A Note on Permutable Subgroups

By

JOHN C. LENNOX and JOHN S. WILSON

1. **Introduction and statement** of results. Let H and K be subgroups of a group G. It is clear that if H and K permute, then their images in the homomorphic images of G permute. Our object in this note is to establish sufficient conditions to ensure that the permutability of H and K follows from the permutability of their images in the finite homomorphic images of G. We state our main result as

Theorem A. *Suppose that H and K are subgroups o/a polycyclic.by-/inite group G. If* $H^{\phi}K^{\phi} = K^{\phi}H^{\phi}$ for all homomorphisms ϕ from G onto finite groups, then $HK = KH$.

A routine argument, similar to that given in [2, Section 7], shows that Theorem A implies the solubility of a decision problem for polycyclic-by-fmite groups:

Corollary A 1. There is an algorithm for deciding whether or not two given subgroups *o/a polycyclic-by.[inite group permute.*

Recalling that a subgroup H of a group G is said to be quasinormal in G if $HK =$ $= KH$ for all subgroups K of G, we may also deduce

Corollary *A 2. A subgroup H of a polycyclie-by-/inite group G is quasinormal in G i/* and only if H^{φ} is a quasinormal subgroup of G^{φ} for all homomorphisms φ from G onto *finite groups.*

The hypothesis that G be polycyclic-by-fmite in Theorem A cannot be replaced either by the condition that G be a finitely generated metabelian group or by the condition that G be a soluble linear group. For let G be the subgroup of $GL(2, \mathbb{Q})$ generated by

 $a = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ and $b = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$.

Then G is metabelian, and for every homomorphism φ from G onto a finite group we have $\langle a \rangle^{\varphi} \langle a \rangle^{\varphi}$ and $\langle a \rangle^{\varphi}$ is certainly quasinormal in G^{φ} . On the other hand, it is easy to verify that $\langle a \rangle \langle b \rangle \neq \langle b \rangle \langle a \rangle$.

In our second theorem, which is proved by combining Theorem A and a theorem of Brewster $[1]$, the condition of Theorem A that G be polyeyclic-by-finite is replaced by conditions on the subgroups H and K and on their embedding in G :

Theorem B. Suppose that H and K are subnormal subgroups of their join G and that *the derived quotient groups H/H' and K/K' of H and K are finitely generated. If H* $\Phi \n\mathbb{K}^{\varphi} =$ $= K^{\varphi} H^{\varphi}$ for all homomorphisms φ from G onto finite nilpotent groups, then $HK = KH$.

Brewster's theorem asserts that two arbitrary subnormal subgroups permute if their images in all nilpotent images of their join permute. Thus in the situation of Theorem B we may restrict attention to the ease in which G is nilpotent. Since *H/H'* and *K/K'* are finitely generated, so is *GIG',* and therefore, by a result of Baer [3, p. 55], so is G . Thus G is polycyclic and Theorem B follows, once we have proved Theorem A.

Of course the condition on H/H' and K/K' in Theorem B can be relaxed a little: all that is needed is that G/G' be finitely generated. However the restriction cannot be removed entirely. This may be seen, for example, by considering the group of 3×3 upper unitriangular matrices over the rationals and two suitable subgroups; of course this group has no non-trivial finite images.

A routine argument shows that Theorem B, like Theorem A, implies the solubility of a decision problem:

Corollary B. There is an algorithm for deciding whether or not two subnormal sub*groups with finitely generated derived quotient groups o/an arbitrary group permute.*

2. Proof of Theorem A. We show first of all that Theorem A follows from

Theorem A*. *Suppose that H and K are subgroups of a polycyclic-by-/inite group G* and that $G = HKN$ for all normal subgroups N of finite index in G. Then $G = HK$.

In order to achieve this reduction we need the

Lemma. Suppose that J is any subgroup of a polycyclic-by-finite group G . If K is a subgroup of finite index in J , then there exists a subgroup L of finite index in G such *that* $J \cap L = K$.

This Lemma is an easy corollary to the theorem of Mal'cev $[2,$ Theorem 6], that if K is a subgroup of a polycyclic-by-finite group G then K is the intersection of all the subgroups of finite index in G which contain K .

Assume now that Theorem A^* holds, and suppose that H, K are subgroups of a polycyclic by finite group G such that $H^{\varphi}K^{\varphi} = K^{\varphi}H^{\varphi}$ for all homomorphisms from G onto finite groups. It follows at once that $HKN = KHN$ for all normal subgroups N of finite index in G. We set $J = \langle H, K \rangle$ and suppose that M is a normal subgroup of finite index in J . By the Lemma there exists a subgroup L of finite index in G such that $J \cap L = M$. The normal interior N of L in G has finite index in G and so $KHN =$ $= HKN$. Hence

$$
J=HK(N\cap J)\leq HKM,
$$

so that $J = HKM$. Therefore J satisfies the hypothesis of Theorem A^* , and $J = HK$.

We now proceed with the proof of Theorem A^* . Suppose the result is false and let G be a counterexample of least Hirsch number $h = h(G)$. Then $h \geq 1$.

We first establish

 (i) *if* N is an infinite normal subgroup of G, then HN has finite index in G.

For let $J = HN$, and suppose L is a normal subgroup of finite index in J. Then $N^m \leq L$ for some integer m, and $N^m + 1$ since N is infinite. Also $h(G/N^m) < h$, and since the hypotheses pass to homomorphic images of G the minimality of h yields $G=HNmK$. Therefore

$$
J = H N^m(K \cap J) = H(K \cap J) L.
$$

If $h(J) < h$ we conclude that $J = H(K \cap J)$ and that $G = JK = HK$, a contradiction. Thus $h(J) = h$, and J has finite index in G.

The above argument also shows that

(2) *i/ N is an in/inite normal subgroup o/G, then the group HN and subgroups H* and $(HN) \cap K$ provide a counterexample to Theorem A^* .

Writing F for the Fitting subgroup of G , we next prove

 $(H \cap F \text{ is finite.}$

Suppose that this is not the case; then F is infinite and nilpotent, and its centre A is an infinite normal subgroup of G . Furthermore

$$
M = (H \cap F)^J = (H \cap F)^H
$$

is infinite and normal in the subgroup $J=HA$. By (2), J and its subgroups H and $K \cap J$ inherit the conditions of Theorem A*, and these conditions pass to the quotient group J/M . Because $h(J/M) < h$, it follows that J/M is the product of its subgroups H/M and $(K \cap J)$ M/M , and that $J = H(K \cap J)$. Thus $G = JK = HK$, a contradiction.

Since polycyclie groups are nilpotent by Abelian by finite ([3, 3.25]), it follows from (3) that H is finite by Abelian by finite, and therefore Abelian by finite. Similarly $K \cap F$ is finite and K is Abelian by finite.

Because G is infinite, there is a free Abelian normal subgroup $M + 1$ of G. Using (2) with the roles of H and K interchanged, we may suppose that $G = MK$. We assert that H acts rationally irreducibly on M by conjugation; it then follows a fortiori that K acts rationally irreducibly on M . Let

$$
1 + B = B^H \leq M;
$$

then B is an infinite normal subgroup of *MH,* and (1), applied to *MH* and its subgroups H and $K \cap (MH)$, implies that $|MH: BH|$ is finite. Thus $|M: B(M \cap H)|$ is finite, and since obviously $M \leq F$, we conclude from (3) that $|M : B|$ is finite.

None of our hypotheses or conclusions above are altered if we pass to the quotient group of G by the normal interior of K; thus we may suppose that K acts faithfully by conjugation on M.

Let H_0 and K_0 be Abelian normal subgroups of finite index in H , K respectively, and set $n = |H:H_0| |K:K_0|$. Let p be a prime not dividing n, and let M_1 be a normal subgroup of G maximal subject to

 $M^p \leq M_1 < M$.

Writing $C = c_K(M/M_1)$, we have $M_1C \leq G$. We denote by bars factor groups modulo M_1C . Clearly \bar{G} is a split extension of \bar{M} by \bar{K} .

Now \bar{K}_0 is Abelian and acts faithfully on the irreducible (or trivial) K-module \bar{M} , so that \bar{K}_0 is a p'-group. Hence \bar{K} is a Hall p'-subgroup of \bar{G} . Further $\bar{G} = H\bar{K}$, so that $|~H\overline{M} : \overline{H}~|~$ divides $|~H\overline{K} : \overline{H}~|$. But $|~H\overline{M} : \overline{H}~|$ is equal to $|~\overline{M} : \overline{M}~\cap~\overline{H}~|$, a power of p, while $|H\bar{K}: H|$ is equal to $|K:\bar{K}\cap H|$, a p'-number; therefore $H\bar{M} = H$ and $\bar{M} \leq H$. Because $|H/H_0|$ divides *n*, it follows further that $|M|$ divides $|H_0|$ and that $\bar{M} \leq H_0$. Hence

$$
[\bar{M}, H_0] \leqq [H_0, H_0] = 1,
$$

and $[M, H_0] \leq M_1$.

Because we may perform this argument for infinitely many primes p , the subgroup $[M, H_0]$ must have infinite index in M. But $[M, H_0]$ is H-invariant, and therefore is trivial. Thus, since M coincides with its centralizer in G, we must have $H_0 \leq M \cap H$, which is trivial by (3). Therefore H is finite. By (1), $|G : MH|$ is finite, and so $|G : M|$ is finite. Since $M \cap K = 1$, it follows that K also is finite. We conclude that the set HK is finite. Because G is infinite and residually finite, there is a finite image of G of order greater than $\mid HK \mid$, and this certainly cannot be the product of images of H and K. This contradiction completes the proof of Theorem A^* and therefore of Theorem A.

References

- [1] D. BREWSTER, A criterion for the permutability of subnormal subgroups. J. Algebra 36, 85--87 (1975).
- [2] A. I. MAL'CEV, Homomorphisms onto finite groups. Ivanov. gosudarst. ped. Inst., učenye Zap, fiz-mat. Nauk 18, 49-60 (1958).
- [3] D. J. S. ROBINSON, Finiteness conditions and generalised soluble groups, Part 1. Berlin-Heidelberg-New York 1972.

Eingegangen am 1.9. 1975

Anschrift der Autoren:

John C. Lennox Department of Pure Mathematics University College Cardiff, Great Britain

John S. Wilson Christ's College Cambridge Great Britain