= - ~ 0 )  2 +½cos2cp, 

7,(1) = _~(~--@z +½cos2q3, 

0-( I ) = G 1 , 

e m = - 2 sin~o s in~,  

T~Z)= _~(~q~)2 - ½  cos2q~, 

0-(2) ~ i 2 , 

~2) = 2 cos q~ cos q5, 
(2.36) 

i = VScosg 0- 

~C1). ~(2)= _~ (p  flip, 

i f ( l ) ,  g ( 2 )  = T 1 , 

~ ( 1 ) .  i ( 2 )  = g. 2 . 

One easily checks with (2.28) that the two sets of operators have the correct 
operator product relations. All other primary fields of the orbifold model are 
descendants of these operators with respect to the two Virasoro algebras generated 

Table 1. Some properties of the multi-critical models in the c = 1 spectrum. The notation is 
explained in (2.18) and (2.19) 

Model Projection Currents Integrable Marginal Symmetry 
Operators 

Torus R = V ~ - Jl,J2,J3 ( E adk )( • c~d~) (k = 1, 2, 3) S U(2) x S U(2) 
R=½1/~ 113 J3 j ~ ,  ( ~ e d k ) ( ~ : ~ )  (k=l,2) 0(2) x 0(2) 

Orbffold R=~/2 H1 jl jjj-~, ( 2 a d , ) ( 2 ~ )  (k=2,3) 0(2) x 0(2) 
R=½V~ /r/l, if/2,//3 -- JlJl,J2J2,J:~3 ~4 
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by T(X)(z) and T(2)(z). The identifications (2.36) can be used to calculate Ising 
correlation functions within the c = 1 orbifold model (see also [39]). 

As a summary, we have collected in Table 1 the relevant quantities of the three 
multi-critical points that occur in the class of c = 1 gaussian models. 

3. Partition Functions for Arbitrary Genus 

In this section we will analyse the partition functions for the c = 1 models on 
arbitrary Riemann surfaces. In principle, the partition function encodes through 
its dependence on the moduli parameters all the information of the conformal field 
theory. Whereas at one loop it gives us the weights and multiplicities of the 
primary fields, all operator product coefficients and correlation functions can be 
obtained through factorization of higher genus partition functions at the 
boundary of moduli space [5]. 

We consider a genus g surface S with canonical homology cycles Ai, B~ 
(i = 1,..., g) normalized with respect to the intersection product 

~ ( A , , A i ) =  ~ ( B , , B ) = 0 ,  ~(A , ,B j )=  - #(Bj ,  A i )=f f j .  (3.1) 

The computation of the partition function of a compactified scalar field on such a 
Riemann surface has become quite standard [25, 26]. It is given by the product of a 
factor Z~", representing the quantum fluctuations of q~, times a classical part Z c~ 
given by the partition sum over the classical solutions in the different winding 
sectors. These solutions are given essentially by the integrals of the holomorphic 
and anti-holomorphie one forms o9~ = co~(z)dz, eS~ = ~i(z-)dff (i = 1 . . . .  , g) on Z. Their 
classical action can be expressed in terms of the period matrix z defined by 

~(Dj=(~i j  , ~(Dj="~ij. (3.2) 
Ai Bi 

Referring for the details of the calculation to [25], we immediately give the result 
for Z ct, 

Za(R) = E gexp[irc(P'z 'P-i0"~'/~)].  (3.3) 
(p,~)erR 

The Pi,/~ (i = 1,..., g) have a natural interpretation as momenta running through 
the g loops. For  the quantum part Z~" = Idet ~o1-1 an expression has been given in 
[26]. It is the modulus of a holomorphic function on moduli space, which 
transforms as a modular form of weight - 1 .  The total partition function 
Z = Z~"ZC~(R) is modular invariant. 

For rational values of R 2 the momentum lattice can be built up from a finite 
number of square sublattices. As a consequence the classical part of the partition 
function can be expressed as a finite sum of 0-functions defined as 

0 o (zlz) = Z g exp [iTz(n + ~). z .  (n + c 0 + 2rci(n + c 0 • (z + fl)]. 
LPJ n~Z 

(3.4) 
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If½R 2 =p/q  the result reads 

Zc'(g) = ~ 0 [  ½a+½fl+T1 . . . . . .  
,,p,~ t_ 0 Jtulzpqz)~+~ 0 .] (Ol2pqz) (3.5a) 

where the summation is over a m Zp , fl ~ ;Eq ,7 m (½712)g. Note the manifest 

duality p~--~q. The latter of these two equations can be seen as a generalized spin 
model construction [27]. One starts with a chiral spin~pq "fermion" ~p(z) 
= V1/2p ' t/2q(z), extends it to an intermediate nonlocal system by adding p x q new 
sectors and finally projects on even fermion parity. (We should mention that for 
rational values of R, not R 2, it is also possible to give a construction solely in terms 
of spin ½ fermions [29].) Cases of particular relevance to us are 

Za(1) = 2-g 2 (0IT) (3.6a) 
ct, fl f l  

[ , ] ,  
zc'(½V~)--2-0 2 0 c~+~ (012~) . (3.6c) 

a, fl, 7 f l  

Here the summations are over half-integer characteristics only. 
Now let us consider the partition function of a Z2-orbifold model. It is 

represented by a functional integral over fields q~ which can be double-valued on Z. 
These field configurations fall into 2 2o distinct topological sectors corresponding 
to the elements of Ha(N, Z2). The partition function is written as the sum over all 
sectors 

Zorbifo,a~(R) = 2-°  E Z~,~(R), (3.7) 
8,6 

= (ei, 6i = 0,½) labels the contribution of the field configura- where 6 61 6 o 

tions having a branch cut along the cycle Zi2(6iA~ + e~B~). The untwisted part is 
simply Zo o = Ztor~ and is by itself modular invariant. The other Z~ 6 with 

[~] :t: E0] are a l lpermutedbythemodulargroup ,  w h i c h m e a n s t h a t o n l y t h e s u m 0 '  

over all twisted sectors is modular invariant. 
We will calculate the contribution of the twisted sectors using the theory of 

unramified coverings of Riemann surfaces [16] following the general strategy as 
advocated in [10, 11]. (For a related calculation, see [28].) Let us concentrate on 

one of the terms Z j .  Since I ; l  °e E ; ]  we can always choose a new homology 

I;] [°°1 basis such that the branch cut is along Ag, i.e. = 0 . . .  ½ " This branch cut 

defines an unramified double cover ~: £ ~ S  (as depicted in Fig. 2 for the g = 2 case). 
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A 

Fig. 2. The double cover ~ of a genus 2 Riemann surface ~ with canonical homology bases. The 
branched cycle is A 2 

The surface Z is obtained by taking two copies of the surface S, cutting each open 
along the cycle Ag and then pasting the two copies together as in Fig. 2. This 
defines a natural complex structure on ~. By the Riemann-Hurwitz theorem it is a 
compact Riemann surface of genus 2 g - 1  and admits an involutive conformal 
automorphism ~: Z ~ S  satisfying ~c o ~=n, which is simply sheet interchange. 

Once we have chosen a basis for Hi(N, Z) and specified the twist characteristic 

E;I do.b e cover uniqu01y detormined A n t  for t.e 

homology basis on S is one that projects onto the homology basis on S, i.e. 
Hl(S,~) isgenera tedby.~l ,  Ba, ,~  1,/~ 1, t he i r imagesunde r t and~ ,2B . ,  "'" O- g -  ~q 
with n(31) = A 1 etc. as depicted in Fig. 2. Note that t(~o) = ~0 and t(2B0) = 2B o. We 
should mention here that such an homology basis is not uniquely fixed by these 
conditions. Different choices are related by modular transformations on Z which 
projected onto S leave the homology basis fixed. 

The Prym differentials vi=vi(~)d~ (i= 1 ..... g - 1 )  are the holomorphic 1-forms 
on ~, which are odd under the defining involution vi(z(~))=-vi(~). They are 
normalized with respect to the A-cycles 

~vj=-- ~ vj=Ilij (i,j=l,...,g-1). 
(3.8) 

Hij is the period matrix of the Prym differentials and is a symmetric ( g -  1) x ( g -  1) 
matrix with positive definite imaginary part [-16]. The Prym differentials have no 
periods around Ao and 2B 0. In terms of the underlying surface 2; the Prym 
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differentials are double-valued holomorphic 1-forms which are anti-periodic 
around Bg. The complex torus IE g- 1/(Zg- 1 +/-/TZg- 1) is called the Prym variety 
and is isomorphic to the set of degree zero divisor classes on Z odd under z. The 
isomorphism is given by the Abel map 

(2 
Q - l ( Q )  ~ ½ ~ vi. (3.9) 

Divisors on the surface S have (up to a minus sign) a unique image in the Prym 
variety. 

The contribution of the twisted sector to the orbifold partition function is 
now given by the functional integral over fields q~ defined on Z which are odd under 
z : q~(t(~)) = - q~(~) (mod2rcR). Furthermore, because of the double area of S, the 
action of q~ has to be rescaled with a factor of ½ compared to (1.1). 

The computation of the soliton contribution to the partition function is 
analogous to the untwisted case. We split the scalar field q~ into a classical part and 
a quantum part q~ = q ~ +  q~q". The classical part is now given by the integral of the 
Prym differentials, 

~ l  = _ ½ircR(m - H n ) .  (Im H) -  1. ~ v + c.c.. (3.10) 
~(~) 

Its action can be expressed in terms of the period m a t r i x / /  

SEq~ eli = ~ R Z ( n  --  I Im)  . (Im 1I) - 1 .  (n - -  H m ) .  (3.11 ) 

After a Poisson resummation of the soliton sum the expression for the contribution 
Z~.o to the partition function reads 

Z~, ~(R) = Z~,"o • exp [irc(p. H .  p -- ft .  H . /3 ) ] .  (3.12) 
(p,p)~rRg- 

For rational R 2 this expression can of course also be rewritten in in terms of 
0-functions defined on the Prym variety using (3.5) with v replaced by H. 

The quantum contribution to the partition function seems much more difficult 
to determine. However, since it is independent of the compactification radius, we 
can choose the multi-critical value R = ~/2, where we can equate the partition 

function of the orbifold to that of the R =½V2 torus model: 

Zo~b~fold(R = ~/2) = Zt .... (R = ½l/2). (3.13) 

Combining Eqs. (3.6b) and (3.6c) we find for the twisted part 

2-gSrZ~"~,o, O (012H,,0) = 2  -0 S Z~" 0 =e 7 (012z) . (3.14) 
e,a,r L u j 

Here on both sides the summation runs over (e, 6) 4:(0, 0). To interpret the separate 
terms in this equation, let us conceive an operator formalism in which the partition 
function is obtained by summing in each loop over all states in the Hilbert space. 
The characteristics e, 6, and y then indicate which sector of the spectrum 
contributes at the different loops. Both theories correspond to a twisted SU(2) 
model; so, in order to identify these sectors, let us first compare (3.14) with the 
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untwisted SU(2) partition function 

, I0] Zsv(2) = X Zg" 0 (0120 (3A5) 

Here 7~=0,½ can be seen to distinguish the integer respectively half-integer spin 
representations of SU(2) in the i th loop. Indeed for g = 1 the two terms are given by 
the k =  1 A] 1) characters Izot 2 and 12112 [22]. It is evident that 7 has the same 
function for the untwisted loops in Eq. (3.14). The interpretation of e and 5 is now 
also clear. On the right-hand side the sum over 5 corresponds to a projection on 
even momentum states, while e labels the integer respectively half-integer winding 
number sectors. On the left-hand side e and 5 have a comparable function. The 
untwisted and twisted sectors are indexed by e = 0, ½ whereas the summation over 6 
projects onto ~Ez-even states. This can be neatly demonstrated in the genus 1 case. 
Here we can explicitly evaluate the twisted contributions to the orbifold partition 
function using an oscillator representation: 

oo 
Z o ,  1/2 = t r o  [Oq L°- 1/241~ L°  - 1 / 2 4 ]  ~--- [qU24 I ]  [1 q- q"][- 2 

r l = l  
0 2 

= I~/(q)l- 2 0 [½1 (0122) , 
~X3 

Z __ t r  r,,~Lo - 1/24~,Lo - 1/24-1 1 / 2 , 0  - ~  1/2Lt '1  t, 1 A=2[q-1/481] [ 1 - - q n + l / 2 ] [  z 
n = l  

= 21~/(q)1-2 0120 , (3.16/ 
oo 

Z1/2,1/2 = trl/2 [Oq  L° - 1/24@o- 1/24] = 21q- 1/4s lq [1 + q" + 1/211 - 2 
n = l  

0 I~ ]  (012~) 2 = 21t/(q)l- z 

Here O is the twist operator (2.23) and the suffix 0, ½ attached to the trace denotes 
the restriction to the untwisted respectively twisted Hilbert space. So we see that 
for g =  1 the separate terms in (3.14) can indeed be equated. Generalizing this 
observation to higher genus surfaces we can now solve the twisted partition 
function Z ~  as 

Z~,  0 - -  C 

where c [~1 is defined as the ratio ofthe classical contributions. For  our canonical 

. . , 0  twist E;]--[°0 
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As we have just argued, c is independent of the characteristic 

Lo] r,, =L 0...0 j' 
a fact that is indeed known in the mathematical literature as one of the Schottky 

relations [16]. The other c [ ; 1  are related to (3.1 8) by a modular transformation. 

Finally, combining Eqs. (3.7), (3.12), and (3.17) we arrive at the following 
general result for the orbifold partition function on a genus g Riemann surface: 

Zorbifold(e ) = 2-- gZtorus(R)_-~ Ztwis,(R), 

c[; t 
x Z , exp [irc(p • H,, 0. p--io. H~,0-/3)]. (3.19) 

From this result one can now extract all correlation functions of twist fields, 
vertex operators, etc. by factorization at the compactification divisor and 
projecting onto the relevant sector, indexed by the twist structure (e, 6) and loop 
momenta (p,/5). This will be worked out in detail in the subsequent sections. 

Let us make some comments on the case R = 1. As mentioned in Sect. 2 the 
model can be described as two decoupled Ising systems, i.e. two Majorana 
fermions. This should be compared with the corresponding R = 1 torus model 
which is well-known to be equivalent to the spin model of a complex Dirac fermion 
~p = e ~°. On a higher genus Riemann surface the construction of a spin model 
implies a summation over all spin structures. In the orbifold model one introduces 
extra twisted sectors. In terms of the Dirac fermion the twist 05 ~ - 05 introduces a 
difference between the spin structures of its real and imaginary component.  So the 
R = 1 orbifold model is given by the spin model of two uncorrelated Majorana 
fermions [15]. Indeed using 0-function doubling formulas we can rewrite the 
Schottky relation (3.18) as 

~] (Ol"c)" 
(3.20) 

Hence the twisted contribution to the R = 1 orbifold partition function can be re- 
expressed as 

2 
q u  - 2 0  

~., LaJ 

y. .9 ~ 
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Adding the untwisted part we obtain 

Zorblfold(R = l )  = (Zising)  2 , 

with 

(3.22) 

ZIsing=(Z~U)l/z2-g~o:,# 0I~I(0I'C) ' (3.23) 

confirming the identification with the Ashkin-Teller model at the decoupling 
point. The relation (3.20) was used in [28] to arrive at the result (3.19). 

We close this section with a discussion of the action of the mapping class (or 
modular) group F 0 [30], i.e. the group of all disconnected diffeomorphisms of ~. 
The mapping class group is generated by Dehn twists around cycles. The action of 
such a twist Dc can be represented by cutting the Riemann surface along the cycle 
C and glueing it together after rotating one of the boundaries over 2re. The effect of 
this transformation on the elements 7 of the homology group is 

D c : 7 ~ 7  + ~(7, C)C. (3.24) 

Note that this transformation does not depend on the orientation of either C or 7. 
Dehn twists of the form (3.24) are called positive, the inverse twists D c 1 are called 
negative. The mapping class group leaves the intersection product invariant, hence 
it acts on the homology basis Ai, Bi by Sp(2g, Z)  transformations. Moreover, all 
elements of the symplectic group Sp(2g, 7Z) correspond to modular transforma- 
tions. The subgroup of Fg that leaves the homology fixed is known as the Torelli 
group and is generated by the Dehn twists around the homologically trivial cycles 
on Z. So, in summary, we have the following exact sequence: 

1 ---, Torelti ~ F o--* Sp(2g, ~')--* I .  (3.25) 

We have seen that for rational R z both the torus and the orbifold partition 
function can be written as a finite sum of products of a holomorphic times an anti- 
holomorphic function on moduli space. This total sum is invariant under the 
mapping class group, but the individual analytic parts are not. For the torus 
models these are - apart from an overall factor (det~-0)-1/2 _ all functions of the 
period matrix z, on which F o acts by the Sp(2g, Z) transformations 

"c ~(A~ + B)(Cz + O)- 1 (3.26) 

Hence all torus models are insensitive to the Torelli group. 
The chiral orbifold partition functions, on the other hand, are functions of the 

period m a t r i x / / o f  the Prym differentials and in general they do feel the Torelli 
group. To explain this let us consider a zero homology cycle C on Z and a twist 
structure with two branched cycles, one on each side of C (see Fig. 3). For this case 
the lifts C and z(C) to the double cover ~ are homologically nontrivial. The positive 
Dehn twist D c on L" lifts to the composite transformation De o D,(e) on ~, which has 
a nontrivial action on the homology of the double cover. More specifically, it 
transforms the elements of HI(Z,Z) odd under the involution t, whereas the even 
elements are inert. Consequently the period matrix//will  not be invariant under 
the Dehn twist Dc. The Torelli group projects onto a subgroup of the symplectic 
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E 

Fig. 3. A genus 2 surface Z with branch cut along A 1 -I-A 2 and its double cover 2~. The lifts 
and ffC ~) of the zero-homology cycle C are homologicalty nontrivial 

group Sp(2g- 2, Z) that acts on /7  as in (3.26). For  example, in the case considered 
in Fig. 3 the transformation reads 17--+11+4. 

To give a physical interpretation 1-31] for this nontrivial behaviour of the 
twisted chiral partition functions under the Torelli group, we consider the R = 1 
orbifold model. Here the chiral components are given (in a convenient homology 
basis) by 

. . .0 el°0 
Let us analyse both these expressions near the boundary component of moduli 
space describing the degeneration of our dividing cycle C, and concentrate on the 
dependence on the pinching parameter t (i.e. the length of C). The Dehn twist Dc 
acts on t as 

Dc : t ~e2"it .  (3.28) 

If we choose the (even)spin structure [ ~ ]  on the left-hand side of(3.27) such that it 

splits into two odd spin structures for t~0 ,  then the same is true for one of the spin 
structures on the right-hand side. It is quite easy to see that for this situation the 
chiral partition function behaves to first order as t 1/2 and hence is not invariant 
under (3.28). The fermionic explanation is that the partition function of one of the 
chiral Majorana fermions factorizes on the l-point functions of two ~p fields 
absorbing the zero mode on each side. The power of t equals the conformal 
dimension of ~p. In the orbifold picture (3.27) is seen to factorize on the 1-point 
function of the corresponding chiral vertex operator cos ~0. The key observation 
here is that, as we will show explicitly in the next section, vertex operators indeed 
can have vacuum expectation values in orbifold models. This is a consequence of 
the fact that q~-charge is no longer conserved around twisted cycles. This 
argumentation makes it clear that also for other radii R the chiral orbifold 
partition functions are not invariant under the Torelli group, as long as the 
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corresponding chiral theories contain vertex operators with noninteger conformal 
weights. Of course, the total partition function (3.19) is invariant, since the full 
theory only contains operators with integer spin h - h .  

4. Vertex Operators and Factorization 

In this section we compute the correlation functions of vertex operators in both the 
torus and the orbifold model on the genus g Riemann surface 27. In these 
calculations we will employ the faetorization expansion of the partition function to 
determine the analytic structure of the correlators. The results of this section will 
be used for the construction of the operator formalism on Riemann surfaces, as 
described in Sect. 6. 

The n-point functions of vertex operators 

can be obtained by considering the partition function near the compactification 
divisor, where an appropriate number of handles is pinched, and projecting on 
loop momenta q~, ~ in the degenerate channels. It is clear that the resulting 
expressions will reveal the same analytic structure as the partition function. So in 
the case of a torus compactification we expect that the amplitudes (4.1) can be 
written as a sum over the g-th power of the momentum lattice FR and each 
contribution is the product of a meromorphic times an anti-meromorphic function 
of the positions zi. We have the following factorization formulas for the 
degeneration of a nonzero homology cycle [1 6] 

b 
iTr[p . z . PI t  + 1--+½P~ log t + izc(p . z . p) + 2rcip . Po S to 

a 

_p2 logE(a, b) + (9(t), (4.2a) 

[- z) 
c%(z)-o0~log l ~  l + (9(t), (4.2b) 

L1Zto, z) j 

while all other quantities factorize trivially, to first order. By repeatedly applying 
these formulas one deduces the following expression for the unnormalized n-point 
function in terms of the prime form E(z, w) and the holomorphic l-forms (oi(z) 
(i= 1 .... , g) of the Riemann surface 27: 

Ao(zi, zi;qi, gl i )=Z~ u Z AV(zi;qi)A1~(zi;qi), 
~v, p)~r~ 

Ag(zi; q , )= l-I E(zi, z j) q'oj (4.3) 
i<j 

In this expression complex conjugation also takes p-off and q ~ .  The momenta 
q~, q~ are forced by crossing symmetry of the amplitude to be elements of the lattice 
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F R. Factorization automatically gives momentum conservation: 

(% ~i) = (0, 0). (4.4) 
i 

The expressions for all other correlation functions follow from (4.3) by taking 
suitable operator products, i.e. limits of the positions zi. 

The result (4.3) can also be obtained by a generalization of the path-integral 
method of [26]. Of course the expression (4.1) cannot be directly inserted into the 
path-integral, since it is not a function of the integration variable dp(z, ~). Instead for 
each vertex operator in (4.1) we insert exp [i~(qi + Cli)(a(z~, z~)] and integrate over 
field configurations with winding number q ~ - ~  around the point z~. This is 
achieved by adding to the classical solitons the extra piece 

~ -½i(qi-gh)IlogE(z, zi)-½~ i e).(Imz)- l . i o91 +c.c..  

A straightforward application of Wick's theorem and the Poisson resummation 
formula then yields (4.3). 

Let us now turn to the correlators of vertex operators in the Zz-orbifold theory. 
On the sphere or complex plane these are the same as in the torus model; for higher 
genus, however, some new features appear due to the fact that we can have twisted 
states in the loops. In particular, momentum conservation is lost, since the chiral 
currents Oq~ and ~-~ are no longer allowed operators in the orbifold model. 
However, we still have a selection rule as a result of the ID 4 symmetry (2.30). It 
reads 

2(qi, ~i) ~ 2rR. (4.5) 
i 

The analytic structure of the amplitudes again follows from factorization. So, just 
like the partition function, they will be a sum of two terms which are by itself single- 
valued and modular invariant. The first equals 2 -0 times the corresponding 
untwisted expression, while the latter, which we will denote as At, contains the 
contribution of the twisted intermediate states. If we choose a particular twisted 
cycle and project onto definite loop momenta in the untwisted loops, the 
amplitudes will factorize into an analytic times an anti-analytic part. Because there 
is no explicit factorization formula available for the period matrix of the Prym 
differentials, we will compute At via the path-integral method described above. To 
carry out this calculation, it will again be convenient to consider the double cover 
2 of the multi-loop surface S. This enables us to express the amplitudes in terms of 
the prime form/~(~, ~) on Z and the Prym differentials vi. Note  that we have to 
insert vertex operators on both sheets of the double cover with opposite momenta 
as depicted in Fig. 4. This automatically guarantees momentum conservation on 
L 

The propagator of an uncompactified double-valued scalar field twisted 
around the cycle B o is given by 

(~b(z, ff)q~(w, #))t~,istea = l°gFt(z, w), (4.6) 
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Fig. 4. The insertion of a vertex operator on the surface X corresponds on the double cover 2 to the 
insertion of a conjugate pair of operators 

where 

F,(z,w)=[Et(z,w)[Zexp 2rcIm ~ v - ( I m H ) - l - I m  v , (4.7) 
L *(~) ~(~) J 

" /~(~' ~) - ~/z'~** (4.8) E,(z, w) = ~ e 

Ft is single-valued around all cycles except for the twisted cycle Bg, around which it 
transforms into 1/Fr The above result can be proved by a similar method as 
described in [26] Sect. 5. The expression for the amplitude (4.1) for R = 0  (or ~ )  
now follows directly from Wick's theorem. The modification at finite R due to the 
soliton contributions is computed completely analogous to the torus case. Again 
skipping the details of the calculation we proceed with the final expression for the 
twisted contribution to the n-point function (4.1), 

At(zl, zgi; qi, gli) = Z~" 2 -g 2 2 Af. ~(zi; qi)AP,,~(zi; q~) , (4.9) 

where the meromorphic contributions are given by 

[el-'E~(zi'zJ)q'qJYle(z~)l/2~6 i<sI] A~,~(zi; qi)= c 

×exp[irc(p.H.p)+2rci(p.~½qi i 'ov)].  (4.10) 

Here the presence of the factors 

e(z) = ff~(~, ~(~))- a e- 1/2i,~** (4.11) 

is due to the self-energy of the vertex-operators. Of course, all quantities on the 
right-hand side of (4.10) are understood to be those related to the twist ~, 6. The 
above expression for the amplitude A is not yet a single-valued function of the 
positions of all vertex operators; only the combinations V,+(z, z-) [see Eq. (2.11)] 
have single-valued correlators. 

We have shown that vertex operators of the form ~ +  2m indeed have vacuum 
expectation values in the orbifold theory. As we have argued this implies directly 
that the twisted chiral partition functions of the Zz-orbifold theories are sensitive 
to the Torelli group. We are now in a position to make this relation more explicit. 
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So again let us consider a Dehn twist around a homologically trivial cycle C, and 
the behaviour of the partition function near the boundary of moduli space 
corresponding to the degeneration of C. Here we can compare the expression (3.19) 
for the partition function with the factorization expansion 

Zg~+° '~Z° 'Z°~[  1 +,,,,~2zE th"~i*"~(V~+)g,(V.+)g=+(descendants)], (4.12) 

where gl and g2 are the genera of the two parts of Z separated by C, and + < V...>., 
denotes the 1-point function of the vertex operator ~+~ on each part. The chiral 
partition functions on S with twist characteristics which are divided by C into two 
nontrivial parts will receive non-vanishing contributions of these 1-point func- 
tions. Equating the separate momentum contributions on both sides of (4.12) and 
isolating the part quadratic in the loop momenta we read off that, if C degenerates, 
t he / /ma t r ix  of such a twist characteristic factorizes as 

irc[p . 17. P]o, +g~-)2p~ logt + in[j). 17. p]g, + in[p. H . P]o2 

+2rcip~.po f v l+Zn ip2 .Po  ~ v2+2p~log[ex(QOe2(Q2)]+(9(t). (4.13) 

The first term on the right-hand side signals the momentum 2po running through 
the tube enclosed by C and is clearly not invariant under t--->eZ~it. This 
factorization behaviour of t h e / / m a t r i x  should be contrasted with that of the 
period matrix z: 

in[p.  z . P]o,+ o~--*in[P " z . p]g,+ in[p . z . P]o~ + (9(0" (4.14) 

where 6(t) is a single-valued function of t. 
For the specific models in the c=  1 spectrum many relevant correlation 

functions can now be calculated using (4.9)-(4.11). As examples let us determine in 
the R = 1 orbifold model the two-point function of the magnetic vertex operator 
V~cos~(q)- qs). This operator according to (2.36) equals the composite operator 
a(x)a(Z)(z, ~) in the doubled Ising system, so the result should be equal to the square 
of the spin-spin correlator of the Ising model [15, 35]. Let us see how this comes 
about. By lack of momentum conservation we have two different twisted 
contributions to this correlation function, with holomorphic components: 

[0 . . .  0 ] -1  e,(z, w)- 1/8 
l/2i <w)> = c Lo...  ½J 

- ~ v - -  ~)v lH) ,  (4.15a) ×'Lair4,(,) 4,( 

(el/2i~'(Z)e 1/2~w~) =c  0 . . .  ½ 

F~]/1 ~ 1 
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After some manipulations using a generalized version of the Schottky relation [16] 
the right-hand sides can be rewritten as: 

, 

½ 1 z x~)l/2 

In terms of the two Majorana fermions we see that the first term gives the 
contribution of the [even] x [even] or [odd] x [odd] spin structures (depending 

on whether ~ in (4.15) is even or odd), whereas the second corresponds to [even] 

x [odd]. This identification is in agreement with the leading behaviour of(4.15) for 
z~w. Performing the summation over all sectors and taking the square root, we 
obtain for the unnormalized spin 2-point function 

(o(z, ~)a(w, w))isi,g = 2-  l/2°[Z~"] 1/2[E(z, w)l- 1/4 ~,a~ O /~ ~ C01Z . (4.17) 

Of course, this expression can also be obtained by direct factorization of the Ising 
partition function (3.23). The result (4.17) agrees with that of [32, 35] for g=  1. 

Finally, we notice that the equivalence of the R = ]/2 and R = 1 orbifold theory 
with the R=½V2 Gaussian model respectively squared Ising model may be 
exploited to derive various nontrivial identities relating geometrical objects on the 
multi-loop surface 2; to objects defined on its double cover. To give a simple 
example: the equality of the two vacuum expectation values 

(½]f2i0~0(z))t ..... R=I/zV~-=(COSV~(Z))orblfol,t,R=VZ (4.18) 

implies, when projected on the relevant subsectors, the identity [16,p. 83]: 

1 . . .0 - '  c~ 
c~ ~ (OI2~)°)s(z)=c 0 

Pursuing this line much further would lead us deep into the mathematics of 
unramified coverings of Riemann surfaces, which is of course not the intent of this 
paper. We would like to emphasize, however, that many existing mathematical 
identities can be of great help in the analysis of the correspondences between the 
various physical models. 
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5. Correlation Functions of Twist Operators 

As a further application of the methods developed in the previous sections we will 
now proceed to calculate correlation functions including orbifold twist operators 

<~rl(z0--- o'l(z,,)~r2(z,,+ , ) . . .  ~rz(z,)Vl(wO... Vt(w,)> • (5.1) 

To evaluate this function we will again make use of the theory of double covers of 
Riemann surfaces. We will describe the calculation for arbitrary genus, and then 
turn to the sphere for more explicit results. A somewhat different approach is given 
by Miki [28] and for g = 0  in [11, 33, 34]. 

Twist field correlation functions are produced by factorization of the partition 
function when a non-zero homology cycle is pinched. The different constituents 
Z~.o of the genus g + 1 partition function factorize in lowest order of the pinching 
parameter t either on the genus g partition function or on the unnormalized 
twist field two-point function depending on whether or not the pinched loop is 
twisted. Schematically 

2 
Zo + 1 ~ Z o  +. . .  + Itl 1/8 • Qri(zOa~(zz)>o + . . . .  (5.2) 

i=1  

In general we see that pinching n twisted loops of a genus g + n surface leaves a 
genus g Riemann surface ~ with 2n twist field insertions. In this factorization 
process the genus of the double cover changes from 2g + 2 n -  1 to 2g + n -  1. The 
resulting cover 2 of 27 is ramified over 2n branch points, i.e. fixed points of the 
defining involution t, at the positions of the twist fields. Of course, besides the 
twists around the operators ~r(zk, i~) we should also account for possible twists 
along the nontrivial cycles of 27 indexed by the characteristics ~i, 6~ (i= 1,..., g), 
Modular invariance at genus g + n translates into modular invariance at genus g 
and crossing symmetry of the o-'s [5, 23]. Indeed, by transporting a twist operator 
around an untwisted loop one converts it into a twisted loop, and vice versa. So 

[1 by the crossing transformation 0 any twist characteristic 6 can be mapped to 0 

~k Zk 

co--+ 5 oJ+2~-z+26.  (5.3) 

As a homology basis of the cover Z we choose the cycles J~, /3~, t(~), z(/~i) 
(i = l, . .., g) and the 2 (n - l )  extra cycles ~a, Ba (2=1 , . . . , n - l ) .  The latter 
correspond on the underlying surface 27 to loops encircling an even number of twist 
fields. 

The number of Prym differentials does not change by the factorization; it stays 
g + n - 1. We will normalize them with respect to the J~ and ~a-cycles of Z. All the 
Prym differentials v~, va have square root singularities at the branch points zv It will 
be convenient to define their period matrix H around the cycles B~ and ½Ba. This 
normalization is consistent with factorization. 

The essential idea now is to equate any multi-point correlation function with 
twist field insertions to the corresponding quantity without the twist fields 
calculated on the ramified double cover Z with the field q~ odd under t. The 
dependence on the positions of the twist operators a(zk) is incorporated in the 
definition of S. Note however, that because of the conformal anomaly all these 
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quantities depend on the coordinatization we choose. The prescription is to use the 
coordinate z of the Riemann surface S. The conformal dimension (~6,~6) of the 
twist operators is due to the fact that z is a singular coordinate at the positions of 
the twist fields. 

The field q~ cannot have arbitrary winding numbers along the cycles d;.,/~a of S. 
Around any cycle ~ that projected on S encircles an even number of o-'s, the 
operator product relations (2.28) imply the monodromy condition [11] 

dz ^ 
~ OqJ(z) + c.c. = Q (rood 2), (5.4) 

(£ 

where Q is a Z2-charge defined as 

Q = # al = # °'2 (mod2). (5.5) 

We define 2~z-charges az, b~ for the cycles e]z,/3~ as in (5.4). 
Each quantity can now be written as a sum over e i and hi, numbering the 

possible twists around the cycles A~,B~, and loop momenta (p~,px;p~,/5~). The 
appropriate momentum lattice is fixed by the configuration of twist fields o-x and 
~r z. To investigate this relation let us analyse the pure twist correlation function 

2nl 2n2 
A(Zk, Zk)= \kO1 o-l(Zk, Zk) k__~ 1 o-2(Zk, a ) )  , (5.6) 

i.e. the partition function 2 on 2. (Note that the discrete symmetry group ID 4 forces 
correlation functions of an odd number of o-~'s or o-2's to vanish.) This partition 
function is again given by a summation over all twisted sectors. Each term is the 
product of a quantum contribution 2 q" times a sum over winding sectors. The 
soliton sum 2~ ~, b is restricted by the monodromy conditions labelled by aa, bz. The 
calculation is quite analogous to the one described in Sect. 3. The classical 
solutions ~d are labelled by mi, ni ~ 2~, ma ~ 2~ +½ba, na ~ 2 Z  + aa and have action 

S[q~ ~t] = ½7zR2(n - I Im)  . (Ira FI) - ~ . (n - Elm).  (5.7) 

The soliton summation yields [-28] 

where 

2ct _ (_)b-, exp [iT~(p • H .  , ,b (R)- -  Z P- -  P" ~ /5)], 
P,P 

(5.8) 

Pi, Pi~FR (i=1 . . . .  ,g), 

(2= 1, ..., n -  1). 

(5.9) 

As for the quantum part we again make use of the multi-critical point R = ~//2-. 
Namely, as we have seen, in this point the twist fields cr 1 and o- 2 are equivalent to 
the magnetic vertex operators ]/~cos¼V2(q~-~) and ~/~sin¼l/2(q~-~) of the 

R =½~/-2 torus model, whose correlation functions are simply a sum of generalized 
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Koba-Nielsen amplitudes (4.3), [I E(xi, xj)E(y i, yj) t/,, 

A(Zk,~k)IR=VT=2-g-,+IZ~,, ~ ~ (_)a(x) i<j ~,~,~ (xr,) [!  E(x~, Y j) 
t,J 

1 .   ,ol2 ) . (5.m) 

ll 1 [2n~ Here we sum over a ~ n ) partitions (xly)of the branch points Zk into two subsets 

{Xk} and {Yk} of n elements. The charge Q(x) is the total Z2-charge in the subset 
{o-(xk)}. Note  that we regard (xly) and (ylx) as equivalent. On the other hand we can 
express the partition function on Z in terms of 0-functions as explained in Sect. 3, 

2 ~ b ( [ / 2 ) : 2 - 0 - " + 1 ~  *q" [0 #] 2 Ze.6 E (__)(27"b+b'a)O (OI2/L,a) • (5.11) 
• ~,,~ /~, v,7 V 

Here the summation is over the half-integer characteristics 

7, e, 6 E(½Z2)g, #,v e(½Z2) "-1 . (5.12) 

Remarkably, it turns out that again one can identify the separate holomorphic 
terms in (5.10) and (5.11). For  7, 5, e we can repeat the argument of Sect. 3. As for the 
characteristics #, v we should note that not all even spin structures contribute in 

1 / 2 n \  
(5.11). In fact there are only 2L n ) non-singular even spin structures, i.e. with non- 

/ 
vanishing 0-function, which exactly correspond to the partitions (xly) of the 
branch points. This is explained in all detail in [16]. This allows us to solve for 

Z , , a -  c as the ratio of the two corresponding contributions in (5.10) 

and (5.11). The result is the modulus squared of an holomorphic function of the 
positions of the branch points. So for example for the two-point function we fmd 

<~(z, e)G(w, ~)> = 2 - ~ z ~  ~ Z c 2~'(R, f I , ,~) ,  (5.13) 

where 

I ' - - I  ~ 
7+½~ 1" 0 ~ ] (~- [ o~12z'] 

c[;j-*=E(z,w)_.8_LO j>z /, (5.14) 

which is independent of the characteristic 7. For  R = 1 this expression is consistent 
with the result (4.t7), since we can rewrite (5.14) as 

for arbitrary ~, ft. 

_-_E(z,w)-l,8 5! [e_l(°l'l] (5.15) 
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For higher n-point functions the resulting expressions have the same 
structure as (5.13). An unpleasant feature is that they are not manifestly 

independent of the choice of the spin structure I~  1 or partition (xly). It would be 

very interesting to find such a manifest independent formulation. 
The computation of correlation functions including vertex operators is 

completely analogous to the one described in the previous section, provided one 
uses the branched double cover ~ and the momentum lattice (5.9). 

Now let us specialize to the case of twist operator correlation functions on the 
sphere. Here we can explicitly write down the double cover. It is the hyperelliptic 
Riemann surface 

~={(w,z)lw2=i~=l(z--zi)Z}. (5.16) 

The involution ~ is simply (w, z ) ~ ( -  w, z). The period matrix z o f ~  equals 2H. For 
the case g = 0  Eqs. (5.10) and (5.11) simplify considerably 

(xi_xj)(yi_ yj) ~/4, 
A(zk,,fk)LR=¢2=2-,-1 ~ (__)Q~x)i<j (5.17) 

~xvy) [I (x~- yO 
i , j  

2a, b(~/2) =2-" -12q"  2 (_)~2,.b+b.,,) 0 (01~) • (5.18) 
#,v 

The correspondence between the non-singular even spin structures [ ~ j  and the 

partitions (xly) is expressed by the Thomae identity valid for hyperetliptic 
0-functions [16] 

[~]8  F[ (xl- xj)(y~- yj) 
0 (0]z)=(detm) -4 1~ (zi-zj) i<j (5.19) 

~ J  lq.(xi-y3 
I,J 

The matrix M is related to the canonical 1-forms co~ on Z by 

n-- I  zJ--1 
ogi(z)= ~ mij dz. (5.20) 

i = 1  y 

Thus we find as a final answer for the twist correlator 

A(Zk, Zk) = Idet M[ l-I Iz~- zjl- t/,* ~, ( _ )b., exp [½irc(p • z. p --/~. ~./~)], (5.21) 
i < j  p, fJ 

where the momentum summation is as in (5.9) with g = 0. This reproduces the 
results obtained in [11, 33, 34]. 

Some comments on (5.21) are due here. First we see that R~I /R  leaves the 
correlation function invariant. (Note however that this symmetry is only valid for 
genus g = 0.) So in particular the twist field n-point function at R = ½t/~ (the 4 state 
Potts model) is also given by the Koba-Nielsen amplitude (5.17). This is in 
accordance with the permutational symmetry S 3 between the two twist operators 
a~ and a2 and the magnetic vertex operator 0- 3 = 1/2 cos¼V~(q~ - ~) at this special 
point. 
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At first sight this invariance under R--.1/R seems hard to reconcile with the 
duality R~2 /R .  We must realize however that the latter transformation also acts 
on the twist fields. This can serve as a cheek on our transformation rule (2.27). Let 
us consider the simple ease n2 = 0, 

al(Zk,~k) = 01(Zk,~k 20o(1 /R)=21-"  Y~ 2.,b(2/R) 
\ k = l  \ k =  l 1/R ~ ' a ,b~7l  2 

= 2-" [°l(Zk, Zk) + a2(Zk, Zk)] (5.22) 
k IR" 

Here we used that the sum over all monodromy conditions is equivalent to the 
transformation 2/R-~I/R. Thus the transformation rule (2.27) is confirmed. 

6. Operator Formalism on Riemann Surfaces 

In this section we describe the operator formulation of the compactified scalar field 
on the Riemann surface S. More specifically, this involves the construction of a 
state [2;) in the Hilbert space of the scalar field q~ describing the theory on 2; [6]. 
After a short discussion of the action of the Virasoro algebra we construct the state 
[Z) for the torus models using the previous results for the correlators of vertex 
operators. Next we give an independent derivation based on a more algebraic 
approach which uses only some basic facts concerning the geometry of the surface. 
We end the section with a discussion of the operator formulation of orbifold 
models. 

6a. Operator Formalism and the Virasoro Algebra 
Given a base point Q on Z and a choice of an analytic coordinate z near Q such that 
Q = {z = oo }, one can associate a state IX) to any conformal field theory defined on 
Z. This state [Z) is defined to satisfy the condition that for any local set of operators 
A,(z,, ~,) we have 

(OJI]A,(z,,~,)]X)=(~A,(z,,~,)),, (6.1) 

where ( ) denotes the unnormalized expectation value on the surface Z. In 
particular the partition function is given by Z = (0[Z). In this formalism the only 
reference to the global geometry of the Riemann surface is contained in the 
boundary conditions imposed by the state [Z). Condition (6.1) determines [~) 
uniquely. Note however that it depends on the choice of the point Q and the 
coordinatization z. 

In general, for any chiral primary field ~p(z) whose correlation functions are 
sections of a holomorphic line bundle i ° we have 

~ dZ ~(z~(z) [Z) =O , (6.2) 

whenever ~H°(Z- -Q ,K®~- I ) ,  i.e. ~ is a section of the bundle K ® ~  -1 that 
extends holomorphically to S - Q .  Here K is the canonical line bundle on Z and 
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the contour integral is taken around Q. Equation (6.2) follows from the fact that 
the integral can be deformed and pulled off the surface without leaving any 
residues. 

This fact is very useful in discussing the action of the stress-energy tensor T(z) 
on the state IS). We adjoin to vector fields ~(z) holomorphic in the local coordinate 
patch except for possible poles in Q the Virasoro generators 

L[~(z)]=~ ~ i  ~(z)T(z ) , (6.3) 
satisfying [1] 

[L[~],L[~l]]=L[~l--~lO~]+ ~2 ~ i  ~(z)~3rt(z)" (6.4) 

The different components of T(z) can now be classified in terms of the dual objects 
~(z). If ~(z) extends holomorphically to 2 ; - Q  then in view of the above one 
concludes that L[~] annihilates the state f2;), 

L I~ ] IZ )=0  for all ~eH°(2;-Q,K-1).  (6.5) 

However, there are some subtleties here, since T(z) is not a conformal tensor. In 
fact T(z) is a projective connection, i.e. it transforms with a schwarzian derivative 
[1, 36]. The problems associated with this are avoided by using a coordinate 
covering {U,, z~} on S with transition functions z~ o z i 1~ Sl(2, IF,), since for these 
the schwarzian derivative vanishes. The equivalence class of such coverings is 
called a projective structure and always exists by the uniformization theorem. So 
if we choose the local coordinate z compatible with the projective structure on Z 
then (6.5) is correct. The Virasoro operators L, (n < 1) which correspond to vector 
fields nonsingular at Q generate analytic coordinate transformations in the local 
patch and will in general modify the property (6.5). When ~(z) extends neither to 
Q nor to S - Q  the corresponding components of T(z) change the moduli 
parameters {ink; k = 1 ..... 3g-3}  of the surface S. More precisely, we can choose 
3 g - 3  elements ~k dual to the quadratic differentials such that for the partition 
function Z on S we have 

0ink Z = (01Ll-~k] IS), (k = 1,..., 3 g -  3). (6.5) 

The operator formulation of conformal field theory is the natural language to 
describe the factorization expansion of the partition function and other quantities 
at the boundary of moduli space. For example, in the case of the degeneration of a 
dividing cycle C the behaviour of the partition function as a function of the 
pinching parameter t is exactly described by [5] 

Zg I +g2(t, t) = ( S~ltL°~°[2;2) . (6.6) 

where IS1) and IZz) describe the conformal field theory on the left respectively 
right half of the surface S. In a similar way the pinching and creation of handles can 
be dealt with. One chooses two points on S and and attributes a density matrix Q~ 
to this twice punctured Riemann surface. The partition function of the surface with 
the extra handle connecting the two points is now calculated as 

Zg + ~(t, [) = tr(estL°~°). (6.7) 
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6b. The Torus Case 
Let us now turn to the explicit construction of the state IZ> for the compactified 
conformal scalar field theories [6]. In the operator language ~b(z, z-) can be 
expanded as: 

~(z, ~) = ~0(z) + ~(~), 
(6.8) 

q~(z)=½q+aologz+ ,=IL F -, -~+z"a" a~nn] , 

with commutation relations [ao, q] = [a,, a,*] = t. The Hilbert space consists of all 
states of the form 

I~> = Z ~v°'P°[~0 +(z); q5 +(~)]eiP°qe-~P°~[0>, (6.9) 
(po, Po) ~ FR 

where ~o+(z) is the creation part of ~0(z). The functionals ~po,po are obtained from 
the state [~> by taking the inner product with coherent states 

~P°'P°[2(z); Z(z--)] = <0l e x p (  -ipo q + iffoq + i ~ ~ i  2(z)e~0(z) 

- i~ i2(z )~o(z) )[~  ) . (6.10) 

Here and in the subsequent equations the contour will be understood to encircle 
the point Q = {z = ~ }  unless otherwise stated. The action of the creation and 
annihilation operators a, ~ and a, on the functionals • is given by the identification 

a. ~-~ (1/i]/~)a/02,, a*, ~ (ilFn)2., (6.11) 

where 2, is the n-th Laurent coefficients of 2(z). 
Combining Eqs. (6.1) and (6.10), it is clear that, with a straightforward 

application of the path-integral method described in Sect. 4, we can immediately 
obtain the answer for our state IN> for the torus model. It has zero momentum Po 
because of ~0 charge conservation. Projected onto a given set of loop momenta it 
factorizes into a left-moving times a right-moving state. 

where 

t£>,orus=Z~ u Z o AP[q~ +(z)]AP[~° +(z)] ]O>' (6.12a) 
(p,p)~rR 

p 1 dz dw 
A [),(z)]=exp[~-}-~i,-2~2(z)2(w)O~O,:logE(z,w) 1 

x exp [irc(p. z. p)+ (p. ~ dz2(z)oo(z))]. (6.12b) 

This formula may be considered as a generating functional of all correlation 
functions on the surface Z. In particular, by acting with vertex operators 
V(2,, a/O2,) onto (6.12) one may obtain expression (4.3). 

For  rational values of R 2 the momentum summation in (6.12) can be replaced 
by a finite sum of 0-functions, using (3.5). For example, for the R = I model the 



680 R. Dijkgraaf, E. Verlinde, and H. Verlinde 

chiral components of IN) are given by the famous z-function of the KP-hierarchy 
[7], 

zD'(z)] =exp I1  ~ zTztn--:dz ¢~.~_ zTztx--z'dw 2(z)2(w)~3~O w logE(z, w) 1 

dz 
×[ll3(~ni2(z)co(z, lz). (6.i3) 

This z-function describes a vacuum state of a chiral Dirac fermion. The space of 
such fermionic vacuum states, which can be obtained from the standard vacuum 
by a Bogoliubov transformation, is called the universal grassmannian manifold 
[7]. Also for general rational R 2 we can try to interpret the state l~) in terms of this 
grassmannian. Namely, we can associate to each ;%function in the sum (3.4b) a 
(projective) line bundle ~ on Z with rneromorphic sections given by the 
correlation functions of the chiral spin~pq "fermion" ~p(z)= V1/2p.1/2q(z ). The 
corresponding chiral component of IS), in view of (6.2), distinguishes the positive 
and negative frequencies of the field ~p and can thus be identified with an element of 
the universal grassmannian manifold. 

6c. Algebraic Construction 
In this subsection we give an alternative derivation of the result (6.12) in terms of 
(generalized) Bogoliubov transformations, without using the path-integral. This 
more algebraic approach will clarify a great deal of the structure of the state IS) 
and furthermore lead to an intriguing relation between modular and canonical 
transformations. 

We introduce the chiral creation/annihilation operators 

r dz 
a[f(z)] = ~ni  f(z)d@(z), (6.1 4) 

with commutation relations 

dz 
[a [ f ] ,  a[gJ] = ~f~/f(z)Og(z). (6.15) 

The key observation that enables us to reconstruct the state IS) is that Oq~(z) is a 
chiral primary field, and hence the state representing S is annihilated by the 
operators a[f] precisely for those f(z) that can be extended to a holomorphic 
function on Z - Q ,  i.e. feH°(Z-Q). It is clear from (6.15) that these modified 
annihilation operators a[f] mutually commute. A basis {f,} for H ° ( Z -  Q) can be 
chosen of the form f,(z)~ z"+ (regular at Q). However, by the Weierstrass gap 
theorem [17], not all n > 0 occur: there are g values of n between 1 and 2g missing. 
For generic positions of the point Q these values are n = 1,..., g. The Weierstrass 
gap forms an obstruction to view the state IZ) as a gentfine Bogoliubov transform 
of the standard vacuum 10). As we will see many nontrivial features are due to the 
presence of this gap. 

The state [Z) is not uniquely determined by the condition that it is annihilated 
by all the elements of the set {a[f];feH°(Z-Q)}. In fact there is an infinite 
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dimensional space ~Yx of such vacuum states. To further analyse this space xgYx we 
need additional operators that commute with all the annihilation operators a[f]. 
An obvious way to find such operators is to extend the set {a[f] ;  f e  H°(Z- Q)} to 
a complete set of annihilation and creation operators. Because of the Weierstrass 
gap theorem such a complete set will contain 2g additional modes a[g] satisfying 

dz 
[a[f],a[g]]=~f(z)~g(z)=O, for all f~H°(Z-Q). (6.16) 

The idea is now to use a commuting subset of these operators to decompose the 
space Ygz into eigenspaces. In order to have an interpretation of the corresponding 
eigenvalues we need to know a bit more about the space of functions g(z) satisfying 
(6.16). First we observe that this space is of course only defined modulo elements of 
H°(S-Q) .  So we are dealing with a cohomology problem. Furthermore, we see 
from (6.16) that ag(z) must be an element of H°(Z- Q, K), which implies that g(z) is 
extendable to a multi-valued holomorphic function with constant shifts around 
the nontrivial cycles of the surface. The space of such functions modulo H°(Z- Q) 
is naturally dual to HI(Z,C), the space of cycles on Z, and hence is indeed 
2g-dimensional. The duality is expressed by the map 

g) ~ d z  ~g(z), (6.17) (c, 
c 

where C is a cycle on the surface. We can now use the intersection product to 
adjoin to any cycle C a function go(z) by 

~ dz ~gc(z)= ~(D, C) D ~ H I(Z, tE ) . (6.18) for all 
D 

This relation defines a one-to-one map between the functions g(z) (modH°(Z-  Q)) 
such that a[g] commutes with all annihilation operators and the nontrivial cycles 
on the surface. A reformulation of the condition (6.18) is given by the requirement 
that for any 1-form O(z) holomorphic on Z - Q  

~dz gc(z)O(z)=~dz f2(z). (6.19) 
c 

Commutation relations among the a[gc] are translated into intersection products 
of the corresponding cycles 

dz 1 
[a[gc], a[go]] = ~ ~-~ gc(z)~3gD(z) = ~ ~: (O, C). (6.20) 

We can refine the correspondence between cycles C ~HI(S, ~) and modes gc to 
C ~ H~(S,, Z) by demanding exp(2rcigc) to be extendable to a nowhere vanishing, 
single-valued holomorphic function on S -  Q. A natural basis for H 1(S, Z) is given 
by a canonical set of homology cycles Ai, Bi satisfying (3.1). The representatives 
a[gaJ and a [ g j  of these cycles then satisfy canonical commutation relations 

[alga,I, a[gAj]] = [a[gnJ, a[gB~]] = 0, 
(6.21) 

[algA J, a [ g J ]  = 2re 'J 
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We can now define the chiral state ]S; p) which is annihilated by the operators 
a[f]  and is a common eigenstate of the alga,I: 

a[f]  IX;p)=0,  T¢H°(Z-Q) ,  
(6.22) 

dz 
a[gai] iS; p) = ~  ~ &p(z)if; p) = p,]S; p) .  

The eigenvalues pi can be interpreted as the loop momenta flowing through the 
cycles A~. The dependence on the momenta is fixed by the action of the conjugated 
operators 

dz t~ z S,, 1 c3 Z, 
a[gB,] [ S ; p ) = ~ - - ~  ~0( )] "p)= 2-~ ~,-~1 "p). (6.23) 

Bi 

In the following the operators a[gA,] and 2rcia[gn,] are identified with p~ and O/Op~. 
The definition (6.22)-(6.23) is invariant under shifting the functions ga~ and gn, 

with elements o f H ° ( ~ -  Q). However the state [S; p> depends on the choice of basis 
in Ha(S,~E). Different homology bases are related by modular transformations. We 
now want to construct a modular invariant vacuum state [S> of the nonchiral 
theory. In general IS> will be a linear combination of tensor products of left- 
moving and right-moving states of definite loop momenta 

If> = ~ d°pdY~N(P, P)IX; p > ® [S; p>. (6.24) 

The multiplicities N(p,p) will be determined by the constraint of modular 
invariance. The action of the symplectic modular group Sp(2g, Z) on the homology 
basis translates into canonical transformations on the operators p, and O/Opj, 

g 
2rcipi.--,, 2rdAi.ip j + Bij Opj ' 

(6.25) 

It is well known that a canonical transformation induces a unitary transformation 
on the states in the Hilbert space 

If; p> ~ UIS; p>, U = exp [2zciG(p~, r3/@i)], (6.26) 

where G(p, ~/@) is the generating function of the infinitesimal canonical transfor- 
mation which by exponentiation gives the transformation pi~Up~U ~, O/Opi 

UO/@i U*. The generating function G for an element of Sp(2g, 7l) is in general 
very complicated. Fortunately for studying modular invariance we only need to 
know G for the Dehn twists Dc (3.24) that generate the mapping class group. 
Combining (3.24) and (6.20) gives: 

D c : a[g~] ~ a[g~] -- 2~i[a[g~], a[gc]]a[gc], (6.27) 
so that 

G(Dc ) = ½ (a[gc]) 2, (6.28) 
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and in particular for the minimal set of generators OA, , DB,, and DA71A~+I the 
generating functions are 

- 1  D E 
G(DA)=½p 2 , G(DB)= 4~ 2 ap 2 , 

(6.29) 
G(D A 71 A, + i) = ~(Pi  - -  Pi  + 1)Z" 

We are now in a position to impose the condition of modular invariance and 
determine which states of the form (6.22) are allowed. Clearly, for all generating 
functions of the Sp(2g, ~v) transformations (6.25) we should demand 

exp [2rci(G- G)] tZ) = IS) ,  (6.30) 

where G and G act on the left-moving respectively right-moving states. This 
condition implies that IZ) is a sum of eigenstates of G - G  with only integer 
eigenvalues. It is sufficient to impose this only for the generating Dehn twists (6.29). 
This gives the following set of restrictions on the multiplicities N(p, i0): 

N(p, i6)~:0 only if ~ (pE-/~2)ezZ ((pipi+l_pi~i+l)eZ for all i, 

(6.31) 
2~(q, ~) ~: 0 only if (qZ _ ~2) ~ 2Z for all i, 

where 

-N(q, gl) = ~ dOpd°p N(p, p)e 2ni(p "q - p" q) (6.32) 

is the Fourier transform of N(p, iO). It is well-known that these conditions restrict 
the integral (6.24) to a summation where each pair of loop momenta Pi, iO~ runs over 
the same lattice, which is required to be lorentzian even and self-dual [19]. It is 
easily verified that there is a one parameter family of such modular invariant 
vacuum states IS): 

I Z ) =  y. , IS; p ) ®  112;p), (6.33) 
(p ,p)eFR 

with FR as defined in (2.9). Note  that the flat space vacuum (R = ~ )  is even invariant 
under Sp(2g, P,) canonical transformations. The parameter R is varied by the 
SO(l, 1)-boost generator 

½R d-~ lS) = -½ ~ [ pi-~piPi + pi ffl~p~]112) . (6.34) 

This is in fact the only operator bilinear in p, if, O/Op, and 0/0/5 that commutes with 
all generating functions G -  G. It indeed corresponds to the marginal operator as 
can be seen from (6.22)-(6.23) and 

l ! d2z Oq~JtplS) = i 8(p] l r ) .  (6.35) 
B~ A, 

We like to stress that up to this point we did not use the explicit form of IS;p)  in 
terms of the oscillators a,*. We will now show that the properties (6.22) and (6.23) 
are sufficient to determine this state up to normalization. To this end we first 
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observe that the one-to-one correspondence between the modes gA,(Z), gn,(Z) and 
the homology basis A i, Bi can be formulated equivalently by the following local 
conditions: 

~dz ga~(z) O~Ow log E(z, w) = O, (6.36a) 

~dz coi(z) = (6.36b) ga,(z) 

~dz gB~(z) ~8~, log E(z, w) = 2niogi(w), (6. 6c) 3 

~dz gB,(Z)COi(Z ) = zO, (6.36d) 

where the contour encircles both Q and w. Further all quantities are defined with 
respect to the homology cycles A~, B~. These equations follow directly from the fact 
that the space of 1-forms holomorphic on S - Q  is spanned by og~(z) and co~")(Z) 
= 8~i~Q logE(Q, z) (n >= 1). By the same observation it is straightforward to verify 
that the state IS; p} satisfies 

dw 
~o ( z ) l S ;p}=[~ i  ~o+(W)~w~logE(w,z)+ 2rci~p~oi(z)llS;p}. (6.38) 

The right-hand side, which is manifestly holomorphic on all of S -  Q, may serve as 
a definition of the operator Oq~(z) outside the coordinate patch. This equation can 
be read as a compact way of writing the (generalized) Bogoliubov transformation 
relating the state IS; p} to the standard vacuum 10). Now using (6.37) we find 

IS; p} = [2rci(t. p)i + ~dz q~ + (z)co~(z)] IS; p}. (6.39) 

Equations (6.38)-(6.39) can be integrated to the following result for the chiral 
vacuum state IS;p} 

IS;p} = CAP[q~ +(z)] 10}, (6.40) 

where APE2(z)] is given in (6.12). The normalization constant C is determined by 
using the fact that the modular dependence of (0IS; p} is given by the action of the 
stress-energy tensor (6.6). Using the variational formulas of [26], this yields 

C = (det ~-o) -~/2 . (6.41) 

This concludes our algebraic derivation of the result (6.12). 

6d. Operator Formulation of Orbifold Models 
For the twisted scalar field the state IS) has a slightly more complicated structure. 
It is given by a sum of 2 zg states IS),, ~ representing the different twist structures. All 
states [S),.o lie in the untwisted sector of the Hilbert space. The contribution IS)o, o 
equals 2 -0 times the torus result (6.12). For the other characteristics there is no 
momentum conservation, so the corresponding states will have components with 
non-zero momentum P0. Again using (6.1), (6.10) and the expressions (4.9)-(4.11) 
for the correlator of the vertex operators, we obtain after a straightforward 
calculation 

tS)~,~=2-oZ~, ~ ~ Apo, pr,o ~z~lApo,pr,, tz~loipoqo-ipo~l~\ (6.42a) e,J L"k'+r~ . /- I  e,J LW+ 1. ] , . 1 ~  ~ [ v / ~  
Po, Po P, P 
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where (po, Po)e2F R [see Eq. (4.5)], (p,/~)eF~ -1 and 

e - 1 1 dz dw 

xexp  irffp.H.p)+2rci P'½Po v -~pologe(Q) 
,((2) 

dz 
[2rcip- v(z) + poO~ togE,(z, Q)] J ,  

- 1  

+ ~2~i 2(z) (6.42b) 

where Hi j, vi(z), e(z), and E,(z, w) are defined with respect to the twist characteristic 

[~] .  Note  that II;)~,~ is even under q S ~ -  ~b, as it should be. 

One of the striking features of Eq. (6.42) is the symmetric role of the state 
momentum Po and the loop momenta p~, i = 1,..., g -  1. An intuitive explanation for 
this is that on the double cover S we have in fact constructed a density matrix, i.e. 
an element in the tensor product of two Hilbert spaces, one at 0. and one at ff0~), 
whose quantum numbers are related by ~b~ - q~. By taking the trace of this density 
matrix as in (6.8) one creates in a way an extra handle of S of which Po is the loop 
momentum. Comparing with (4.2) one can indeed recognize in (6.42) the 
factorization expansion of the partition function on the resulting surface of a scalar 
field which is odd under the involution z. 

What about  an algebraic derivation of (6.42)? First we note that the chiral 
contributions to IS)e,~ with (~, 3) + (0, 0) can be derived in an analogous fashion as 
in the torus case. Namely we can consider the modes a[f] ,  where f(z) is a 

[~] ,  i.e. with multipliers meromorphic function with half-integer characteristics 6 

(_)2,~ and (-)2~' when continued analytically around the cycles Ai and Bi. The 
chiral states are annihilated by the holomorphically extendable modes a[ f]  and 
can be chosen to be eigenstates of ao = ~ 0~0 and the loop momentum operators for 
g -  1 untwisted cycles. Next, the invariance of IS),,o under the Dehn twists around 
these untwisted cycles should restrict the loop momentum summation to the 
lattice F~- 1. In a similar way the constraint on the state momenta (Po,/~o) e 2FR will 
arise. The factor 2 follows from considering the Dehn twist around the branched 
cycle 2(6- A + e- B), because the momentum flow through this cycle is up to a sign 
equal to (½-P0, ½/5o)- Finally, invariance under the full modular group, since it is also 
generated by Dehn twists around cycles intersecting the branched cycle, requires 
the sum over all twist characteristics. We do not yet understand how these Dehn 
twists can be naturally incorporated in an algebraic operator formulation. 

We end this section with an extension of the operator formulation on Riemann 
surfaces to twist operators. Since twist fields are intertwining operators between 
the two sectors of the Hilbert space, their action on the state IS) is, although 
perfectly well defined, not very easily expressed in the formalism as developed up to 
now. As we have seen, the presence of twist fields is responsible for a summation 
over the loop momenta p~,/5 z. So they can be regarded as topological objects 
comparable to extra handles on the Riemann surface. Accordingly we will 
attribute a state IS;a  N) in the Hilbert space of the orbifold theory to the 
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punctured Riemann surface S -  Q with N twist field insertions. By definition we 
have 

N 

tS; o-N> = iq a(Zk,~k)IS>, (6.42) 
k=1 

i.e. the state 12; aN> satisfies for any set of operators At(wt, wt), 

(~A(w,, ~,)k N a(Zk, Zk) ) . (6.43) (ol IqA(w ,  o-N) = _FI 1 

This state is an element of the twisted or untwisted sector depending on whether N 
is odd or even. The untwisted case is completely analogous to (6.41) with the 
appropriate double cover ~ and momentum lattice (5.9). As for the twisted case, we 
now expand go(z) in half-integer modes and write an arbitrary element in the 
twisted Hitbert space as 

2 

[ ~ ) =  • ~'[go+(z);~+(~)]a,[0), (6.44) 
i = 1  

where go +(z) is the creating part of go(z). (Note that the twisted states do not carry 
any definite momentum.) The functionals ~b ~ are related to the state [~) by 

• d z  . dz 
• i[2(z);Z(~)]=(Ol~riexp[i~ni2(z)~go(z)-~-2-~ni2(z)Orp(z)]lfP ) . (6.45) 

This expression is well defined, since both 2(z) and g0(z) are expanded in half-integer 
powers of z. Using the twisted chiral propagator, 

/~(e, ~,) (6.46) w ) =  ' 

we find for IS; o-N), N odd 

[Z;an)=Zqo~ Z Y~ Y~ A~',v[go +(z)]A~;~[go +(z)]o-~lO>, (6.47a) 
i ~,6 p , p  

dz dw o 

xexp[izffp.H.p)+(p.~2(z)v(z)dz)l, (6.74b) 

where all quantities on the right-hand side are those on the branched cover defined 
by the positions of the N +  1 twist fields a(Zk, ~k) and o-~(Q) and the twist structure 
e, 6. The momenta are summed over (5.9). 

An interesting special case is R = 1, N = 1, where IS; a )  is a finite sum with 
chiral components proportional to 

%~pI-2,z)] =exp [~ ~ 2 ~ / ~ w  2(z)2(w,O~wlogEt(z ' w)] 

~z dz 
x ~[/~] ( ~  ~ni2(z)v(z)lH). (6.48) 
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As discussed extensively in [7, 37], this function solves a hierarchy of differential 
equations known as the BKP-hierarchy and is called the BKP z-function. It is 
furthermore shown in [-7, 37] that it is related to the KP z-function [see Eq. (6.13)] 
by 

ZB~p[2(z)] z = const • ZKp[~(~)], (6.49) 

where the KP z-function is defined on 2. Here ~ is the lift of 2 to S and satisfies 
;~0(~))=-,~(~). (Note that locally z~~Z.) At first sight this relation seems very 
mysterious. However, it has a fairly simple physical explanation as follows. The 
chiral state corresponding to the BKP z-function (6.48) describes a chiral Dirac 
fermion,po(z) on S with twisted boundary conditions: when ~po(z) is moved around 
one of the twist fields or twisted cycles it is transformed (modulo a sign) into vpo(z ). 
When we lift this situation to 2 we describe the theory of a "Majorana fermion" 
• pM(~) living on Z, satisfying the reality condition 

~M(~) =*p~(t(~)). (6.50) 

The BKP z-function is obtained from this fermion theory through 

d ~  ^ ~ ~ . ZBKP[2(Z)] = (exp I~ ,~  2(Z)~p~,t(t(Z))~M(Z)] ) (6.51) 

Thus (6.48) has an interpretation as a vacuum state in a real fermion Hilbert space 
[although with modified commutation relations due to the unusual reality 
conditions (6.50)] and is as such an element of the orthogonal grassmannian 
manifold I-7, 37]. Note that the construction makes essential use of the fact that 
has an involutive automorphism t. The KP z-function, on the other hand, 
describes a chiral Dirac fermion ~o(~) on ~ and can be expressed as the expectation 
value 

zKpDT(~)] = / e x p  I~ 2~/)~(~)vpo(~)V0o(~)] ) . (6.52) 

Out of this Dirac fermion tpo(~) we can construct two Majorana fermions of 
the type (6.50) by taking the combinations 

~M,(z3 = ~ [~/,(e) + ~0(e))], 
(6.53) 

1 

The relation (6.49) between (6.51) and (6.52) is now readily verified. 

7 .  C o n c l u s i o n  

In this paper we have given a detailed analysis of c = 1 gaussian conformal field 
theories on arbitrary compact surfaces both within the path-integral and the 
operator formalism. We have calculated their partition and correlation functions 
in terms of quantities developed in the study of Riemann surfaces and their double 
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covers. The resulting expressions proved to be very useful for the study of the 
analytic structure and factorization properties of the theories. 

We have applied the concepts of marginal deformations and multi-critical 
points to the lines of c = 1 t oms  and •2-orbifold theories and demonstrated the 
completeness of this connected set of models. This does not exclude the existence of 
other c = 1 theories outside this set. Indeed three of such models have recently been 
constructed by twisting the SU(2) model by a discrete polyhedral subgroup [38]. 
They do not  admit  marginal  deformations and consequently correspond to 
isolated points in the spectrum of c = 1 conformal field theories. 

As we have seen the class of c = 1 torus and orbifold models both  display many  
nontrivial features and yet admit  an explicit analysis. As such it can serve as a 
playing ground for developing ideas and techniques in conformal field theory in 
general. 
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Note added in proof. Twist field correlators have also been calculated in [40] by a general- 
ization of the methods of [11, 33, 34] to arbitrary Riemann surfaces. 


