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Abstract. Cellular automata are discrete dynamical systems, of simple 
construction but complex and varied behaviour. Algebraic techniques are used 
to give an extensive analysis of the global properties of a class of finite cellular 
automata. The complete structure of state transition diagrams is derived in 
terms of algebraic and number theoretical quantities. The systems are usually 
irreversible, and are found to evolve through transients to attractors consisting 
of cycles sometimes containing a large number of configurations. 

I. Introduction 

In the simplest case, a cellular automaton consists of a line of sites with each site 
carrying a value 0 or 1. The site values evolve synchronously in discrete time steps 
according to the values of their nearest neighbours. For example, the rule for 
evolution could take the value of a site at a particular time step to be the sum 
modulo two of the values of its two nearest neighbours on the previous time step. 
Figure 1 shows the pattern of nonzero sites generated by evolution with this rule 
from an initial state containing a single nonzero site. The pattern is found to be self- 
similar, and is characterized by a fractal dimension log2 3. Even with an initial state 
consisting of a random sequence of 0 and 1 sites (say each with probability ½), the 
evolution of such a cellular automaton leads to correlations between separated 
sites and the appearance of structure. This behaviour contradicts the second law of 
thermodynamics for systems with reversible dynamics, and is made possible by the 
irreversible nature of the cellular automaton evolution. Starting from a maximum 
entropy ensemble in which all possible configurations appear with equal 
probability, the evolution increases the probabilities of some configurations at the 
expense of others. The configurations into which this concentration occurs then 
dominate ensemble averages and the system is "organized" into having the 
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Fig. 1. Example of evolution of a one-dimensional cellular automaton with two possible values at 
each site. Configurations at successive time steps are shown as successive lines. Sites with value one 
are black; those with value zero are left white. The cellular automaton rule illustrated here takes 
the value of a site at a particular time step to be the sum modulo two of the values of its two nearest 
neighbours on the previous time step. This rule is represented by the polynomial T(x) = x + x- 1 
and is discussed in detail in Sect. 3 

properties of these configurations. A t'mite cellular automaton with N sites 
(arranged for example around a circle so as to give periodic boundary conditions) 
has 2 N possible distinct configurations. The global evolution of such a cellular 
automaton may be described by a state transition graph. Figure 2 gives the state 
transition graph corresponding to the cellular automaton described above, for the 
cases N = 11 and N = 12. Configurations corresponding to nodes on the periphery 
of the graph are seen to be depopulated by transitions; all initial configurations 
ultimately evolve to configurations on one of the cycles in the graph. Any finite 
cellular automaton ultimately enters a cycle in which a sequence of configurations 
are visited repeatedly. This behaviour is illustrated in Fig. 3. 

Cellular automata may be used as simple models for a wide variety of physical, 
biological and computational systems. Analysis of general features of their 
behaviour may therefore yield general results on the behaviour of many complex 
systems, and may perhaps ultimately suggest generalizations of the laws of 
thermodynamics appropriate for systems with irreversible dynamics. Several 
aspects of cellular automata were recently discussed in [1], where extensive 
references were given. This paper details and extends the discussion of global 
properties of cellular automata given in [-1]. These global properties may be 
described in terms of properties of the state transition graphs corresponding to the 
cellular automata. 

This paper concentrates on a class of cellular automata which exhibit the 
simplifying feature of "additivity". The configurations of such cellular automata 
satisfy an "additive superposition" principle, which allows a natural represen- 
tation of the configurations by characteristic polynomials. The time evolution of 
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Fig. 2. Global state transition diagrams for finite cellular automata with size N and periodic 
boundary conditions evolving according to the rule T(x)=x+x -1, as used in Fig. 1, and 
discussed extensively in Sect. 3. Each node in the graphs represents one of the 2 N possible 
configurations of the N sites. The directed edges of the graphs indicate transitions between these 
configurations associated with single time steps of cellular automaton evolution. Each cycle in the 
graph represents an "attractor" for the configurations corresponding to the nodes in trees rooted 
on it 
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the configurations is represented by iterated multiplication of their characteristic 
polynomials by fixed polynomials. Global properties of cellular automata are then 
determined by algebraic properties of these polynomials, by methods analogous to 
those used in the analysis of linear feedback shift registers [2, 3]. Despite their 
amenability to algebraic analysis, additive cellular automata exhibit many of the 
complex features of general cellular automata. 

Having introduced notation in Sect. 2, Sect. 3 develops algebraic techniques 
for the analysis of cellular automata in the context of the simple cellular automaton 
illustrated in Fig. 1. Some necessary mathematical results are reviewed in the 
appendices. Section 4 then derives general results for all additive cellular 
automata. The results allow more than two possible values per site, but are most 
complete when the number of possible values is prime. They also allow influence 
on the evolution of a site from sites more distant than its nearest neighbours. The 
results are extended in Sect. 4D to allow cellular automata in which the sites are 
arranged in a square or cubic lattice in two, three or more dimensions, rather than 
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Fig, 3. Evolution of  cellular automata with N sites arranged in a circle (periodic boundary 
conditions) according to the rule qF(x) = x + x 1 (as used in Fig. 1 and discussed in Sect. 3). Finite 
cellular automata such as these ultimately enter cycles in which a sequence of configurations are 
visited repeatedly. This behaviour is evident here for N = 12, 63, and 192. For  N = 71, the cycle has 
length 235 -- I 
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just on a line. Section 4E then discusses generalizations in which the cellular 
automaton time evolution rule involves several preceding time steps. Section 4F 
considers alternative boundary conditions. In all cases, a characterization of the 
global structure of the state transition diagram is found in terms of algebraic 
properties of the polynomials representing the cellular automaton time evolution 
rule. 

Section 5 discusses non-additive cellular automata, for which the algebraic 
techniques of Sects. 3 and 4 are inapplicable. Combinatorial methods are 
nevertheless used to derive some results for a particular example. 

Section 6 gives a discussion of the results obtained, comparing them with those 
for other systems. 

2. Formalism 

We consider first the formalism for one-dimensional cellular automata in which 
the evolution of a particular site depends on its own value and those of its nearest 
neighbours. Section 4 generalizes the formalism to several dimensions and more 
neighbours. 

We take the cellular automaton to consist of N sites arranged around a circle 
(so as to give periodic boundary conditions). The values of the sites at time step t 
are denoted ag~, ..., a(~ ~_ 1. The possible site values are taken to be elements of a 
finite commutative ring IRk with k elements. Much of the discussion below 
concerns the case IRk = Zk, in which site values are conveniently represented as 
integers modulo k. In the example considered in Sect. 3, IR k = •2, and each site 
takes on a value 0 or 1. 

The complete configuration of a cellular automaton is specified by the values of 
its N sites, and may be represented by a characteristic polynomial (generating 
function) (cf. [2, 3]) 

N - 1  

A(°(x) = Z a} ~xi, (2.1) 
i = 0  

where the value of site i is the coefficient of x i, and all coefficients are elements of the 
ring P~k. We shall often refer to configurations by their corresponding character- 
istic polynomials. 

It is often convenient to consider generalized polynomials containing both 
positive and negative powers of x: such objects will be termed "dipolynomials". In 
general, H(x) is a dipolynomiat if there exists some integer m such that xmH(x) is an 
ordinary polynomial in x. As discussed in Appendix A, dipolynomials possess 
divisibility and congruence properties analogous to those of ordinary 
polynomials. 

Multiplication of a characteristic polynomial A(x) by x +-j yields a dipoly- 
nomial which represents a configuration in which the value of each site has been 
transferred (shifted) to a sitej places to its right (left). Periodic boundary conditions 
in the cellular automaton are implemented by reducing the characteristic 
dipolynomial modulo the fixed polynomial x N -  1 at all stages, according to 

N - 1  

~, alx i mod(x N -  i )=  Z (Y.ai+ iN) xi. (2.2) 
i i = 0 \ j  / 
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Note that any dipolynomial is congruent modulo (x N -  1) to a unique ordinary 
polynomial of degree less than N. 

In general, the value a~ ') of a site in a cellular automaton is taken to be an 
arbitrary function of the values ,,(t-1) a(t- 1) and ,~('- 1) ~ -  1 , --~ , ~+ 1 at the previous time step. 
Until Sect. 5, we shall consider a special class of "additive" cellular automata 
which evolve with time according to simple linear combination rules of the form 
(taking the site index i modulo N) 

/ # -  t )  - t -  ,~, , . ~ ( t -  1 )  _1_ ~, ~(t - 1) (2.3) a l t ) : o ~ _ l U i _ l  r ~ o u  i / ~ + l U i + l  

where the ~j are fixed elements of IRk, and all arithmetic is performed in IR k. This 
time evolution may be represented by multiplication of the characteristic 
polynomial by a fixed dipolynomial in x, 

T(x) = ~_ ix + ~0 + ~ + ix -  1 (2.4) 

according to 

A(°(x) -=']F(x)A (t- 1)(x) mod(x N -  1), (2.5) 

where arithmetic is again performed in IRk. Additive cellular automata obey an 
additive superposition principle which implies that the configuration obtained by 
evolution for t time steps from an initial configuration A(°)(x) + B(°)(x) is identical 
to Am(x) + Bin(x), where Am(x) and Bin(x) are the results of separate evolution of 
A(°)(x) and B(°)(x), and all addition is performed in IRk. Since any initial 
configuration can be represented as a sum of "basis" configurations A(x)=xJ 
containing single nonzero sites with unit values, the additive superposition 
principle determines the evolution of all configurations in terms of the evolution of 
A(x). By virtue of the cyclic symmetry between the sites it suffices to consider the 
case j = 0. 

3. A Simple Example  

A. Introduction 
This section introduces algebraic techniques for the analysis of additive cellular 
automata in the context of a specific simple example. Section 4 applies the 
techniques to more general cases. The mathematical background is outlined in the 
appendices. 

The cellular automaton considered in this section consists of N sites arranged 
around a circle, where each site has value 0 or 1. The sites evolve so that at each 
time step the value of a site is the sum modulo two of the values of its two nearest 
neighbours at the previous time step: 

al ° =  ,i"(t- 11)-~i+1 ~- ,,(t- 1.) mod2.  (3.1) 

This rule yields in many respects the simplest non-trivial cellular automaton. It 
corresponds to rule 90 of [1], and has been considered in several contexts 
elsewhere (e.g. [4]). 

The time evolution (3.1) is represented by multiplication of the characteristic 
polynomial for a configuration by the dipolynomial 

T(x) = x + x -  1 (3.2) 
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according to Eq. (2.5). At each time step, characteristic polynomials are reduced 
modulo x N -  1 (which is equal to xN+ 1 since all coefficients are here, and 
throughout this section, taken modulo two). This procedure implements periodic 
boundary conditions as in Eq. (2.2) and removes any inverse powers of x. 

Equation (3.2) implies that an initial configuration containing a single nonzero 
site evolves after t time steps to a configuration with characteristic dipolynomial 

x-  1)~= i x2i-~" (3.3) I t (x ) ' 1  = (x + i 

For t < N / 2  (before "wraparound" occurs), the region of nonzero sites grows 
linearly with time, and the values of sites are given simply by binomial coefficients 
modulo two, as discussed in [1] and illustrated in Fig. 1. (The positions of nonzero 
sites are equivalently given by + 2 j' + 2 ~2_+ .... where the Jl give the positions of 
nonzero digits in the binary decomposition of the integer t.) The additive 
superposition property implies that patterns generated from initial configurations 
containing more than one nonzero site may be obtained by addition modulo two 
(exclusive disjunction) of the patterns (3.3) generated from single nonzero sites. 

B. Irreversibility 

Every configuration in a cellular automaton has a unique successor in time. A 
configuration may however have several distinct predecessors, as illustrated in the 
state transition diagram of Fig. 2. The presence of multiple predecessors implies 
that the time evolution mapping is not invertible but is instead "contractive". The 
cellular automaton thus exhibits irreversible behaviour in which information on 
initial states is lost through time evolution. The existence of configurations with 
multiple predecessors implies that some configurations have no predecessors 1. 
These configurations occur only as initial states, and may never be generated in the 
time evolution of the cellular automaton. They appear on the periphery of the state 
transition diagram of Fig. 2. Their presence is an inevitable consequence of 
irreversibility and of the finite number of states. 

Lemma 3.1. Configurations containing an odd number of sites with value 1 can 
never be generated in the evolution of  the cellular automaton defined in Sect. 3A, and 
can occur only as initial states. 

Consider any configuration specified by characteristic polynomial A(°)(x). The 
successor of this configuration is Am(x)  = T(x)A(°)(x) = (x + x -  1)A(°)(x), taken, as 
always, modulo x N -  1. Thus 

a(a)(x) = (x 2 + 1)B(x) + R(x) (x N -  1) 

for some dipolynomials R(x) and B(x). Since x2+ 1 = x  N -  1 =0  for x =  1, 
A(~)(1) = 0. Hence A(l)(x) contains an even number of terms, and corresponds to a 
configuration with an even number of nonzero sites. Only such configurations can 
therefore be reached from some initial configuration A~°)(x). 

An extension of this lemma yields the basic theorem on the number of 
unreachable configurations: 

1 Such configurations have been termed "Gardens of Eden" [5] 
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Theorem 3.1. The fraction of the 2 N possible configurations of a size N cellular 
automaton defined in Sect. 3A which can occur only as initial states, and cannot be 
reached by evolution, is 1/2 for N odd and 3/4 for N even. 

A configuration A~l)(x) is reachable after one time step of ceIlular automaton 
evolution if and only if for some dipolynomial A(°)(x), 

A(1)(x) -T(x )A(° ) (x )  - (x + x -  1)A(°)(x) mod(x N - 1), (3.4) 

so that 

A(1)(x) = (x 2 + 1)B(x) + R(x) (x Iv-  1) (3.5) 

for some dipolynomials R(x) and B(x). To proceed, we use the factorization of 
(x N -  1) given in Eq. (A.7), and consider the cases N even and N odd separately. 

(a) N even. Since by Eq.(A.4), (x2+ 1 )= (x+  1)2=(x - 1) 2 (taken, as always, 
modulo 2), and by Eq. (A.7), 

( x -  1) 2 I(x ~/2 - 1) 2 = (x ~ -  1) 

for even N, Eq. (3.5) shows that 

(x  - 1) 2 [ A(1)(x)  

in this case. But since ( x -  1) 2 contains a constant term, A ° ) ( x ) / ( x -  1) 2 is thus an 
ordinary polynomial if A(~)(x) is chosen as such. Hence all reachable configura- 
tons represented by a polynomial A(*)(x) are of the form 

A(1)(x) = (X -- 1)2C(x), 

for some polynomial C(x). The predecessor of any such configuration is xC(x), so 
any configuration of this form may in fact be reached. Since degA(x) < N, deg C(x) 
< N -  2. There are thus exactly 2 N 2 reachable configurations, or 1/4 of all the 2 N 
possible configurations. 

(b) N odd. Using Lemma 3.1 the proof for this case is reduced to showing that 
all configurations containing an even number of nonzero sites have predecessors. 
A configuration A (1)(x) with an even number of nonzero sites can always be written 
in the form (x + 1)D(x). But 

A ( 1 ) ( x ) = ( x + l ) D ( x ) = ( x + x - 1 ) ( x i + x 4 +  ... +XN-1)D(x) mod(xN-- 1) 

=_qF(x)(x2+x4+ ... +x•" l)D(x) mod(xN-- 1), 

giving an explicit predecessor for A(*)(x). 
The additive supcrposition principle for the cellular automaton considered in 

this section yields immediately the result: 

Lemma 3.2. Two configurations A(°)(x) and B~°)(x) yield the same configura- 
tion C(x)=T(x)A(°)(x)--7£(x)B (°) after one time step in the evolution of the cel- 
lular automaton defined in Sect. 3A if and only if A(°)(x) = B(°)(x) + Q(x), where 
T(x)Q(x)=-o. 
Theorem 3.2. Configurations in the cellular automaton defined in Sect. 3A which 
have at least one predecessor have exactly two predecessors for N odd and exactly 
four for N even. 
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This theorem is proved using Lemma 3.2 by enumeration of configurations 
Q(x) which evolve to the null configuration after one time step. For N odd, only the 

x ~¢- 1 
configurations 0 and 1 + x  + ... + x  N - l =  (corresponding to site values 

x - t  
11111 ...) have this property. For N even, Q(x) has the form 

x N -  1 
(1 + x  2 + ... + xN- 2)Si(x)- x2 - 1 St(x), 

where the St(x) are the four polynomials of degree less than two. Explicitly, the 
possible forms for Q(x) are 0, l + x 2 +  ... + x N-a, x + x3 + ... + x N-l,  and 
l + x + x Z +  ... + x  N-1. 

C. Topology of the State Transition Diagram 

This subsection derives topological properties of the state transition diagrams 
illustrated in Fig. 2. The results determine the amount and rate of "information 
loss" or "self organization" associated with the irreversible cellular automaton 
evolution. 

The state transition network for a celtular automaton is a graph, each of whose 
nodes represents one of the possible cellular automaton configurations. Directed 
arcs join the nodes to represent the transitions between cellular automaton 
configurations at each time step. Since each cellular automaton configuration has 
a unique successor, exactly one arc must leave each node, so that all nodes have 
out-degree one. As discussed in the previous subsection, cellular automaton 
configurations may have several or no predecessors, so that the in-degrees of nodes 
in the state transition graph may differ. Theorems 3.1 and 3.2 show that for N odd, 
1/2 of all nodes have zero in-degree and the rest have in-degree two, while for N 
even, 3/4 have zero in-degree and 1/4 in-degree four. 

As mentioned in Sect. 1, after a possible "transient", a cellular automaton 
evolving from any initial configuration must ultimately enter a loop, in which a 
sequence of configurations are visited repeatedly. Such a loop is represented by a 
cycle in the state transition graph. At every node in this cycle a tree is rooted; the 
transients consist of transitions leading towards the cycle at the root of the tree. 

Lemma 3.3. The trees rooted at all nodes on all cycles of the state transition 9raph 
for the cellular automaton defined in Sect. 3A are identical. 

This result is proved by showing that trees rooted on all cycles are identical to 
the tree rooted on the null configuration. Let A(x) be a configuration which 
evolves to the null configuration after exactly t time steps, so that T(x)tA(x) 
- 0 mod(x N - 1). Let R(x) be a configuration on a cycle, and let R (- t)(x) be another 
configuration on the same cycle, such that T(x)tR (-t)(x) --- R(x) mod(x N - I). Then 

define ~R(x)[A(x)] = A(x) + e (- t)(x). 

w e  first show that as A(x) ranges over all configurations in the tree rooted on the 
null configuration, 7~R(x) [A(x)] ranges over all configurations in the tree rooted 
at R(x). Since 

T(x) t 7sR(x)[A (x)] = T(x)tA(x) + T(x)tR (- t)(x) = R(x) rood (x u -  1), 



228 O. Martin, A. M. Odlyzko, and S. Wolfram 

it is clear that all configurations 7~n~x)[A(x)] evolve after t time steps [where the 
value of t depends on A(x)] to R(x). To show that these configurations lie in the 
tree rooted at R(x), one must show that their evolution reaches no other cycle 
configurations for any s < t. Assume this supposition to be false, so that there exists 
some m :# 0 for which 

R<")(x) =-T(x)~PR~x)[A(x)] =T(x)~A(x) + R~-t)(x) mod(x N -  1). 

Since T(x)tA(x) =- 0 mod (x N - 1), this would imply R (t-~ -")(x) = R(°)(x) = R(x), or 
R (- m)(x) = R ~-t)(x). But R(-m)(x)-  R (~-t)(x) =_T(x)SA(x), and by construction 
T(x)~A(x) =~ 0 for any s < t, yielding a contradiction. Thus ~n(x) maps configura- 
tions at height t in the tree rooted on the null configuration to configurations at 
height t in the tree rooted at R(x), and the mapping gt is one-to-one. An analogous 
argument shows that T is onto. Finally one may show that 7 j preserves the time 
evolution structure of the trees, so that if T(x)A(°)(x)= A(1)(x), then 

T(x) ~R~x)[A(°)(x)] = ~'R~)[A~I)(x)], 

which follows immediately from the definition of 7Z Hence T is an isomorphism, 
so that trees rooted at cycle configurations are all isomorphic to that rooted at the 
null configuration. 

Notice that this proof  makes no reference to the specific form (3.2) chosen for 
T(x)  in this section; Lemma 3.3 thus holds for any additive cellular automaton. 

Theorem 3.3. For N odd, a tree consisting of a single arc is rooted at each node on 
each cycle in the state transition graph for the cellular automaton defined in 
Sect. 3A. 

By virtue of Lemma 3.3, it suffices to show that the tree rooted on the null 
configuration consists of a single node corresponding to the configuration 
11 t . . .  I 1 i. This configuration has no predecessors by virtue of Lemma 3.1. 

Corollary. For N odd, the fraction of the 2 N possible configurations which may occur 
in the evolution of the cellular automaton defined in Sect. 3A is 1/2 after one or more 
time steps. 

The "distance" between two nodes in a tree is defined as the number of arcs 
which are visited in traversing the tree from one node to the other (e.g. [6]). The 
"height" of a (rooted) tree is defined as the maximum number of arcs traversed in a 
descent from any leaf or terminal (node with zero in-degree) to the root  of the tree 
(formally node with zero out-degree). A tree is "balanced" if all its leaves are at the 
same distance from its root. A tree is termed "quaternary" ("binary") if each of its 
non-terminal nodes has in-degree four (two). 

Let D2(N) be the maximum 2 i which divides N (so that for example D2(t 2) = 4). 

Theorem 3.4. For N even, a balanced tree with height D2(N)/2 is rooted at each node 
on each cycle in the state transition graph for the cellular automaton defined in Sect. 
3A; the trees are quaternary, except that their roots have in-degree three. 

Theorem 3.2 shows immediately that the tree is quaternary. In the proof  of 
Theorem 3.1, we showed that a configuration Ql(x) can be reached from some 
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configuration Qo(x) if and only if (1 + x2)lQl(x); Theorem 3.2 then shows that if 
Ql(x) is reachable, it is reachable from exactly four distinct configurations Qo(x). 
We now extend this result to show that a configuration Q,~(x) can be reached from 
some configuration Qo(x) by evolution for m time steps, with m < Dz(N)/2, if and 
only if (t + x2)mlQcra(x). To see this, note that if 

Q~(x) =--T (x)~Qo(x) mod(x N-  1), (3.6) 

then 
(x N-  1) t Q,,(x) + (x 2 + 1)"x N mQo(x), (3.7) 

and so, since by Eq. (A.7), (x2+ 1)ml(x N-  1) for m < D2(N)/2, it follows that 

(x2+ 1)" t Q,,(x) (3.8) 

for m<Dz(N)/2. On the other hand, if(x 2 + 1)mtQm(x), say Qm(x) =(x 2 + 1)"Qo(x), 
then Q,,(x)= T(x)mx~Qo(X ), which shows that Qm(x) is reachable in m steps. 
The balance of the trees is demonstrated by showing that for m < D2(N)/2, if 
(x 2 + 1)mlQ,,(x), then Qm(x) can be reached from exactly 4" initial configurations 
Qo(X). This may be proved by induction on m. If 

(l+x2)mlQm(x) ( l<m<O2(N)/2) ,  

then all of the four states Qm- 1 (x) from which Q~(x) may be reached in one step 
satisfy (xZ+ l)'n-IlQ,,_ ~(x). Consider now the configurations Q(x) which satisfy 

(x 2 + 1)D2(N)/2 1Q(x). (3.9) 

If we write Q(x) = (x + 1)D~(mR(x), then as in Theorem 3.2, the four predecessors of 
Q(x) are exactly 

(XN/2-- 1"~ 2 
Q_ l(X) = (X + 1) °~(m- 2R*(x) + \ - - ~ i - -  1 J S,(x), (3.10) 

where xR(x) =- R*(x) mod(x N-  1). Si(x) ranges over the four polynomials of degree 
less than two, as in Theorem 3.2. Exactly one of these polynomials satisfies 
Eq. (3.9), whereas the other three satisfy only 

(x+ 1)D2(N)- 2 1 Q_ l(x). 

Any state satisfying Eq. (3.9) thus belongs to a cycle, since it can be reached after an 
arbitrary number of steps. Conversely, since any cycle configuration must be 
reachable after D2(N)/2 time steps, any and all configurations Q_ l(x) satisfying 
Eq. (3.9) are indeed on cycles. But, as shown above, the three Q_ ~(x) which do not 
satisfy Eq. (3.9) are roots of balanced quaternary trees of height D2(N)/2-1. The 
proof of the theorem is thus completed. 

Corollary. For N even, a fraction 4-t of the 2 N possible configurations appear after t 
steps in the evolution of the cellular automaton defined in Sect. 3 A for t < D 2( N)/2. A 
fraction 2 -D~(N) of the configurations occur in cycles, and are therefore generated at 
arbitrarily large times. 

CorolLary. All configurations A (x) on cycles in the cellular automaton of Sect. 3 A are 
divisible by (1 + x) D2(N). 
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This result follows immediately from the proof of Theorems 3.3 and 3.4. 
Entropy may be used to characterize the irreversibility of cellular automaton 

evolution (cf. [ 1]). One may define a set (or topological) entropy for an ensemble of 
configurations i occurring with probabilities A according to 

1 
s = ~log2 ~ 0(A), (3.11) 

where O(p)= 1 for p > 0, and 0 otherwise. One may also define a measure entropy 

1 
sl, = - ~ ~ Pi log2pi • (3.12) 

For a maximal entropy ensemble in which all 2 N possible cellular automaton 
configurations occur with equal probabilities, 

s=su= l . 

These entropies decrease in irreversible cellular automaton evolution, as the 
probabilities for different configurations become unequal. However, the balance 
property of the state transition trees implies that configurations either do not 
appear, or occur with equal nonzero probabilities. Thus the set and measure 
entropies remain equal in the evolution of the cellular automaton of Sect. 3A. 
Starting from a maximal entropy ensemble, both nevertheless decrease with time t 
according to 

s(t)=s.(t)= l-2t/N, 0_<t_<D2(N)/2, 

s(O = s,(O = 1 - Dz(N)/N,  t > D2(N)/2. 

D. Maximal Cycle Lengths 

Lemma 3.4. The lengths of all cycles in a cellular automaton of size N as defined in 
Sect. 3A divide the length II N of the cycle obtained with an initial configuration 
containing a single site with value one. 

This follows from additivity, since any configuration can be considered as a 
superposition of configurations with single nonzero initial sites. 

Lemma 3.5. For the cellular automaton defined in Sect. 3A, with N of the form 2 j, 
HN= 1. 

In this case, any initial configuration evolves ultimately to a fixed point 
consisting of the null configuration, since 

(X+X-1)2q=_(x2J+x-ZJ)--(XN+X-N)--O mod(xN-- 1). 

Lemma 3.6. For the cellular automaton defined in Sect. 3A, with N even but not of 
the form 2 j, IIu = 2 HN/~. 

A configuration A(x) appears in a cycle of length ~ if and only if 

X£(x)~A(x)= A(x) mod(x N -  t), 
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and therefore 

(x N -  1)i [(x 2 + 1)~+ x~]A(x). 

After t time steps, the configuration obtained by evolution from an initial state 
containing a single nonzero site is (x+x-~) t ;  by Theorems 3.3 and 3.4 and 
the additive superposition principle, the configuration 

A(x) - (x + x -  1),c,~{m/2 
is therefore on the maximal length cycle. Thus the maximal per iod/ /N is given by 
the minimum rc for which 

(x N -  1) t [(x a + t ) ' + x  "] ( x +  1) D~(m , 

and so 

tX n -- 1 ~D2(N) 
x +  1 / I [ (x2+ 1)n~'+xn~'], (3.13) 

with N=D2(N)n,  n odd. Similarly, 

(x N/2- 1) I [(x2 + 1)n~/2 + x nz~/2] (x + 1) °2(N/2) , 
(3.14) 

x--+T/ t [(x 2 + 1) ""2 + x " ~ q ,  

Squaring this yields 

x + l  / ][(x2+l)2rlN/Z+X211N/2]' 

from which it follows that 

//N 12//~/2. (3.15) 

Since x ~ - 1 divides [(x 2 + 1) n'~ + x nN] (x + 1) °~{m, so does its square root, x Ntz - 1, 
and therefore 

//N/2 [HN. (3.16) 

Combining Eqs. (3.15) and (3.16) implies that either HN = 2HN/2 or HN = HN/2. To 
exclude the latter possibility, we use derivatives. Using Eq. (A.6), and the fact that 
the derivative of x2+ t vanishes over GF(2), one obtains from (3.13), 

x ~ -  1 

I f / / N  were odd, the right member would be non-trivial, and the divisibility 
condition could not hold. Thus H N must be even. But then the right member of 
(3.13) is a perfect square, so that 

( x +  1~7~)I2J I [( x2 + 1) m</2 + xrs~12] 2. 

Thus HNI2iIINI2, and the proof is complete. 
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Theorem3.5. For the cellular automaton defined in Sect. 3A, with N odd, 
IInIFI~ =2 s°~dN(2) - 1 where sordN(2) is the multipticative "sub-order" function of 2 
modulo N, defined as the least integer j such that 2 ~ = + 1 modN. (Properties of the 
suborder functions are discussed in Appendix B.) 

By Lemma 3.t, an initial configuration containing a single nonzero site 
cannot be reached in cellular automaton evolution. The configuration 
(x + x - 1) mod(x N_ 1) obtained from this after one time step can be reached, and in 
fact appears again after 2 s°~d'~(2)- 1 time steps, since 

qr(x) 2~°~d~ '~'1 -- (x + x -  1)2sord~ ,~,_ (x2~O~ ,~) + x - 2so~,~,~ ,~,) 

=_(x±l+x-V-1)=(x+x-1) mod(xN-  1). 

The maximal cycle lengths H~¢ for the cellular automaton considered in this 
section are given in the first column of Table 1. The values are plotted as a function 
of N in Fig. 4. Table 1 together with Table 4 show that/ /N = / / *  for almost all odd 
N. The first exception appears for N=37 ,  where 11N=I1"/3; subsequent 
exceptions a r e  FI95=FI~5/3 , / / 1 0 t = / / ~ O l / 3 ,  H141=.I-1"41/3, / - / 1 9 7 = / / ' 9 7 / 3 ,  

//199 =H1"99/7, [/203 =H2"03/105 and so on. 
As discussed in Appendix B, sordN (2)< ( N -  1)/2. This bound can be attained 

only when N is prime. It implies that the maximal period is 2 (~'- ~)/2 _ 1. Notice that 
this period is the maximum that could be attained with any reflection symmetric 
initial configuration (such as the single nonzero site configuration to be considered 
by virtue of Lemma 3.4). 

40  

30  

20 
o 

I t I 

/4 
20 4 0  0 60  80 100 
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Fig. 4. The maximal  length H N of  cycles generated in the evolut ion of  a cellular automaton wi th  
size N and "IF(x) = x + x - l, as a function of N. Only values for integer N are plotted. The irregular 
behaviour o f / / N  as a function of N is a consequence of the dependence of  HN on number  
theoretical properties of N 
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Table 1. Maximal cycle lengths Hn for one-dimensional nearest-neighbour additive cellular 
automata with size N and k possible values at each site. Results for all possible nontrivial 
symmetrical rules with k< 4 are given. For k = 2, the fixed time evolution polynomials are 
T(x) = x + x - 1 and x + 1 + x-  1 (corresponding to rules 90 and 150 of [1 ], respectively). For k = 3, 
the polynomials are x+x -1, x + l + x  -1, and x + 2 + x  -1, while for k=4, they are x+x -1, 
x + l + x  -1, x + 2 + x  -1, and x + 3 + x  -~ 

N k=2 k=3 k=4 

3 1 1 6 1 3 2 2 1 1 
4 1 2 2 2 2 1 4 t 4 
5 3 3 8 8 4 6 6 3 6 
6 2 1 6 6 3 2 2 2 2 
7 7 7 26 26 13 14 14 7 14 
8 1 4 4 8 8 1 8 1 8 
9 7 7 18 1 9 14 14 7 14 

10 6 6 8 8 8 6 12 6 12 
11 31 31 242 121 121 62 62 31 62 
12 4 2 6 6 6 4 4 4 4 
13 63 21 26 13 13 126 42 63 42 
14 14 14 26 26 13 14 28 14 28 
15 15 15 24 24 12 30 30 15 30 
16 1 8 16 80 80 1 16 1 16 
17 15 15 1N40 6,560 820 30 30 15 30 
18 14 14 18 18 9 14 28 14 28 
19 511 511 19,682 19,682 9,841 1,022 1,022 511 1,022 
20 12 12 16 40 40 12 24 12 24 
21 63 63 78 78 39 126 126 63 126 
22 62 62 242 242 242 62 124 62 124 
23 2~47 2,1347 177,146 88,573 88,573 4#94 4N94 2 ,047  4~94 
24 8 4 12 24 24 8 8 8 8 
25 1 D 2 3  1~23 59~48 59~48 29,524 2~46 2~46 1~23 2,046 
26 126 42 26 26 26 t26 84 126 84 
27 511 511 54 1 27 1,022 1~22 511 1,022 
28 28 28 26 26 26 28 56 28 56 
29 16,383 16,383 4,782,968 4,782,968 2,391,484 32,766 32,766 t6,383 32,766 
30 30 30 24 24 24 30 60 30 60 
31 31 3t 1,103~62 14,348~06 551,881 62 62 31 62 
32 1 16 160 6,560 6,560 1 32 1 32 
33 31 31 726 363 363 62 62 31 62 
34 30 30 1,640 6,560 6,560 30 60 30 60 
35 4~95 4 ,095  265 ,720  2 6 5 , 7 2 0  132,860 8,190 8 ,190  4 ,095  8,190 
36 28 28 18 18 18 28 56 28 56 
37 87,381 29 ,127  19,682 19,682 9,841 174,762 58,254 87,381 58,254 
38 1~22 1 , 0 2 2  19,682 19,682 9,841 1,022 2~44 1,022 2,044 
39 4~95 4~95 78 39 39 8,190 8 ,190  4~95 8,190 
40 24 24 80 40 40 24 48 24 48 

E. Cycle Length Distribution 

L e m m a  3.4 established that  all cycle lengths mus t  divide H N a nd  Theorems 3.3 a nd  
3.4 gave the total  n u m b e r  of states in  cycles. This  section considers the n u m b e r  of 
distinct cycles and  their lengths. 
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Lemma 3.7. For the cellular automaton defined in Sect. 3A, with N a multiple of 3, 
there are four distinct f ixed points (cyles of length one); otherwise, only the null 
configuration is a f ixed point. 

For N = 3n, the only stationary configurations are 000000 ... (null configura- 
tion), 0110110 ..., 1011011 ..., and 1101101 ... .  

Table 2 gives the lengths and multiplicities of cycles in the cellular automaton 
defined in Sect. 3A, for various values of N. One result suggested by the table is that 
the multiplicity of cycles for a particular N increases with the length of the cycle, so 
that for large N, an overwhelming fraction of all configurations in cycles are on 
cycles with the maximal length. 

When HN is prime, the only possible cycle lengths are FI x and i. Then, using 
Lemma 3.7, the number of cycles of length FIN is (2 (N- 1) _ 4)~FIN for N = 3n, and is 
(2(N- 1) _ 1)/IIN otherwise. 

When HN is not prime, cycles may exist with lengths corresponding to various 
divisors of FIN. It has not been possible to express the lengths and multiplicities of 
cycles in this case in terms of simple functions. We nevertheless give a 
computationally efficient algorithm for determining them. 

Theorems 3.3 and 3.4 show that any configuration A(x) on a cycle may be 
written in the form 

A(x) = (1 + x)D2~mB(x), 

where B(x) is some polynomial. The cycle on which A(x) occurs then has a length 
given by the minimum rc for which 

( ~ " - 1 ~  D2tm (3.17) 72(x)~B(x) =- (x + x -  1)~B(x) =- B(x) rood \ x + 1 / ' 

where N =  D2(N)n with n odd, and (x" -1)  °2(m = x  N -  1. Using the factorization 
[given in Eq. (A.8)] 

orda(2) 

x " - l = ( x - 1 )  l-I I-[ Cd,,(X), (3.18) 
din i = 1  

d # l  

where the Ca,~(x) are the irreducible cyclotomic polynomials over ;g2 of degree 
orda(2), Eq. (3.17) can be rewritten as 

(x + x -  1)~B(x) = B(x) mod Cd, i(X) I~(N) (3.1 9) 

for all din, d + 1, and for all i such that 1 <__ i < (5(d)/ordd(2). Let rCd, i[B(x)] denote the 
smallest rc for which (3.19) holds with given d, i. Then the length of the cycle on 
which A(x) occurs is exactly the least common multiple of all the rca,i[B(x)]. If 
Ca, i(x)D~(m]B(x), then clearly Eq. (3.19) holds for re=l,  and 7Zd, i[B(x)]= 1. If 
Cd, i(X) rd'~w(x)l If B(x) (and 0 =< ra,i[B(x)] < D2(N)), then Eq. (3.19) is equivalent to 

(x + x -  1)~ = 1 mod Ca, i(x) D~(m ~''w(~)j. (3.20) 

The values of rca, ~ for configurations with ra, ~[B(x)] = s are therefore equal, and will 
be denoted zca, i, ~ (0 < s < D 2(N)). Since Ca, i(x)[(x d -- 1)/(x + 1) (d ~= 1), the value of 
red, i, 1 divides the minimum zc for which ( x+x-1 )  ~ -  1 mod(x a -  1)/(x+ 1). This 
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Table 2. Multiplicities and lengths of  cycles in the cellular automaton of  Sect. 3A with 
size N. The notation #i x zi indicates the occurence ofgi distinct cycles each of  length 
7h. The last column of the table gives the total number of distinct cycles or "attractors" 
in the system 

N 

3 4 x t  4 
4 l x l  1 
5 l x l ; 5 x 3  6 
6 4 x 1 ; 6 x 2  I0 
7 1 x l ; g x 7  10 
8 l x l  1 
9 4 x l ; 3 6 x 7  40 

10 l x l ;  5 x 3 ; 4 0 x 6  46 
11 l x l ; 3 3 x 3 1  34 
12 4 x l ;  6x2 ;  6 0 x 4  70 
13 1 x 1; 65 x 63 66 
14 1 x 1; 9 x 7; 288 x 14 298 
15 4 x l ;  20x3;  1,088 x 15 1,112 
16 l x l  1 
17 1 x 1; 51 x 5; 4,352 x 15 4,404 
18 4 x 1; 6 x 2;36 x 7; 4,662 x 14 4,708 
19 l x l ;  513x511 514 
20 1 x 1; 5 x 3; 40 x 6; 5,440 x 12 5,486 
21 4x  1; 36x7;  16,640 x 63 16,680 
22 1 × 1; 33 x 31; 16,896 x 62 16,930 
23 1 x 1; 2,049 x 2,1347 2,050 
24 4 x  1; 6x2 ;  60x4;  8,160 x 8 8,230 
25 l x l ;  5x3;  16,400x 1,023 16,406 
26 1 x 1; 65 x 63; 133,120 x 126 133,186 
27 4 x l ;  36x7;  131,328x511 131,368 
28 1 x 1; 9 x 7; 288 x 14; 599,040 x 28 599,338 
29 1 x 1; 16,385 x 16,383 16,386 
30 4x  1; 6x2 ;  20x3;  670x 6; t,088 x 15; 8,947,168 x 30 8,948,956 
31 1 x 1; 34,636,833 x 31 34,636,834 
32 l x l  1 
33 4 × 1; 138,547,332 x 31 138,547,336 
34 l x l ;  51x5;  6,528 x 10; 4,352× 15; 143,161,216 × 30 143,172,148 
35 l x l ;  5x3;  9 x 7 ;  45 x21; 4,195,328 × 4,095 4,195,388 
36 4×1;  6×2;  60x4;  36x7;  4,662 x 14; 153,389,340× 28 153,394,108 
37 1 x 1; 786,435 × 87,381 786,436 
38 1 × 1; 513 x 511; 67,239,936 x 1,022 672,340,450 
39 4× 1; 260 x 63; 49,164 x 1,365; 67,108,860 x 4,095 67,158,288 
40 1 x 1; 5 × 3; 40 x 6; 5,440 x 12; 178,954,240 x 24 178,959,726 

e q u a t i o n  is the  s a m e  as the  o n e  for  the  m a x i m a l  cycle  l e n g t h  o f  a size d ce l lu la r  

a u t o m a t o n :  the  d e r i v a t i o n  o f  T h e o r e m  3.5 t h e n  s h o w s  t h a t  

7"ca, i, 1 I 2s°rda(2) --  1. (3.21) 

I t  c a n  a lso  be  s h o w n  t h a t  rCd, i,zs=Trd,~, s o r  rcd, i,2s=2rca, z, s. 
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where 

As an example of the procedure described above, consider the case N = 30. 
Here, 

X 30 "t- 1 = (X 15 -Jr" 1) 2 = e l ,  1(x)2C3,1(x)2C5,1(x)2C15, l ( X ) 2 C 1 5 ,  2 ( x )  2 , (3.22) 

Cl, l (x)= x + l , 

Ca, l(x)=xZ + x :t - 1, 

C5,1(X)= Xg %" x3-~- xZnt- X q- 1, 

C15, l(x) = x  4 + x + 1, 

C 1 5 , 2 ( X  ) = X  4 -t-X 3 -t- 1 .  

Then 
7"fd, i,2= 1, 

7"C3, 1,1 = 1 , 7 Z 3 , 1 , 0 = 2 ,  

~5,1,1 = 3, rc5,1, o = 6, (3.23) 

7Cl 5,1, 1 = 7Cl 5,2, 1 = 1 5 ,  

1Z15, 1,0 = g 1 5 , 2 , 0  = 3 0 .  

Thus the cycles which occur in the case N = 30 have lengths 1, 2, 3, 6, 15, and 30. 
To determine the number of distinct cycles of a given length, one must find the 

number of polynomials B(x) with each possible set of values rd, i[B(x)]. This 
number is given by 

H I-I V(rd, i, d, 02(N)),  
din i 

d~l 
where V(Dz(N), d, Dz(N)) = 1 and 

V(r, d, D 2 ( N ) )  : 2 °rddtz) W2tIv)- r) _ 2orda(2)(Dz(N)-r --1) 

for 0 =< r < Dz(N). The cycle lengths of these polynomials are determined as above 
by the least common multiple of the 7ta, i,r~.,. 

In the example N = 30 discussed above, one finds that configurations on cycles 
of length 3 have (r3,1, rs, 1, r15,1, r15,2) = (1, 1,2, 2) or (2, 1, 2, 2), implying that 60 
such configurations exist, in 20 distinct cycles. 

4. Generalizations 

A. Enumeration of Additive Cellular Automata 

We consider first one-dimensional additive cellular automata, whose configura- 
tions may be represented by univariate characteristic polynomials. We assume 
that the time evolution of each site depends only on its own value and the value of 
its two nearest neighbours, so that the time evolution dipolynomial qF(x) is at most 
of degree two. Cyclic boundary conditions on N sites are implemented by reducing 
the characteristic polynomial at each time step modulo x N -  1 as in Eq. (2.2). There 
are taken to be k possible values for each site. With no further constraints imposed, 
there a r e  k 3 possible qF(x), and thus k 3 distinct cellular automaton rules. If the 
coefficients of x and x -  1 in ~(x)  both vanish, then the characteristic polynomial is 
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at most multiplied by an overall factor at each time step, and the behaviour of the 
cellular automaton is trivial. Requiring nonzero coefficients for x and x 1 in T(x) 
reduces the number of possible rules to k3--2k2+ k. If the cellular automaton 
evolution is assumed reflection symmetric, then T ( x ) = T ( x -  1), and only k 2 - k  
rules are possible. Further characterisation of possible rules depends on the nature 
of k. 

(a) k Prime. In this case, integer values O, 1 . . . . .  k -  1 at each site may be combined 
by addition and multiplication modulo k to form a field (in which each nonzero 
element has a unique multiplicative inverse) 2~ k. For a symmetrical rule, 3F(x) may 
always be written in the form 

T(x) = x + s + x -  1 (4.1) 

up to an overall multiplicative factor. For k=2 ,  the rule T ( x ) = x + x - 1  was 
considered above; the additional rule T(x) = x + 1 + x -  ~ is also possible (and 
corresponds to rule 150 of [1]). 

(b) k Composite. 

- -  ~1 o~2 Lemma 4.1. For k - p 1  P2 .... with Pi prime, the value a tk~ of a site obtained by 
evolution of an additive cellular automaton from some initial configuration is given 
uniquely in terms of the values a rpq attained by that site in the evolution oj the set of 
cellular automata obtained by reducing T(x) and all site values modulo p~'. 

This result follows from the Chinese remainder theorem for integers (e.g. [8, 
Chap. 8]), which states that ilk1 and k2 are relatively prime, then the values n 1 and 
n2 determine a unique value of n modulo k l k2 such that n -  n~ mod k~ for i=  1,2. 

Lemma 4.1 shows that results for any composite k may be obtained from those 
for k a prime or a prime power. 

When k is composite, the ring 2g k of integers modulo k no longer forms a field, 
so that not all commutative rings IR k are fields. Nevertheless, for k a prime power, 
there exists a Galois field GF(k) of order k, unique up to isomorphism (e.g. [9; 
Chap. 4]). For example, the field GF(4) may be taken to act on elements 0, 1, ~, ~2 
with multiplication taken modulo the irreducible polynomial ~c2+ ~c+ 1. Time 
evolution for a cellular automaton with site values in this Galois field can be 
reduced to that given by x + a + x-1,  where a is any element of the field. The 
behaviour of this subset of cellular automata with k composite is directly 
analogous to those over 2gp for prime p. 

It has been assumed above that the value of a site at a particular time step is 
determined solely by the values of its nearest neighbours on the previous time step. 
One generalization allows dependence on sites out to a distance r > 1, so that the 
evolution of the cellular automaton corresponds to multiplication by a fixed 
dipolynomial T(x) of degree 2r. Most of the theorems to be derived below hold for 
any r. 

B. Cellular Automata over 2g v (p Prime) 

Lemma 4.2. The lengths of all cycles in any additive cellular automaton over ~v of 
size N divide the length Fl u of the cycle obtained for an initial configuration 
containing a single site with value 1. 
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This lemma is a straightforward generalization of Lemma 3.4, and follows 
directly from the additivity assumed for the cellular automaton rules. 

Lemma 4.3. For N a multiple of p, I-1NIpl-IN/v for an additive cellular automaton over 
Zp. 
Remark. For N a multiple of p, but not a power of p, it can be shown that 
HN = pIIN/p for an additive cellular automaton over 2gp with T(x )=  x + x-1. In 
addition, f I~  = 1 in this case. 

Theorem4.1. For any N not a multiple of p, HNIH}=p°rd~(p)--I, and 
HNIH. = p~O~dNtp)_ i if ql?(x) is symmetric, for any additive cellular automaton over 
2~ v. 

The period HN divides H* if 

[T(x)]r/~ + 1 =T(x)  mod(x N -  1). (4.2) 

Taking 

i 

Eq. (A.3) yields 

['IF(x)]p°rdN~'-Zo~ix~,p°'~'~--Zchx~,=T(x ) mod(xN-  I), 
i i 

since c~ p~-= e modp and pOraN(~) -- 1 modN, and the first part of the theorem follows. 
Since x p~°~d~'~ - x +- 1 modp, Eq. (4.2) holds for 

H* = p~Ora~(p) _ 1 

if T(x) is symmetric, so that T(x) = T ( x -  1). 
This result generalizes Theorem 3.5 for the particular k = 2 cellular automaton 

considered in Sect. 3. 
Table 1 gives the values of//N for all non-trivial additive symmetrical cellular 

automata over ;gz and Z3. Just as in the example of Sect. 3 (given as the first 
column of Table 1), one finds that for many values of N not divisible by p 

HN = psord~(p) _ 1. (4.3) 

When p = 2, all exceptions to (4.3) when T(x)=  x + x 1 are also exceptions for 
T ( x ) = x + l  + x  -1 [19]. We outline a proof for the simplest case, when N is 
relatively prime to 6 (as well as 2). Let HN(x + x -  1) be the maximal period obtained 
with T(x)=  x + x-1, equal to the minimum integer rc for which 

(x + 1)2~=-- x ~ mod ( x N -  1 ~ (4.4) 
\ x + l  / "  

We now show that H u ( x + x  -1) is a multiple of the maximum period 
Hu(x+  1 + x  -1) obtained with T ( x ) = x +  1 + x  -1. Since the mapping x ~ x  3 is a 
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homomorphism in the field of polynomials with coefficients in GF(2), one has 

(X3 t_ l )2 r~X3~  m o d (  x N - l "  ] 
\ x77i- /  

for any rc such that IIN(X + X- 1)ire. Dividing by Eq. (4.4), and using the fact that N is 
odd to take square roots, yields 

~ ]  rood \ ~ ]  (4.5) 

for any ~ such that l-lN(X + X- ')l~. But since x + l + x -  l = x -  l (xf~fi'- ) ,  Eq. (4.5) 

is the analogue of Eq. (4.4) for 27(x) = x + 1 + x-  1, and the result follows. 
More exceptions to Eq. (4.3) are found with p= 3 than with p=2. 

I,emma 4,4. A configuration A(x) is reachable in the evolution of a size N additive 
cellular automaton over Zp, as described by T(x) if and only if A(x) is divisible by 
& (x) = (x 1, 

Appendix A.A gives conventions for the greatest common divisor 
(A(x), B(x)). 

If A(1)(x) can be reached, then 

A(1)(x) =T(x)A(°)(x) mod(x N-  1) 

for some A(°)(x), so that 
(x N-  1) 1 A(1)(x) - T(x)A(°)(x). 

But Al(x)lx N -  1 and Al(x)lT(x), and hence if A(1)(x) is reachable, 

Al(x) l A(1)(x) . (4.6) 

We now show by an explicit construction that all A(1)(x) satisfying (4.6) in fact have 
predecessors A(°)(x). Using Eq. (A.10), one may write 

AI(x) -= r(x)T(x) + ~(x) (x N -  1) 

for some dipolynomials r(x) and {(x), so that 

AI(x) - r(x)T(x) mod(x N-  1). 

Then taking A(1)(x)=Al(x)B(x), the configuration given by the polynomial 
obtained by reducing the dipolynomial r(x)B(x) satisfies 

T(x)r(x)B(x)=-Al(x)B(x)=-A°)(x) mod(x N-  1) 

and thus provides an explicit predecessor for Am(x). 

Corollary. A(x) is reachable in j steps if and only if A i(x ) = (x N - 1, TJ(x)) divides 
A(x). 

This is a straightforward extension of the above lemma. 

Theorem 4.2. The fraction of possible configurations which may be reached by 
evolution of an additive cellular automaton over Zp of size N is p acg&(~), where 
AI(X ) = (x N -- 1, T(x)) .  
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By Lemma 4.4, only configurations divisible by Ai(x) may be reached. The 
number of such configurations is pN-aogA,(,), while the total number of possible 
configurations is pN. 

Let Dp(N) be the maximum pJ which divides N and let vz denote the multiplicity 
of the i th irreducible factor of Al(x)  in T*(x), where T*(x)=x~T(x)  is a 
polynomial with a nonzero constant term. We further define ; (=min v~, so that 
0 <= X < Dr(N). i 

Theorem 4.3. The state transition diagram for an additive cellular automaton of size 
N over;gp consists of  a set of  cycles at all nodes of  which are rooted identicalp degAltx)- 
ary trees. A fraction p ~ Dp(N)degAl(x) of the possible configurations appear on cycles. 
For Z > O, the height of the trees is [Dp(N)/z]. The trees are balanced if and only/f(a) 
v i > Dp(N) for all i, or (b) v i = v i for all i and j, and vilDp(N). 

To determine the in-degrees of nodes in the trees, consider a configuration A(x) 
with predecessors represented by the polynomials Bl(x ) and B2(x ), so that 

A(x) - T(x)Bi(x ) rood (x N -  1). 

Then since 

IF(x) (Bl(x) - B2(x)) - 0 rood (x N -  1), 

and Al(x)lx N -  1, it follows that 

[x  N -  1 \ 
B l (x ) - -B2(x ) -O m°d ~ A ~ x ) )  • 

Since C(x)= (x N -  1)/Al(x) has a non-zero constant term, ( B l ( x ) -  B2(x))/C(x) is 
an ordinary polynomial. The number of solutions to this congruence and thus the 
number of predecessors Bi(x ) of A(x) is paeg~l(x). 

The proof of Lemma 3.3 demonstrates the identity of the trees. The properties 
of the trees are established by considering the tree rooted on the null configuration. 
A configuration A(x) evolves to the null configuration after j steps if T(x)JA(x) 
-- 0 mod(x N -  1), so that 

xN--1 ] 
A~(x~ A(x) . (4.7) 

Hence all configurations on the tree are divisible by (x N - 1)/A~(x), where A®(x) 
= lim At(x ). All configurations in the tree evolve to the null configuration after at 

j ~  o9 

most [Dp(N)/z] steps, which is thus an upper bound on the height of the trees. But 
since the configuration (xN--1)/A~(x) evolves to the null configuration after 
exactly [Dp(N)/g] steps, this quantity gives the height of the trees. The tree of 
configurations which evolve to the null configuration (and hence all other trees in 
the state transition diagram) is balanced if and only if all unreachable (terminal) 
configurations evolve to the null configuration after the same number of steps. 
First suppose that neither condition (a) nor (b) is true. One possibility is that some 
irreducible factor a(x) of Al(x) satisfies aV(x)]l A~(x) with v < Dp(N) but v does not 
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divide Dp(N). The configuration (x N -  lffaDpe~)(X) reaches 0 in [Dp(N)/v] steps 
whereas (x ~ -  1)/a Dp(N)+ 1 -~(x) reaches 0 in one step fewer, yet both are unreach- 
able, so that the tree cannot be balanced. The only other possibility is that there 
exist two irreducible factors al(x) and 02(x) of multiplicities v 1 and v2, respectively, 
with v' 1 and v z dividing Dp(N) but v 1 4=v2. Then (xN-1)/o-~lp(m(x) reaches 0 in 
Dp(N)/Vl steps, whereas (x N -  1)/azD~(m(X) reaches 0 in Dv(N)/v 2 steps. Neither of 
these configurations is reachable, so again the trees cannot be balanced. This 
establishes that in all cases either condition (a) or (b) must hold. The sufficiency of 
condition (a) is evident. If the condition (b) is true, then 

A~(x) = [17I ~(x)] v , A~(x)  = [ H  a(x)]  Dp~,  

and Aj(x) = A~ (x). Equation (4.7) shows that any configuration A(x) which evolves 
to the null configuration after j steps is of the form 

X N -  l 

A(x) = A{(x) R(x), 

where R(x) is some polynomial. The proof is completed by showing that all such 
configurations A(x) withj < Dp(N)/v are indeed reachable. To construct an explicit 
predecessor for A(x), define the dipolynomial S(x) by "IF(x)=Al(x)S(x), so that 
(S(x), x u -  I )=  1. Then there exist dipolynomials r(x) and ~(x) such that 

r(x)S(x) + ~(x) (x N-  1) = 1. 

The configuration given by the dipolynomial 

x N -  1 
B(x) -  A~ + l(x) r(x)R(x) 

then provides a predecessor for A(x). 
Notice that whenever the balance condition fails, the set and measure entropies 

of Eqs. (3.11) and (3.12) obtained by evolution from an initial maximal entropy 
ensemble become unequal. 

The results of Theorems4.2 and 4.3 show that if degAs(x)=0,  then the 
evolution of an additive cellular automaton if effectively reversible, since every 
configuration has a unique predecessor. 

In general, 

deg A(x) < degll'*(x), 

so that for the one-dimensional additive cellular automata considered so far, the 
maximum decrease in entropy starting from an initial equiprobable ensemble is 
D,(N).  

Note that for a cellular automaton over ~ ,  (p >2) of length N with T(x) 
= x + x -  ~, degA(x) = 2 if 4IN and degA(x) = 0 otherwise. Such cellular automata 
are thus effectively reversible for p > 2 whenever N is not a multiple of 4. 

Remark. A configuration A(x) lies on a cycle in the state transition diagram of an 
additive cellular automaton if and only if A~(x)lA(x). 

This may be shown by the methods used in the proof of Theorem 4.3. 
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C. Cellular Automata over Z k(k Composite) 

Theorem 4.4. For an additive cellular automaton over Zk, 

I-J[N(~. k ' ~ . k ( x ) )  = lcm(HN(2gpp;Tprl(x)), HN(Zp~; Tp;~(x)) . . . .  ), 

where k = p]lp~: .... and in Tj(x) all coeffficients are reduced modulo j. 

This result follows immediately from Lemma 4.1. 

Theorem 4.5. 11N(TZp~+ 1; ]Fp~+ l(x)) is equal to either (a) pl-lN(2gp~; Tp~(X)) or (b) 
IIN(2gp~; qFp~(x)) for an additive cellular automaton. 

First, it is clear that 
uN(~po, % ~ ( x )  I u N ( z r  + ~ ;Tpo  + , (x ) ) .  

To complete the proof, one must show that in addition 

HN(Zr + ~ ; T  r ~ ,(x))I pn~(~,p~; Tr (x ) ) .  

HN(Zp~; qrp~(x)) is the smallest positive integer rc for which a positive integer m and 
dipolynomials U(x) and V(x) satisfying 

7r(x) ~ + ~ = T ( x )  ~ + (x  ~ - l )  U(x) + p~ V(x) (4.8) 

exist, where all dipolynomial coefficients (including those in T(x)) are taken as 
ordinary integers in 7Z, and irrelevant powers of x on both sides of the equation 
have been dropped. Raising both sides of Eq. (4.8) to the power p, one obtains 

T ( x )  m, + ~ = (x ~ -  1) W ( x )  + (T(x) ~ + p~ V(x))' 

= (x N -  1)W(x) + T(x)  m" + p~+ ~ Q(x). 

Reducing modulo p~ ÷ ~ yields the required result. 
For p = 2 and c~ = 1, it can be shown that case (a) of Theorem 4.5 always obtains 

if T(x) = x + x -  1, but case (b) can occur when T(x) = x + 1 + x -  ~. 

Theorem 4.6. With k = kl k2 . .. (all k i relatively prime), the number of configurations 
which can be reached by evolution of an additive cellular automaton over ~g k is equal 
to the product of the numbers reached by evolution of cellular automata with the same 
qF(x) over each of the 2gk,. The state transition diagram for the cellular automaton 
over 77, k consists of a set of identical trees rooted on cycles. The in-degrees of non- 
terminal nodes in the trees are the product of those for each of the 2gk~ cases. The 
height of the trees is the maximum of the heights of trees for the iEk, cases, and the 
trees are balanced only if all these heights are equal. 

These results again follow directly from Lemma 4.1. 
Theorem 4.6 gives a characterisation of the state transition diagram for 

additive cellular automata over 2g k when k is a product of distinct primes. No 
general results are available for the case of prime power k. However, for example, 
with T ( x ) = x  + x - 1 ,  one may obtain the fraction of reachable states by direct 
combinatorial methods. With k = 2 ~ one finds in this case that the fraction is 1/2 for 
N odd, 1/4 for N = 2 m o d 4 ,  and 2 -2~ for 4IN. With k = p  ~ (p4:2) the systems are 
reversible (all configurations reachable) unless 4]N, in which case a fraction p-2,  
may be reached. 
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D. Multidimensional Cellular Automata 

The cellular automata considered above consist of a sequence of sites on a line. 
One generalization takes the sites instead to be arranged on a square lattice in two 
dimensions. The evolution of a site may depend either on the values of its four 
orthogonal neighbours (type I neighbourhood) or on the values of all eight 
neighbours including those diagonally adjacent (type II neighbourhood) (e.g. [1]). 
Configurations of two-dimensional cellular automata may be represented by 
bivariate characteristic polynomials A(x 1, x2). Time evolution for additive cellular 
automaton rules is obtained by multiplication of these characteristic polynomials 
by a fixed bivariate dipolynomial T(x 1, x2). For a type I neighbourhood, T(xl, X2) 
contains no XlX2 cross-terms; such terms may be present for a type II neighbour- 
hood. Periodic boundary conditions with periods NI and N2 may be implemented 
by reduction modulo x~ '~- i and modulo x~ '~-  1 at each time step. Cellular 
automata may be generalized to an arbitrary d-dimensional cubic or hypercubic 
lattice. A type I neighbourhood in d dimensions contains 2d + 1 sites, while a 
type II neighbourhood contains 3 d sites. As before, we consider cellular automata 
with k possible values for each site. 

Theorem 4.7. For an additive cellular automaton over Z k on a d-dimensional cubic 
lattice, with a type I or type I I  neighbourhood, and with periodicities N1, N2, ..., Nd, 

lcm (//N~(~k; qF(Xl, 1 ..... 1)), ..., HNd(2gk ; T(1 ..... 1, Xd)))l/'/Nx ..... Sd(7/k; ~]F(X 1 , . . . , X d )  ) . 

The result may be proved by showing that 

IIN,(Z~;T(1, ..., 1,x,, 1, ..., 1))IHN~, ..., N~(Zk, T(Xl, ...,Xa)) (4.9) 

for all i (such that 1 _< i < d). The right member of Eq. (4.9) is given by the smallest 
integer zc for which there exists a positive integer m such that 

d 

[T(Xl, '" ,Xd)]~+m=[T(Xl,-- ' ,Xd)]~+ Z (X~J--1)U~(xl,...,Xd) (4.10) 
j = l  

for some dipolynomials Uj. Taking x j= 1 w i t h j + i  in Eq. (4.10), all terms in the 
sum vanish except for the one associated with x~, and the resulting value of rc 
corresponds to the left member of Eq. (4.9). 

Theorem 4.8. For an additive cellular automaton over 2gp on a d-dimensional cubic 
lattice (type I or type I I  neighbourhood) with periodicities N~, N z . . . . .  Na none of  
which are multiples of  p, 

/-/N . . . . . .  N~(Zp;T(x l  . . . . .  X ~ ) ) I / / * , , - - - , N d = p  °rdN ...... N.<p> 1.  

I f  T(xl, ..., xd) is symmetrical, so that 

for all i, then 

T ( x l  . . . . .  x , , . . . ,  x , )  = q r (x l ,  . . . ,  x~- 1 , . . . ,  x~) 

H . v 1  ' _ ~sordNt ..... Na(P) - -  l 
"" "~ N a  - - F  
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The ord,,~, ..., ~(p) and sord~l, ..., ,~(p) are multidimensional generalizations of the 
multipIicative order and suborder functions, described in Appendix B. 

This theorem is proved by straightforward extension of the one-dimensional 
Theorem 4.1. 

Using the result (B.13), one finds for symmetrical rules 

11}~, ..., Na = pZCrn(so~asv,(p) ..... sord~ (p)) _ 1. 

The maximal cycle length is thus bounded by 

1iN1, "",Nd < plem((N1 - 1)/2 ..... (hra- 1)/2 _ 1 ~p(NI 1)... (Na- 1)/2 d _  1 ,  

with the upper limits achieved only if all the N~ are prime. (For example, 

//83,59 = 21189 ~ 10358 

saturates the upper bound.) 
Algebraic determination of the structure of state transition diagrams is more 

complicated for multi-dimensional cellular automata than for the one dimensional 
cellular automata considered above 2. The generalization of Lemma 4.4 states that 
a configuration A(xl  . . . . .  xa) is reachable only if A(zl , . . . ,  za) vanishes whenever the 
z~ are simultaneous roots ofT(x1 .... , xa), x N~ - 1 .....  x N" -  1. The root sets zi form 
an algebraic variety over 2g k (cf. [9]). 

E. Higher Order Cellular Automata 

The rules for cellular automaton evolution considered above took configurations 
to be determined solely from their immediate predecessors. One may in general 
consider higher order cellular automaton rules, which allow dependence on say s 
preceding configurations. The time evolution for additive one-dimensional higher- 
order cellular automata (with N sites and periodic boundary conditions) may be 
represented by the order s recurrence relation 

A(~)(x)= ~ Tj(x)A(~-J)(x) mod(x N -  1). (4.11) 
j = l  

This may be solved in analogy with order s difference equations to yield 

A~')(x) = Z ci(x)[Uj(x)]', 
.i=1 

where the Uj(x) are solutions to the equation 

[C(x)]S= E [U(x)] s ./•j(x), 
./=1 

and the c./(x) are analogous to "constants of integration" and are determined by the 
initial configurations A(°)(x),...,A(S-1)(x). The state of an order s cellular 

2 In the specific case T(x l ,  x2) = x l  + x [  1 + x2 + x2 1, one finds tha t  the in-degrees IN1.N2 of  trees 
in  the state t rans i t ion  d iagrams  for a few N 1 x N2 cellular a u t o m a t a  are:  12,2=16,  12,3=4,  
I z ,4=16 ,  I2,s =4 ,  12.6=16,  13,3=32,  I3 ,4=4 ,  I3,5 =2 ,  I4,~ = 2 5 6  
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automaton depends on the values of its N sites over a sequence of s time steps; 
there are thus a total of k Ns possible states. The transition diagram for these states 
can in principle be derived by algebraic methods starting from Eq. (4.11). In 
practice, however, the Us(x ) are usually not polynomials, but elements of a more 
general function field, leading to a somewhat involved analysis not performed here, 

For  first-order additive cellular automata, any configuration may be obtained 
by superposition of the configuration 1 (or its translates xi). For  higher-order 
cellular automata, several "basis" configurations must be included. For  example, 
when s=2 ,  {0, 1}, {1,0}, and {x 2, 1} are all basis configurations, where in 
{At(x), A2(x)}, As(x), and A2(x) represent configurations at successive time steps. 

As discussed in Sect. 4B, some first-order cellular automata over ;gp (p > 2) are 
effectively reversible for particular values of N, so that all states are on cycles. The 
class of second-order cellular automata with T2(x) = - 1 is reversible for all N and 
k, and for any Tl (x  ) [10]. In the simple case Tl(x) -- x + x -  i, one finds Ul(x) = x, 
U2(x)=x-1.  It then appears that 

f in  = kN/2 (k even, N even) 
= kN (otherwise). 

(The proof is straightforward when k=2.)  In the case ~ l ( x ) = x +  1 + x  -1, the 
Us(x ) are no longer polynomials. For the case k = 2, the results for f i  N with N 
between 3 and 30 are: 6, 6, 15, 12, 9, 12, 42, 30, 93, 24, 63, 18, 510, 24, 255, 84, 513, 
60, 1170, t86, 6141, 48, 3075, 126, 3066, 36, 9831, 1020. 

F. Other Boundary Conditions 

The cellular automata discussed above were taken to consist of N indistinguish- 
able sites with periodic boundary conditions, as if arranged around a circle. This 
section considers briefly cellular automata with other boundary conditions. The 
discussion is restricted to the case of symmetric time evolution rules T(x) 
= ~IF(x - 1). 

The periodic boundary conditions considered above are not the only possible 
choice which preserve the translation invariance of cellular automata (or the 
indistinguishability of their sites) 3. One-dimensional cellular automata may in 
general be viewed as Nk bundles over ZN. Periodic boundary conditions 
correspond to trivial bundles. Non-trivial bundles are associated with "twigted" 
boundary conditions. Explicit realizations of such boundary conditions require a 
twist to be introduced at a particular site. The evolution of particular configura- 
tions then depends on the position of the twist, but the structure of the state 
transition diagram does not. 

A twist of value R at position i = ~ causes sites with i__ ~ to appear multiplied by 
R in the time evolution of sites with i < c~, and correspondingly, for sites with i < o- 
to appear multiplied by R - 1 in the evolution of sites with i > a. In the presence of a 
twist taken at position o-= 0, the time evolution formula (2.5) becomes 

A(t)(x) =']F(x)A (t- 1)(x) mod (x N - e ) .  (4.12) 

3 We are gratefifl to L. Yaffe for emphasizing this point 
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Multiple twists are irrelevant; only the product of their values Rj is significant for 
the structure of the state transition diagram. I f N  k = 2~p with p prime, then Rk (with 
the zero element removed) forms a multiplicative group, and twists with any value 
R not equal to 0 or 1 yield equivalent results. When ]Rk = ;g k with k composite, 
several equivalence classes of R values may exist. 

Using Eq. (4.12) one may obtain general results for twisted boundary 
conditions analogous to those derived above for the case of periodic boundary 
conditions (corresponding to R =  I). When N~=Zp (p prime), one finds for 
example, 

//~R* 11 rrtR=1~ ~lN(p-- 1) " 

An alternative class of boundary conditions introduces fixed values at 
particular cellular automaton sites. One may consider cellular automata consist- 
ing of N sites with values al . . . .  , aN arranged as if along a line, bounded by sites 
with fixed values ao and aN+ ~. Maximal periods obtained with such boundary 
conditions will be denoted 1-1~ °'aN+ 1). The case ao = aN+ 1 = 0 is simplest. In this 
case, configurations 

N 
A(x )  = Z ai xi 

i=1  

of the length N system with fixed boundary conditions may be embedded in 
configurations 

N N 

A ( x ) =  Z ai xiq- ~ (k--aN+l-i) xN+I+i (4.13) 
i=1 i=1 

of a length b7 = 2N + 2 system with periodic boundary conditions. The condition 
a0 =aN+ 1 = 0  is preserved by time evolution, so that one must have 

//~'°)IH2N+2. 
The periods are equal if the configurations obtained by evolution from a single 
nonzero initial site have the symmetry of Eq. (4.13). (The simplest cellular 
automaton defined in Sect. 3A satisfies this condition.) 

Fixed boundary conditions ao = r, aN+l= 0, may be treated by constructing 
configurations _4(x) of the form (4.13), with periodic boundary conditions, but now 
with time evolution 

A(t)(x) ==- [T(x)A It- 1)(x) + r(1 - ~o)] mod(x ~ -  1), 

where T(x) is taken of the form x + eo + x -  ~. Iteration generates a geometric series 
in qF(x), which may be summed to yield a rational function of x. For k = 2, r = 1, 
one may then show that with T (x )=  x + 1 + x-1,  H~9' 1)= HzN + z, while with T(x) 
= x + x  -1 (the case of Sect. 3A), H~'l)IH2(2N+2). 

5. Non-Additive Cellular Automata 

Equation (2.3) defines the time evolution for a special class of "additive" cellular 
automata, in which the value of a site is given by a linear combination (in •k) of the 



Cellular Automata 247 

values of its neighbours on the previous time step. In this section we discuss "non- 
additive" cellular automata, which evolve according to 

a},)_ ~r,,(t--1) , # -  1) ,,(,- 1)1 (5.1) 

where F [ a _  1, ao, a+1] is an arbitrary function over IR k, not reducible to linear 
form. The absence of additivity in general prevents use of the algebraic techniques 
developed for additive cellular automata in Sects. 3 and 4. The difficulties in the 
analysis of non-additive cellular automata are analogous to those encountered in 
the analysis of non-linear feedback shift registers (cf. [11]). In fact, the possibility 
of universal computation with sufficiently complex non-additive cellular automata 
demonstrates that a complete analysis of these systems is fundamentally impos- 
sible. Some results are nevertheless available (cf. [12]). This section illustrates 
some methods which may be applied to the analysis of non-additive cellular 
automata, and some of the results which may be obtained. 

As in [1], most of the discussion in this section will be for the case k = 2. In 
this case, there are 32 possible functions F satisfying the symmetry condition 

F[a_  1, ao, a + 1] = lF[a + 1, ao, a_ 1] 

and the quiescence condition 

~[0,  0, 0] = 0. 

Reference [1] showed the existence of two classes of these "legal" cellular 
automata. The "simple" class evolved to fixed points or short cycles after a small 
number of time steps. The "complex" class (which included the additive rules 
discussed above) exhibited more complicated behaviour. 

We consider as an example the complex non-additive k = 2 rule defined by 

11711,O,02 =IF[O, O, 1] = 1, 
(5.2) 

F[a_ l,ao, a+ l]=O otherwise, 

and referred to as rule 18 in [1]. This function yields a time evolution rule 
equivalent to 

a~t)-( 1 +a!~-1)) t'(~-l)J-'('-l)~~i-1 - m + l  , mod2.  (5.3) 

The rule does not in general satisfy any superposition principle. However, for the 
special class of configurations with a2j = 0 or a2y+ 1 = 0, Eq. (5.3) implies that the 
evolution of even (odd) sites on even (odd) time steps is given simply by the rule 
defined in Sect. 3A. Any configuration may be considered as a sequence of 
"domains" in which all even (or odd) sites have value zero, separated by "domain 
walls" or "kinks" [13]. In the course of time the kinks annihilate in pairs. If sites are 
nonzero only in some finite region, then at sufficiently large times in an infinite 
cellular automaton, all kinks (except perhaps one) will have annihilated, and an 
effectively additive system will result. However, out of all 2 N possible initial 
configurations for a cellular automaton with N sites and periodic boundary 
conditions, only a small fraction are found to evolve to this form before a cycle is 
reached: in most cases, "kinks" are frozen into cycles, and contribute to global 
behaviour in an essential fashion. 
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Fig. 5. Global state transition diagrams for a typical finite non-additive cellular automaton 
discussed in Sect. 5 

Typical examples of the state transition diagrams with the rule (5.3) are shown 
in Fig. 5. They are seen to be much less regular than those for additive rules 
illustrated in Fig. 2. In particular, not all transient trees are identical, and few of the 
trees are balanced. Just as for the additive rules discussed in Sects. 3 and 4, only a 
fraction of the 2 N possible configurations may be reached by evolution according 
to Eq. (5.3); the rest are unreachable and appear as nodes with zero in-degree on 
the periphery of the state transition diagram of Fig. 5. An explicit characterization 
of these unreachable configurations may be found by lengthy but straightforward 
analysis. 

Lemma 5.1. A configuration is unreachable by cellular automaton time evolution 
according to Eq. (5.3)/f and only if one of the following conditions holds: 

(a) The sequence of site values 111 appears. 
(b) No sequence 11 appears, but the total number of 1 sites is odd. 
(c) A sequence 1 la~a2.., a,I 1 appears, with an odd number of the a~ having 

value 1. The two 11 sequences may by cyclically identified. 

The number of reachable configurations may now be found by enumerating 
the configurations defined by Lemma 5.1. This problem is analogous to the 
enumeration of legal sentences in a formal language. As a simple example of the 
techniques required (e.g. [14]), consider the enumeration of strings of N symbols 0 
or 1 in which no sequence 111 appears (no periodicity is assumed). Let the number 
of such strings be cc In addition, let/~N be the number of length N strings containing 
no 111 sequences in their first N -  1 positions, but terminating with the sequence 
111. Then 

/~o=/32=fl2 =0 ,  /73=1, % = 1 ,  ~1=2, (5.4a) 
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and 2aN = aN + 1 + fin + 1 (N > 0), (5.4b) 

eN=flN+I+flN+2+flN+3 ( N > O ) .  (5.4c) 

The recurrence relations (5.4) may be solved by a generating function technique. 
With 

A(z)= B(z)= (5.5a) 
n = O  n = O  

Eq. (5.4) may be written as 

2A(z) = z -  l ( A ( z ) -  1) + z - 1 B ( z ) ,  

A(z)  = z -  3 B(z)  + z -  2 B( z) + z -  1B(z).  

Solving these equations yields the result 

1 + z + z  2 
A ( z ) -  1 - z - z Z - z  3" (5.5b) 

Results for specific N are obtained as the coefficients ofz N in a series expansion of 
A(z).  Taking 

A ( z )  - 

Eq. (5.5a) may be inverted to yield 

AN(z) 

Al)(z) ' 

f -  . . . .  N 
aN = 2_, P - ~ - I  U / z o  , (5.5c) 

i k Z~ADtZ3 / 

where the z~ are the roots of Ao(z)  (all assumed distinct), and prime denotes 
differentiation. This yields finally 

au -~ 1.14(1.84) u + 0.283(0.737) u cos (2.176N + 2.078). (5.6) 

The behaviour of the coefficients for large N is dominated by the first term, 
associated with the smallest root of AD(N). The first ten values of aN are i, 2, 4, 7, 
13, 24, 44, 81, 149, 274, 504. 

A lengthy calculation shows that the number of possible strings of length N 
which do not satisfy the conditions in Lemma 5.1, and may therefore be reached by 
evolution of the cellular automaton defined by Eq. (5.3), is given as the coefficient 
of z u in the expansion of the generating function 

z-- 3z 2 + 6z 3 - -  8 z  4 "31- 4Z 5 -- Z 7 
P(z)  = 

1 - 4z + 6z z - 5z 3 + 2z 4 + z 5 - z 6 -~- z 7 

3 - -4z+z  ~ 2--z  2 - z  
+ -- 1. (5.7) 

= 1 - - 2 z + z 2 - z  3 2 ( 1 - z + z  2) 2 ( - - l + z + z  2) 

Inverting according to Eq. (5.5c), the number of reachable configurations of length 
N is given by 

QN = ~N _ (~bN + ( _  ~b)- N)_ COS (Nrc/3) + 2# N COS (NO), (5.8) 
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Table3. Fraction of con- 
figurations appearing in cy- 
cles for the non-additive cel- 
h~ar automaton of Eq. (5.2) 

N e~ 

4 0.3125 
5 0.3438 
6 0.1094 
7 0.0078 
8 0.1133 
9 0.1426 

10 0.0791 
11 0.0435 
12 0.0466 
13 0.0350 
14 0.0163 
t5 0.00308 
16 0.00850 
17 0~0857 

where ~ -~ 1.7548 is the real root ofz 3 - z 2 - [ -  2z - 1 = 0, qt = (1 + V~)/2 = 1.6182, and 
# -~ 0.754, 0 ~- 1.408. The first ten values of QN are 1, 1, 4, 7, 11, t 9, 36, 67, 121, 216. 
For  large N, QN ~ •N. Equation (5.8) shows that corrections decrease rapidly and 
smoothly with N. This behaviour is to be contrasted with the irregular behaviour 
as a function of N found for additive cellular automata in Theorems 3.1 and 4.2. 

Equation (5.8) shows that the fraction of all 2 N possible configurations which 
are reachable after one time step in the evolution of the cellular automaton of 
Eq. (5.2) is approximately (~:/2) N ~-0.92 N. Thus, starting from an initial maximal 
entropy ensemble with s = 1, evolution for one time step according to Eq. (5.2) 
yields a set entropy 

s(t = 1) - log 2 ~: _~ 0.88. (5.9) 

The irregularity of the transient trees illustrated in Fig. 5 implies a measure 
entropy s, < s. 

The result (5.9) becomes exact in the limit N--+oe. A direct derivation in this 
limit is given in [17, 18], where it is also shown that the set of infinite configurations 
generated forms a regular formal language. The set continues to contract with 
time, so that the set entropy decreases below the value given by Eq. (5.9) [18]. 

Techniques similar to those used in the derivation of Eq. (5.5) may in principle 
be used to deduce the number of configurations reached after any given number of 
steps in the evolution of the cellular automaton (5.2). The fraction of configurations 
which appear in cycles is an irregular function of N; some results for small N are 
given in Table 3. 

6. Discussion 

The analysis of additive cellular automata in Sects. 3 and 4 yielded results on the 
global behaviour of additive cellular automata more complete than those 



Cellular Automata  251 

available for most other dynamical systems. The extensive analysis was made 
possible by the discrete nature of cellular automata, and by the additivity property 
which led to the algebraic approach developed in Sect. 3. Similar algebraic 
techniques should be applicable to some other discrete dynamical systems. 

The analysis of global properties of cellular automata made in this paper 
complements the analysis of local properties of ref. [1]. 

One feature of the results on additive cellular automata found in Sects. 3 and 4, 
is the dependence of global quantities not only on the magnitude of the size 
parameter N, but also on its number theoretical properties. This behaviour is 
shared by many dynamical systems, both discrete and continuous. It leads to the 
irregular variation of quantities such as cycle lengths with N, illustrated in Table 1 
and Fig. 3. In physical realizations of cellular automata with large size N, an 
average is presumably performed over a range of N values, and irregular 
dependence on N is effectively smoothed out. A similar irregular dependence is 
found on the number k of possible values for each site: simple results are found 
only when k is prime. 

Despite such detailed dependence on N, results such as Theorem 4.1-4.3 show 
that global properties of additive cellular automata exhibit a considerable 
universality, and independence of detailed aspects of their construction. This 
property is again shared by many other dynamical systems. It potentially allows 
for generic results, valid both in the simple cases which may easily be analysed, and 
in the presumably complicated cases which occur in real physical systems. 

The discrete nature of cellular automata makes possible an explicit analysis of 
their global behaviour in terms of transitions in the discrete phase space of their 
configurations. The results of Sect. 4 provide a rather complete characterization of 
the structure of the state transition diagrams for additive cellular automata. The 
state transition diagrams consists of trees corresponding to irreversible "tran- 
sients", leading to "attractors" in the form of distinct finite cycles. The irreversibility 
of the cellular automata is explicitly manifest in the convergence of several distinct 
configurations to single configurations through motion towards the roots of the 
trees. This irreversibility leads to a decrease in the entropy of an initially 
equiprobable ensemble of cellular automaton configurations; the results of Sect. 4 
show that in most cases the entropy decreases by a fixed amount at each time step, 
reflecting the balanced nature of the trees. Theorem 4.3 gives an algebraic 
characterization of the magnitude of the irreversibility, in terms of the in-degrees of 
nodes in the trees. The length of the transients during which the entropy decreases 
is given by the height of the trees in Theorem 4.3, and is found always to be less 
than N. After these transients, any initial configurations evolve to configurations 
on attractors or cycles. Theorem 4.3 gives the total number of configurations on 
cycles in terms of N and algebraic properties of the cellular automaton time 
evolution polynomial. At one extreme, all configurations may be on cycles, while at 
the other extreme, all initial configurations may evolve to a single limit point 
consisting simply of the null configuration. 

Theorem 4.1 gives a rather general result on the lengths of cycles in additive 
cellular automata. The maximum possible cycle length is found to be of order the 
square root of the total number of possible configurations. Rather long cycles are 
therefore possible. No simple results on the total number of distinct cycles or 
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attractors were found; however, empirical results suggest that most cycles have a 
length equal to the maximal length for a particular cellular automaton. 

The global properties of additive cellular automata may be compared with 
those of other mathematical systems. One closely related class of systems are linear 
feedback shift registers. Most results in this case concentrate on analogues of the 
cellular automaton discussed in Sect. 3, but with the values at a particular time 
step in general depending on those of a few far-distant sites. The boundary 
conditions assumed for feedback shift registers are typically more complicated 
than the periodic ones assumed for cellular automata in Sect. 3 and most of 
Sect. 4. The lack of symmetry in these boundary conditions allows for maximal 
length shift register sequences, in which all 2 N -  1 possible configurations occur 
on a single cycle [2, 3]. 

A second mathematical system potentially analogous to cellular automata is a 
random mapping [15]. While the average cycle length for random mappings is 
comparable to the maximal cycle length for cellular automata, the probability for a 
node in the state transition diagram of a random mapping to have in-degree d is 
~l/d!  and is much more sharply peaked at low values than for a cellular 
automaton, leading to many differences in global properties. 

Non-additive cellular automata are not amenable to the algebraic techniques 
used in Sects. 3 and 4 for the additive case. Section 5 nevertheless discussed some 
properties of non-additive cellular automata concentrating on a simple one- 
dimensional example with two possible values at each site. Figure 5 indicates that 
the state transition diagrams for such non-additive cellular automata are less 
regular than those for additive cellular automata. Combinatorial methods were 
nevertheless used to derive the fraction of configurations with no predecessors in 
these diagrams, giving the irreversibility and thus entropy decrease associated with 
one time step in the cellular automaton evolution. Unlike the case of additive 
cellular automata, the result was found to be a smooth function of N. 

Appendix A: Notations and Elementary Results on Finite Fields 

Detailed discussion of the material in this appendix may be found in [8]. 

A. Basic Notations 

amodb  denotes a reduced modulo b, or the remainder of a after division by b. 
(a, b) or gcd(a, b) denotes the greatest common divisor of a and b. When a and b 

are polynomials, the result is taken to be a polynomial with unit leading coefficient 
(monic). 

a[b represents the statement that a divides b (with no remainder). 
a" ][ b indicates that a" is the highest power of a which divides b. 
Exponentiation is assumed right associative, so that abc denotes a (be) not (ab) ~. 
p usually denotes a prime integer. 
N k denotes an arbitrary commutative ring of k elements. 
2~ k denotes the ring of integers modulo k. 
degP(x) denotes the highest power of x which appears in P(x). 



Cellular Automata 253 

B. Finite Fields 

There exists a finite field unique up to isomorphism with any size p~ (p prime), 
denoted G F ( f ) .  p is termed the characteristic of the field. 

The ring ;gk of integers modulo k forms a field only when k is prime, since only 
in this case do unique inverses under multiplication modulo k exist for all nonzero 
elements. (For example, in Z4, 2 has no inverse.) GF(p) is therefore isomorphic to 

The field GF ( f )  is conveniently represented by the set of polynomials of 
degree tess than e with coefficients in 2gp, with all polynomial operations 
performed modulo a fixed irreducible polynomial of degree e over GF(p). For 
example, GF(4) may be represented by elements 0, 1, /c, to+ 1 with operations 
performed modulo 2 and modulo tc 2 +/c + t. In this case for example tc x to_-_ ~c + 1. 
Notice that, as mentioned in Sect. A.C below, polynomials over a field form a 
unique factor~ation domain. 

Any field of size q yields a group of size q -  1 under multiplication if the zero 
element is removed. Thus for any element of GF(q), 

x q = x, (A.1) 

and x q- 1 = 1 for x # 0. Notice that if x e GF(p ~) and x va = x, then x e GF(p~). 

C. Polynomials over Finite Fields 

Polynomials in any number of variables with coefficients in GF(q) form a unique 
factorization domain. For such polynomials, therefore A(x) B(x) 
= A(x) C(x) modP(x) implies B ( x ) -  C(x) modP(x) if A(x), P(x)) = 1. 

For any polynomials A(x) and B(x) with coefficients in GF(q), there exist 
polynomials c~(x) and fi(x) such that 

C(x) = (A(x), B(x)) = o~(x)A(x) + fi(x)B(x) . (A.2) 

There are exactly q" univariate polynomials over GF(q) with degree less than n. 
With a polynomial Q(x) of degree m, the number of polynomials P(x) with degree 
not exceeding n for which Q(x)lP(x) is q~-m for m<n.  

For any prime p, and for elements ai of GF(pe), 

aix~) p~ = • (aixi) p~ . (A.3) 

Thus for example, 
(x2"+ t)-=(x + 1) 2~ mod2, (A.4) 

a result used extensively in Sect. 3. 
If P(x)lQ(x), then every root of P(x) must be a root of Q(x). If 2>2 and 

[P(x)]~ l O(x), (A.5) 
then 

P(x) lQ'(x), (A.6) 

where Q'(x) is the formal derivative of Q(x), obtained by differentiation of each 
term in the polynomial. [Note that integration is not defined for polynomials over 
GF(q).] 
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The number of roots (not necessarily distinct) of a polynomial over GF(q)  is 
equal to the degree of the polynomial. The roots may lie in an extension of GF(q). 

Over the field G F  (p), 

x N -  1 = ( x " -  1) D~N) , (A.7) 

where N = Dp(N)n, with Dp(N) defined in Sects. 3 and 4 as the maximum power ofp 
which divides N. The polynomial x " -  1 with n not a multiple of p then factorizes 
over G F  (p) according to ~d) 

orda(p) 

x " -  1 = ( x -  1) 1~ I ]  Cd,,(x), (A.8) 
din i= 1 

d * l  

where the Cd,~(x) are irreducible cyclotomic polynomials of degree ordd(p). Note 
that the multiplicity of any irreducible factor of x N-  1 is exactly Dp(N), and that 

Cd, i(X) I Xd-- 1. (A.9) 

D. Dipolynomials over Finite Fields 
A dipolynomial A(x) is taken to divide a dipolynomial B(x) if there exists a 
dipolynomial C(x) such that B(x)=A(x)C(x). Hence if A(x) and B(x) are 
polynomials, with A(0) + 0, and if A(x) I B(x) are dipolynomials, then A(x) ] B(x) 
are polynomials. 

Congruence in the ring of dipolynomials is defined as follows: A(x) 
=- B(x) rood C(x) for dipolynomials A(x), B(x), and C(x) if C(x)]A(x)- B(x). 

The greatest common divisor of two nonzero dipolynomials A a(x) and Az(x) is 
defined as the ordinary polynomial (A*(x), A*(x)), where A*(x) = x rmAi ( x )  and mi 
is chosen to make A*(x) a polynomial with nonzero constant term. Note that by 
analogy with Eq. (A.2), for any dipolynomiats Ax(x) and A2(x), there exist 
dipolynomials ex(x) and e2(x) such that 

( A 1 (x) ,  A 2(x))  = o~ 1 ( x ) A  1 (x)  -~ 0~2 ( x ) A  2 ( x ) .  (A. 10) 

Appendix B: Properties and Values of some Number Theoretical Functions 

A. Euler Totient Function ~(N) 
~b(N) is defined as the number of integers less than N which are relatively prime to 
N [7]. ~(N) is a multiplicative function, so that 

ok(ran) = ~b(m)O(n), (rn, n) = 1. (B. 1) 

For p prime, 

Hence 

¢(p~) = f - l ( p _  1). (B.2) 

¢(n) = I-I p ' -  l ( p _  1), (B.3) 
p~lln 

providing a formula by which ~b(N) may be computed. Some values of ~b(N) are 
given in Table 4. 
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~(N) is bounded (for N >  t) by 

cN/log logg__< ~b(g) < N -  1, (B.4) 

where c is some positive constant, and the upper bound is achieved if and only if N 
is prime. For  large N, ~(N)/N tends on average to a constant value. 

q~(n) satisfies the Euler-Fermat theorem 

k4(n)=l modn ( k , n ) = l .  (B.5) 

B. Multiplicative Order Function ordN(k ) 

The multiplicative order function ordN(k) is defined as the minimum positive 

integer j for which [8] k j =  1 m o d N .  (B.6) 

This condition can only be satisfied if (k, N) = 1. 
By the Euler-Fermat theorem (B.5), 

ord N (k) ] ~(N). (B.7) 

In addition, ord,,n(k) = lcm(ordn(k), ordm(k)), (n, k) = (m, k) = (n, m) = 1. 
Some special cases are 

Ordk~_ l(k) = e ,  

Ordk~ + l(k) = 2ct. 

A rigorous bound on ordN(k ) is 

log k (N) __< ord N (k) N N -- 1, (B.8) 

where the upper bound is attained only if N is prime. It can be shown that on 
average, for large N, ordN(k)> I /N ;  the actual average is presumably closer to N. 
Nevertheless, for large N, ordN(k)/N tends to zero on average. 

Some values of the multiplicative order function are given in Table 4. 
The multidimensional generalization ordsl ..... Nd(k) of the multiplicative order 

function is defined as the minimum positive integer j for which k j--  1 simulta- 
neously modulo N1, N2 . . . .  , and Nd. It is clear that 

ordN~ ..... Nd(k) =lcm(ord N~(k), ..., ordNd(k)) = ordl~m(N1 ..... Nd)(k), 
(B.9) 

(k, N~) . . . . .  (k, Nd) = 1. 

C. Multiplicative Suborder Function sordN(k ) 

The multiplicative suborder function is defined as the minimum j for which 

kJ= __ 1 m o d N ,  (B.10) 

again assuming (k, N) = 1. Comparison with (B.6) yields 

sordN(k) = ordN (k), (B. 11 a) 
o r  

sord N (k) = ½ ordN(k). (B. 11 b) 

The second case becomes comparatively rare for large N; the fraction of integers 
less than X for which it is realised may be shown to be asymptotic to c/[logX] ~ 
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The  mu l t i d imens iona l  genera l i za t ion  sordN ...... N~(k) of the  mul t ip l ica t ive  
subo rde r  funct ion  is defined as the m i n i m u m  posi t ive  integer  j for which  k J= +_ 1 
s imul t aneous ly  m o d u l o  N1, . . . ,  Nd, wi th  + 1 and  - 1 pe rhaps  t aken  va r ious ly  for 
the different Ni. The ana logue  of  Eq. (B.9) for this funct ion is 

sordN1 ..... N~(k) = lcm(sordNl(k) ,  . . . ,  sordN~ (k)) ,  (B. 13a) 

and  

o r  

lcm(sordN,(k) ,  ...,sordN~(k))=sordl~m(N~ ..... N~)(k), (B.13b) 

. . . .  = gsordlcm(N~ ..... ~,~)(k). lcm(sordNl(k),  sordN~(k)) 1 
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