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Abstract. Aprincipal IR~+-bundleover theusualTeichmtiller spaceofanst imes 
punctured surface is introduced. The bundle is mapping class group equivariant 
and admits an invariant foliation. Several coordinatizations of the total space of  
the bundle are developed. There is furthermore a natural cell-decomposition of 
the bundle. Finally, we compute the coordinate action of the mapping class 
group on the total space; the total space is found to have a rich (equivariant) 
geometric structure. We sketch some connections with arithmetic groups, 
diophantine approximations, and certain problems in plane euclidean 
geometry. Furthermore, these investigations lead to an explicit scheme of 
integration over the moduli spaces, and to the construction of a "universal 
Teichmtiller space," which we hope will provide a formalism for understanding 
some connections between the Teichmtiller theory, the KP hierarchy and the 
Virasoro algebra. These latter applications are pursued elsewhere. 

Let F~ denote the genus g surface with s points removed, where 2 g -  2 + s > 0, 
g > 0, and s _>_ 1. This paper presents a number of results on the Teichmfiller space 
Y-~ of marked conformal classes of completefinite-area metrics on F~. Actually, we 
define a principal IR% foliated fibration q5: ~ ~ 9-g, where the fiber over a point of 
9"-~ is the space of all horocycles about the punctures of F~; the total space of  the 
fibration is called the "decorated Teichmfiller space." The mapping class group 
MC~ of homotopy classes of  orientation-preserving homeomorphisms of Fg (which 
may permute the punctures) acts on ~--~ and J-~, and the map f5 is equivariant. The 
theory described below is developed for the decorated Teichmtiller space P~, and 
the analogous results for ~--g itself are discussed in an addendum. 

Our first result gives a homeomorphism betweenj-~ and IR~, q = 6g - 6 + 3s. 
Specifically, we assign a positive real number 2 (c; F,0 to F,, ~ ~"~ and an isotopy 
class c of  arc in F~ connecting punctures; fixing a family A of such arcs so that each 
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component ofF~ - A is a triangle, the function X 2 (c; -): f f - ~  lRq+ is shown to be a 
e ~ A  

homeomorphism. Moreover, the functions 2 ( '; ') are natural for the action of MC~. 
We next recall a construction from [EP] which gives a canonical assignment of a 

kind of  decomposition A (/~) of F~ to each point f,~ ~ ~-~. Specifically, A = A (Fro) 
consists of a collection of isotopy classes of arcs in F~ connecting punctures so that 
each component of b~ - A is a cell (and no two components of A are homotopic); 
such a decomposition A is called an "ideal cell decomposition" ofF~. There is thus a 
corresponding decomposition of ~--~ itself, where the decomposition elements are 
given by 

@(A)= A} 

as A ranges over all ideal cell decompositions of F~. It is proved that 

cg~ = {@ (A) : A is an ideal cell decomposition of F~} 

gives a MC~-invariant cell decomposition of ~g .  This is analogous to the Harer- 
Mumford-Thurston cell decomposition (see [Ha]) of ~Y-~, but we work in the 
hyperbolic and [Ha] in the conformal category (see also [BE]). It is furthermore 
shown that the isotropy group of c~ (A) in MC~ is exactly the collection of  mapping 
classes ~o eMC~ so that q~(A) is isotopic to A. In particular, each @(A) has a 
canonical "center" /~(A)e  J ~  whose conformal symmetry group is exactly the 
isotropy group o f ~  (A) in MCg. In case @ (A) is top-dimensionN, the corresponding 
~Fm(A) ~ Y~ is shown to be an arithmetic group. On the surface F~, we notice a 
connection between centers of top-dimensional cells and the Markov forms (see 
[Ca]) of diophantine approximation. 

The proof that each c~ (A) is actually a cell is rather involved and proceeds as 
follows. We define an embedding ~s  IR 2q onto an 0 c intersection of  homogeneous 
quadrics and a smooth gradient flow on IR2+ q which has this variety as its attracting 
fixed point set. The trajectories which limit on c~ (A)oadmit a coordinate simplex 

as a Poincar6 section; in fact, the induced map X--+Cg(A) has as inverse the 
projection from lR~q onto a certain linear subspace. Thus, the cell-decomposition 
cg~ of J'~ is an essentially linear construction from this point of view. 

Finally, we consider the natural action of MC~ on our coordinates for J-~. MC o 
is recognized as a subgroup of finite-index in a certain groupoid as in [Mo]. The 
groupoid is generated by a simple algebraic transformation, which is related to 
Ptolemy's theorem on Euclidean polygons which inscribe in a circle. As a 
consequence, we derive a faithful representation of each MC~ as a group of rational 
transformations IR% ~ IRq+. Several examples are pursued in detail. We remark 
parenthetically that the embedding . ~ s c  lRZ+ q mentioned above leads to yet - - g  

another embedding ~ ~g  c ~2q; in case s =  1, the corresponding action of MC~ on 
coordinates is in fact a faithful representation as a group of analytic motions of ~2q. 

The work described herein has severn applications. First of all, the action of 
MC~ on the complex c~ allows the computation of certain cohomological 
invariants ofMCg; see [HZ, P 1 ]. Furthermore, a problem of current interest in both 
Mathematics and Physics is the explicit integration of  top-dimensional forms over 
the moduli space J{~ = Y-~/MC~. The combination of  the cell-decomposition cg~ 
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and the coordinatization of  ff'~ leads to an algorithmic scheme of  integration of  
forms over Jg~ (see [P2]), provided the form admits a reasonable expression in our 
coordinates. In particular, the Weil-Petersson K/ihler form has been computed with 
respect to our coordinates in [P2], and it is simply a matter of patience to begin to 
numerically compute the Weil-Petersson masses of  the various moduli spaces. 
Moreover, the perturbative series techniques of [P1] may well combine with the 
integration scheme of  [P2] to allow such computations by hand. Finally, we 
mention that there has been some discussion of  a "universal Teichmtiller space" in 
the Physics literature (see, for instance [FS]), and several of our constructions 
suggest a model for such an object. 

This paper is organized as follows. Section I recalls the basic facts about 
Minkowski three-space, where most of  our constructions take place. Section 2 
develops most of  our technical machinery on the geometry of  the light-cone in 
Minkowski space. In Sect. 3, the decorated Teichmfiller space is defined and several 
parametrizations of it are developed. For  completeness, we work through the 
"convex hull construction" of [EP] (tailored to our needs) in Sect. 4. Section 5 is 
devoted to the cell decomposition c£~ of  ff'~. Section 6 introduces centers of  ceUs and 
indicates some connections with plane Euclidean geometry. The rational 
representation of MC~ is discussed in Sect. 7, and the addendum traces through our 
various constructions and results for the Teichmfiller space ~-~ (as opposed to the 
decorated Teichmfiller space if-i)" Furthermore, the addendum describes rational 
representations of planar braid groups mod centers. 

1. Minkowski Space and Hyperbolic Geometry 

Let V be a real vector space of dimension three with a non-degenerate quadratic 
form (-,  .) of  type (2,1) so that there is a two-dimensional positive definite subspace 
and a one-dimensional negative definite subspace. We may choose an orthonormal 
basis (e o, e I , e2) for V with (e  i ' ej) = 0 for i =4 = j and - @0, Co) = @1, e l )  = @2, e2) 
= 1. The corresponding metric on V admits an expression 

- dxo  + + 

and we define Minkowski three-space IM to be V equipped with this metric. The 
coordinate x o on ]M will be called the height, and a subset of  ]M will be called 
horizontal if it lies at constant height. 

The hyperboloid 

{v v :  v} = - 1) = {x - +  12+x  = - 1  } 

has two components, and the upper sheet lI-I (of positive height) is a model for the 
hyperbolic plane: the form ( ' ,  ' )  restricts to a Riemannian metric on tangent spaces 
to the hyperboloid. An explicit isometry of  IH with the Poincar6 disk model of  the 
hyperbolic plane is given by radial projection from ( -  1,0, 0) to the unit disk ID 
about the origin in the plane at height zero. Explicitly, if x, y ~ IH and d denotes the 
Poincar6 distance between the projections of  x and y to 113, then 

cosh 2 d = (x, y)2. 
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The light-cone L ~ IM is defined to be 

L = {~ ~ v :  <~, v> = 0} = {x ~ :  x~ -- x~ + x~}, 

and the positive light-cone is 

L + = { x ~ L :  x o > 0  }. 

We say a point x ~ nVl lies "on"  L + if x ~ L +, and we say x lies "inside" L + if x lies in 
the component of  (1,0,0) of  I M - L ;  otherwise x lies "outside" L +. Radial 
projection from IH to 113 extends to a map 

- .  I H w L +  ~ I D w S  1 ,  

where S~ = Frontier ID (in the plane x0 = 0) is the "circle at infinity" of  the 
hyperbolic plane; the fiber o f .  over a point of  S~ is a ray on L + from the origin of  
~vl. A point w = (w0, wl, w2) ~ L + corresponds to the horocycle 

h = {x~lH:  <w, x ) = - 1 } ;  

the center of  h-is the point V/~S~, and a computation shows that the Euclidean 
radius of h-in ID is (1 + w0)- 1. Thus, as the height of  w ~ L + increases, h-contracts to 
its center, and - induces a canonical identification of  L + with the bundle of  
horocycles over S~. 

The group of  linear isomorphisms oflM preserving the quadratic form is the Lie 
group O (V) - -O  (1, n). We denote the component of  the identity in O (1,2) by 
SO + (1,2); this subgroup preserves the orientation of  V and the sheet IH of  the 
hyperboloid. SO + (1,2) (sometimes called the "M6bius group") consists of the 
orientation-preserving isometries of  the hyperbolic plane, and its action on L + 
describes the action of the M6bius group on horocycles. SO + (1,2) is isomorphic to 
the group PSL21R of  invertible two-by-two matrices over IR modulo + 1. 
Explicitly, the corresponding action o f P S L  2 IR on IM is given as follows. Represent 
x = (xo, x I , x2) E IM by the symmetric bi-Iinear form 

( X o + X l  x 2 ~ ,  

Q = \ X  2 X 0 - -  X 1 / l  

and notice that Q is degenerate if and only if x s L +, Q is indefinite if and only if x 
and - x lie outside L +, and Q is positive (negative) definite if and only if x ( - x, 
respectively) lies inside L +. The action of  A E P S L  2 ]R on ]M is given by the usual 
action on quadratic forms, namely 

A: Q ~-, A t Q A .  

Hyperbolic elements of SO + (1,2) are those with an eigenvalue ,~ so that [2[ + 1. 
It follows that 2 is real and positive with corresponding simple eigenvector (ray) on 
L +. There is one other eigenvector on L + with eigenvalue )~-1 and a third 
eigenvector outside L + with eigenvalue 1. Using the usual correspondence between 
a point v on the hyperboloid 

{v ~IM: (v,v>=l} 
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of one sheet and the (oriented) geodesic IH~ v ±, the third eigenvector of a 
hyperbolic motion corresponds to the invariant geodesic. Parabolic transfor- 
mations have a unique eigenvector on L ÷ with eigenvalue 1 and no eigenvector 
inside L +. Elliptic transformations have all their eigenvalues on the unit circle and 
one eigenvector inside L + (so they have a fixed point in IH). A M6bius 
transformation which is not the identity is hyperbolic (parabolic, elliptic) if and 
only if the absolute value of the trace of the corresponding element ofPSL 2 IR is > 2 
(=  2, < 2, respectively). 

Suppose that S is an affine plane in IM. We say that S is elliptic (parabolic, 
hyperbolic) if the conic section S ~ L  has the corresponding attribute. The 
restriction of  the form ( . ,  .) to S may be definite, degenerate or of type (1,1). If  

s = {x E ~ :  (x,  s) = ~} 

for some 0 4 = s e IM and ~ e IR, then these cases correspond to (s, s) < 0 (elliptic), 
(s, s) = 0 (parabolic), and (s, s) > 0 (hyperbolic), respectively. In the definite case, 
S has an induced Euclidean structure, and in particular if S is horizontal, then the 

induced metric is l /2  times the usual Euclidean metric. It follows that ifS is elliptic, 
then S ~ L is a round circle in the induced structure. An isometry I ~ g s SO ÷ (1,2) 
preserves an elliptic (parabolic, hyperbolic) affine plane in IM if and only i fg is itself 
elliptic (parabolic, hyperbolic, respectively). 

2. The Geometry of the Light-Cone 

We begin with a geometric interpretation of the restriction of the pairing 
(', ')[L~xL+ to L + x L + ~ I M x l M .  

Lemma 2.1. Suppose that u, u' e L  + are non-collinear, andlet h, h' ~ IH, respectively, 
denote the corresponding horoo, ctes. I f  g) denotes the signed Poincard distance along 
the geodesic from ~ to ~' between hand h', taken with positive sign i f  h ~ h' = 0 and 
with negative sign if h ~ h' se ¢, then 

- ( u ,  u ' )  = 2 e  ~. 

Proof. To begin, we homogenize two formulas from Sect. 1. Namely, i fx  and y lie 
inside L +, then the rays from the origin through x , y  intersect IH in points x', y', 
respectively, and the Poincar~ distance d between 2'  and ~9' satisfies 

cosh 2 d= (x ' ,  y ' )2 / (x ' ,  x ' )  (y ' ,  y ' )  . 

Furthermore, if v e L  +, then the cone from the origin over the horocycle in IH 
corresponding to v is the locus 

h (v) = {x inside L + : (v, x) 2 = - (x, x)}. 

Now, write 

x = su + (1 - s )  u' ~ h ( u ) ,  

y = tu + (1 - t) u' ~ h (u ' ) .  
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Solving for s, t using the conditions x ~h (u), y ~h (u') gives 

s = <u ,  u ' > / ( ( u ,  u '>  - 2), 

t = - 2/((u, u ' )  - 2). 

It follows that 

c°sh26 = ( x ' y ) 2 / ( x ' x )  ( Y ' Y ) =  L 4 ( u , u ' )  J ' 

whence 
- ( u ,  u ' )  = 2 e :~ a.  

Finally, - ( . ,  .) is continuous on L + × L + and tends to infinity (zero, respectively) 
as the heights of  its arguments tend to infinity (zero, respectively). The result 
follows. [] 

If x, y, z are distinct points in ~¢I, then let ~ (x, y, z) denote the affine plane 
through x, y, and z, and define IR+ = {t e IR : t > 0}. We next show that if x, y, 

z e L +, then ellipticity ofr~ (x, y, z) is a linear condition on ] / -  ( . ,  .) J L+ ×L +- Indeed, 
it will evolve that this restriction is a geometrically more natural quantity than the 
restriction of the pairing itself. 

Lemma 2.2. Let  {u,} 3 c L + and {2,} 3 c IR+ be given so that 

- 2 2 = ( u , , u j ) ,  f o r  { i , j , k } = { . 1 , 2 , 3 } ,  

and let S = ~z (u 1 , u2, u3). S is elliptic i f  and on@ i f  the three strict triangle inequalities 
hold amongst  Z 1 , 22, 23, S is parabolic i f  and only f 

2, = 2j + 2k, for  some i, j ,  k with {i,j, k} = {1, 2, 3}, 

and S is hyperbolic i f  and only i f  some non-strict triangle inequality fails amongst  21, 
22, 43. 

Proo f  The tangent space to S is spanned by v a = u l -  u3 and v 2 = u z - u  a. 
Furthermore, 

( v , , v , ) = 2 2 ~ ,  for { i , j}  ={1 ,2} ,  

O1,  v2> = 4~ + 42 ~ - 42. 

The determinant of  this form is 

2 4 2 ~ 2  ± 9 ~ 2 ~ 2  2 2 --/~1z~--4~ - -  ) ;4- t  - 1.~2 . . . .  1.~3-~- 2 4 2 4 3  

= (41 + & - &) (,h + 43 - 4~) (& + 4 3 -  4 0  (4, + 42 + 4 , ) .  

At most one of  these factors is not strictly positive, and the lemma follows. 

The next lemma provides the induction step for our basic parametrization 
theorem. 

Lemma 2.3. i f  ul ,  u2 E L  + and 41, 42, Z3elR + with (Ul,U2)~-----4 2, then there 
exists a unique u3 e L + on each side o f  rt (0, ul ,  u2) so that 

(u~, u3> = - 4 ~ ,  (us, u~) = - ; ~ .  

R.C. Penner 
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As  a consequence, there exists  a unique ray r on L ÷ on either side o f  n (0, ul , u2) so that 

@1, u) = @2, u)  f o r  each u e r. 

Proof. The space Wspanned by u 1 and u z has type (1,1) (consider the basis ul + u2, 
ul  - u2), and so W J- has type (1,0). Let e be a vector in Wwith (e, e) = 1 and solve 
for 

U 3 = ~ 1 U l  -[-o~2u2-[-fle , 

where 0~1, g2, fl a r e  unknowns. We find that 

-~=(Uz,U~)=-~,;~, - ~ = ( u ~ , u , ) = - ~ .  
Furthermore, the condition that @3, u 3 ) =  0 gives 

/~= +_ 1/221,t~2; 1. 
To see that u 3 ~ L ÷ (instead of  - L + ) ,  note that (u 1 + u2) L is of  type (2, 0) separating 
L + from - L +. The condition for a vector x to lie on L + is (x,  u 1 + Uz) < 0 and 
(x,  x)  = 0, and we have 

(U3 ,  Ul"t- U2> ~--- - - X  2 - -  X2 2 "~ 0 .  

Finally, the sign offl  determines which side o f~  (0, Ul, u2) the vector u 3 lies on. D 

Lemma 2.4. Given three distinct rays q ,  r2, r 3 f rom  the origin on L +, there are 

unique u i e r i, i = 1, 2, 3, so that 

( u i , u i ) = - l ,  Jbr i4=j.  

P r o o f  Choose v iers ,  i - -1 ,  2, 3. We seek ~ ,  ~ ,  ~; e lR+ so that 

(~' ivi ,  c ~ j v j ) = - l ,  for i , ~ j .  

These equalities give 

c~ ;~ j= - (v i , v j>  a, for i # j ,  

and the unique positive solution is given by 

t 

, / - - < v j , v f )  , w h e r e { i , j , k } = { l , 2 , 3 } .  [] 

Corollary 2.5 is our analogue of  the familiar "three-effectiveness" of  the action 
of  the M6bius group on S~.  The next result is of  fundamental importance to what 
follows; it will evolve that part  (a) describes the action of  the mapping class group 
on our coordinates, and part  (b) describes the faces of  cells o f  a complex on which 
the mapping class group acts cellularly. 

Suppose that S is an affine plane in 1M which does not contain the origin, so that 
S = {x e lm:  (x,  s) = - 1 } for some 0 ~= s ~ ~I.  We say that y e IM lies above S if S 
separates y from 0 (i.e., ( y , s )  < - 1 ) .  

Corollary 2.5. SO + (1, 2) acts transitively on positively oriented triples o f  distinct 

rays on L +. 
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Proposition 2.6. Suppose that {u i }~cL  + are so that any three are linearly 
independent, u 1 and u4- lie on different sides of  n (0, u2, u3), and let 

- 2 2 = ( u i , u ) )  , for i < j .  

(a) We have the equality 

414-423 = 212 "~34- -~- ~13 224- " 

(b) u4 lies above rc (u,,  u2, u3) if  and only i f  

223 ( 2 2 4 2 3 4 +  412413) < 214(413434 .+  212224) - 

Furthermore, equality holds if  and only i f  {u,}~ are coplanar. 

Remark. The reader will recognize the similarity between part (a) and the classical 
Theorem of Ptolemy: a Euclidean quadrilateral of consecutive side lengths A, B, C, 
D and diagonal lengths E, F inscribes in a circle if and only if 

E F =  A C  + BD. 

Since the restriction o f ( - ,  -) to an elliptic plane S is Euclidean and S~, L is a round 
circle in this structure, Ptolemy's theorem corresponds to the case that (ui} 4 are 
coplanar lying in an elliptic plane. Furthermore, Morin has pointed out that the 
equality in (a) is invariant under scaling each u~ ~ L + independently; this gives a 
quick proof of (a) from the classical Ptolemy" Theorem. 

Proof. As before, the space W spanned by u2, u3 has type (1, 1), and we let e be a 
vector in W ± with (e, e) = 1. We write 

ul = fie + %u 2 + 0:3u3 , 

where 

Similarly, we have 

where 

- ) . 212  = ( u , ,  u : >  = - ~3 2 ~ 3 ,  

- 2~3 = ( u l ,  u 3 )  = - ~ 2 ~ 3 ,  

u4 = fl  ' e + 0:'2 u 2 + 0:'3 U 3 , 

, _ 2 z  2-2 0~2-  34- 23 
* 2 - 2  

{g3 ~ 224-*~23 

f'= T 1/~24-2342;~ 

Notice that f f '  < 0, since ul and u4 lie on different sides of the plane = (0, u2, u3). 
Now, compute 

2 2 4 - = _ ( u l , u 4 - )  , 2 , 2 , = 0{2063223 -~ ~20:3 223 -~ f f  
2 2 - 2  2 2 - 2  

= 2 t 3 2 2 4 . ~ 2 3  -~-212234-223 q -2224234-212213222  , 
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SO 

2142232 2 = ( 2 2 4 2 1 3 _ ~ . ~ 3 4 2 1 2 ) 2  

proving part (a). 

For part (b), we may write 

(u l ,  u2, u3) = {x  E ~ :  (x ,  s )  = - 1} 

for some 0 =~ s elM, since {ui}~ are linearly independant. We write 

s = ae + bu2 + cu3,  

so that 

whence 

--1=(S, U2)=--C2~3, 
--l=(S, U3)=--b2~3, 

= = - - b N 3 2 2 3 - -  C~2223 , - 1  (s ,  u l )  aft 2 2 

-- --1 -1  - 1  2 a=/~-1(e2+~3-1)  = -+ 1/2212 2,3 223 (212+2~3-223). 

The condition 

- -  = - -  223 (C~ 2 "I- be;) l > (s ,  u4)  aft '  2 , 

that u4 lie above rc (u l ,  u2, u3) becomes 

223 (212213 -k- 224234 ) < 2231 (212234 "1- 213224) ( 2 1 3 2 3 4 +  212224)  

= 21, (213 234 + 21: 224), 

as desired. L3 

The next fact is technical and is used to give coordinates on the putative cells of 
our complex. 

Proposition 2.7. Suppose  that {u,}](n>4) sat is fy  the fo l lowing  conditions f o r  

k = l  . . . . .  n - 3 :  
u 3 linearly independent. (i) A n y  three o f  { k+i}i=0 are 

(ii) Uk, Uk + a tie on di f ferent  sides o f  rc (0, u k + 1, uk + z). 
(iii) Uk + 3 lies above 7r (Uk, Uk + l , Uk + 2). 
(iv) 7r (Uk, Uk + 1, Uk+z) is either elliptic or parabolic.  
In this case, u,  lies above rc (u l ,  u2, u3). 

P r o o f  We proceed by induction on n, the case n = 4 being trivial. For the inductive 
step, we simply remove u,_ 1 from the sequence and must show that u, lies above the 
plane zc (u,_ 4, u,_ 3, u,_ 2), the other conditions being trivially satisfied. [Notice that 
the hypotheses do not  assert the non-hyperbolicity of rc (u,_ 2, u ,_  1, u,).] 

Adopt the notation of Fig. 2.1, where a symbol next to an edge indicates the 
square root of  the negative of the corresponding inner product of  points on L + . By 
Lemma2.2 and Proposition 2.6, we have 

(1) The triple {a, b, e} satisfies all (weak) triangle inequalities, and so does the 
triple {c, d, e}. 
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Fig. 2.1 

Un_ 3 C Un_ 1 

b 

Un. 4 O Un. 2 

Un 

(2) (ac + bd) (bc + ad) > e 2 (ab + cd). 
(3) ec (f2 + g2 _ d 2) > fg  (d 2 _ c 2 _ e2). 
Now, it follows from repeated application of  Proposition 2.6 that  it is sufficient 

to show 

g2 (ac + bd) (bc + ad) + 2abcefg - cdeZ g 2 

+ e 2 ab (f2 _ d 2) + defg (a 2 + b 2 - -  e 2) 2> 0. 

The inequality (2) gives a lower bound on the first term, so it suffices to show that  

abe 2 (f2 + g2 _ d 2) + defg (a z + b 2 - e 2 ) + 2abcefg > O. 

The inequality (3) then gives a lower bound on the new first term, so it remains to 
show that  

cd(a+ b - e )  (a+ b+ e) + ab(e + d - e )  (c + d+e)  > O, 

which follows from (1). [~ 

We close this section with a geometric interpretation of  the quantities ~;, i = 1, 2, 
3, which were computed in Lemma 2.4. I f  x and y are distinct points of  S~,  let 
7 {x, y} denote the (unoriented) Poincar6 geodesic IH ~ [re (0, x, y)]. 

Proposition 2.8. Suppose that {ui} ~ c L + are linearly independent, and define 

--22=(Uj,Uk), C~i--2i2j2~ , for { i , j , k }={1 ,2 ,3 } .  

Then 2c~ is the hyperbolic length along the horoeycle -h(u~) between ~ {fh, ftj} and 
~t {fti, Ok} , {i,j, k} ---- {1, 2, 3}. 

Proof We first remark that  an elementary computat ion shows that  if  H is a 
horocyclic segment of  hyperbolic length e, and 6 denotes the hyperbolic distance 
between the endpoints of  H, then 

e/2 = sinh c5/2. 

We concentrate on computing the hyperbolic distance between 

+ = h-(ul) a ?' {ul, if2} and ~_ = h-(ul) c~ ? {al,  u3}- 
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To this end and in light of  Corollary 2.5, we may conjugate in SO ÷ (1, 2) so that 

u2 = ( l / ~  ~ ) - ~  0 ,  - 1, 0) ,  

u3 = ( 1 / 2  ~3) -1 ( 1 , 1 , 0 ) .  

If  we identify a point v on the hyperboloid of one sheet with the geodesic IH ~ v ± in 
the standard way, then 7 {~ ,  ti2} (7 {~1, u3}, respectively) corresponds to (1, - 1, 1) 
((1, 1, 1), respectively. A routine computation gives 

~_+ = 2-1/2 (~1 + ~;- 1, + ~i- 1, cq). 

Thus, if c~ denotes the hyperbolic distance between ~ + and {_, and ~ the length 
along h-(u,), then 

cosh c5 = 1 + c~, so e/2 = sinh a / 2  = ~ , .  

The computations involving c~2, e3 are similar, and the proposition is 
proved. 

3. Coordinates on the Decorated Teichmiiller Space 

Consider the compact surface Fg of  genus g with a subset P = {x l ,  x2, . . . ,  xs} of  
distinguished points, where 2g - 2 + s > 0. Let Y-~ denote the Teichmfiller space of  
F~ = Fg - P, corresponding to the space of  marked complete hyperbolic structures 
of  finite area on /r~. We restrict attention to the case where s >= 1. Each point 
x i, i = 1 . . . . .  s, gives rise to a cusp o f /~ .  

s___> A point of  Y-~ gives rise to an isomorphism nl F~ F < SO ÷ (1,2), where F is a 
marked discrete group defined up to conjugacy in SO ÷ (1,2). We will denote a 
marking on F by Fro. There is a corresponding covering map IH ~ F~ = IH/F,~. We 
will also consider the corresponding group acting on the Poincar~ disk ID with 

S S covering map ]D F~. The Poincar~ metric on ID projects to a metric on F~, 
which we refer to as the "F-Poincar~" metric on F~. We refer to geodesics for the 
F-Poincar6 metric as 'T-geodesics",  etc.. 

Represent a point in ~ by Fro<SO+(1,2)  and choose a distinguished 
F-horocycle hi about each cusp xi. The specification of  hi determines a correspond- 
ing F-orbit B~ of points on L ÷. Explicitly, choose a parabolic 71 ~ Fm corresponding 
to x i, let zi ~ L + be fixed by 7i and correspond to h i , and take B i = F z  i . Each point of  
B~ has a stabilizer in F which is parabolic and infinite-cyclic; different stabilizers for 
different points of  Bi are conjugate in F. The stabilizer of z i s B~ corresponds to a 
group H(i )  < ~11r~ of  homotopy classes of  loops generated by a loop which circles 
xl exactly once. 

Thus, a specification of I~ ~ ~ together with a choice h~ of  horocycle about 
each cusp xl,  i = l , . . . , s ,  determines an SO+(1,2)-orbit of  (s+l ) - tuple  
(F~, B1, B2 . . . . .  B~), where B~ ~ L ÷ is a F-orbit of  points corresponding to the 
F-horocycle h i about x~. To formalize this notion into an object of our basic 
interest, we define the decorated Teichmuller space, 

~'~-~" ~ -  { ( r , , ,B ,  , . . . .  , B3: r , , ~ } / S O +  O, 2) 



310 R.C. Penner 

~ S __9. 8 " ' ~  The "forgetful" map ~b: J-g J o  induced by (Fro,B1, • Bs) ~ F,~ is a principal 
fibration with group 1R~_: IR% acts on the fiber (B1 . . . . .  B~) by componentwise 
homothety of  points in L +. ~ is thus a cell of  real dimension 6g - 6 + 3s. 

The (full) mapping class group MC~ of  isotopy classes of (orientation- 
preserving) homeomorphisms (which may permute the punctures) acts on J-g in the 
natural way by change of  marking; the fibration ~b is MCg-equivariant. 
Furthermore, there is a MCg-invariant foliation ~ of 3 0~s defined as follows. Let 
01(f~) denote the F-Poincar6 length of  the horocycle hl, where/~,, ~s  ~' g satisfies 
O(F,,) = F,~. Each 01: ~ ' ~  IR+ is clearly invariant under the MC~-action, and we 
consider the foliation ~ of Pg  by level sets of F = X 0i: ~ ~ IR~+ • In particular, 
the level set F = X 1 is MC~-invariant and gives rise to a canonical equivariant 
section of  qS. 

Fix/~,~ = (F~, B 1 , . . . ,  B~) e 3 0. ~ Let c be a homotopy class of path, not necessarily 
simple, running from x i to x i, where we may have i = j ,  and straighten c to a 
F-geodesic C. Such a homotopy class in/;~ is called an ideal arc. I f  z e Bi, orient C 
and lift it to a geodesic in ID starting from ~ and ending, say, at a point # e S~ with 
w ~ B~. (There is only one point of  B i in the fiber of  - over ~.) We define the 
2-length of c (relative to Fro) by 

:, = . . . . .  B0 = 1 / -  w>. 

Let us now examine how this quantity depends on our choices. The group Fm can 
be changed by conjugating by an isometry g e S O  + (1,2). The corresponding B i is 
transformed to gB~, z, w are transformed to gz, gw, and the lift to tD of  C is 
transformed by g. Since 2-lengths are a metric quantity in IM, the value of ~ is 
unchanged; similarly, choosing z to be another element of  B~ does not change the 
value of  2. I f ~ '  e S~  with w' e Bj is the endpoint of  the lift to 113 of  - C starting from 
2, then there exists 7 e F with 7 w' = z, y z = w, so the choice of orientation on C does 
not affect the value of  2. 

For  each ideal arc c, the 2-length gives a continuous positive real-valued 
function )~ (c) defined on P~.  We next fix an appropriate finite number of  ideal arcs 
c~, . . . ,  eq to obtain a map 

q 

X (c0: 
i = 1  

which will be shown to be a surjective homeomorphism. An appropriate set of  ideal 
arcs A is defined by taking a maximal family of disjointly embedded simple arcs in 
/;~ running between distinguished points subject to the condition that no 
complementary region of  A in/;~ is a mono-gon or bi-gon. It follows that each 
component of  F~-A is a triangle. Such a family is called and ideal triangulation, and 
Euler characteristic considerations show that there are q = 6g - 6 + 3s ideal arcs in 
an ideal triangulation of F~. 

Theorem 3.1. I f  A = (c 1 . . . . .  cq) is an ideal triangulation o f  F~ then 

q 

i = 1  

is a homeomorphism. 
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Proof We must find the inverse map, so suppose that we are given (21 . . . . .  2q) ~ IR~ 
and wish to construct a surface. A universal cover of  F~ is homeomorphic to the 
Poincar6 disk ID, which is tesselated by ideal triangles with sides arising from the lifts 
of the ideal arcs ca, . . . ,  % We will map this tesselation into ~¢i so that the vertices 
map to L +. 

Fix attention on one triangular region in the universal cover, and suppose that 
its edges correspond to ideal arcs c~(1), ci(2) , el(3) (not necessarily distinct). Fix a tuple 
r l ,  r2, r3 of  distinct rays on L ÷. By Lemma 2.4, there exist points zi ~ rl, i = 1, 2, 3, 
with 

<z~,z~>:-2~(k), for { i , j , k } = { l , 2 , 3 } .  

We now inductively map further triangles into ~M. Each triangle has one side 
already mapped in, say with vertices ul, u2 s L ÷. The third vertex u3 of  the triangle is 
mapped in using Lemma 2.3. The lemma gives two choices of  points with the 
required inner products, and the choice is resolved by the fact that we want the 
tesselation of  the universal cover to map homeomorphically to a tesselation of  113. 
Since one side of  rc (0, ul ,  u2) already contains points of the lifted tesselation by 
induction, u 3 must lie on the other side of  Tc (0, ul,  u2). This determines u3 uniquely. 

Each element/~ e rq F~ acts on the tesselation of the universal cover. Let T be 
one triangular region in the universal cover, and let zl and ~2 be the triangles in IM 
which are the images of  T and/3 T. There is a unique g (/~) ~ SO ÷ (1,2) taking zl to ~2 
mapping vertices correctly. From the inductive construction of  triangles in ~Vl, we 
see that the definition o fg  (/~) is independent of  the choice of  T. The same reasoning 
shows that 

g: rcl F~ ~ S O  + (1,2) 

is a homomorphism. 
To see that g is injective with a discrete image, note that the inductive 

construction above guarantees that the tesselation of  the universal cover of  F~ is 
mapped injectively to a tesselation of ID. Injectivity o fg  follows immediately. If  the 
image Fm o fg  were not discrete, then there would be a non-trivial element arbitrarily 
near the identity, and then triangles in ID would overlap. 

To complete the discussion of  the tesselation and group Fro, we claim that the 
image tesselation II? actually covers all of  ID. To this end, note first that the 
inductive definition of 11" guarantees that ~ is open in ID. We show also that g c ID 
is closed. Each triangle z in ~ is provided with three horocycles centered at the 
vertices of z. Furthermore, by Proposition 2.8, there is some e > 0 so that each 
horocyclic segment inside z has length at least ~. It follows easily that ll'is closed, so 
connectivity of  113 guarantees that ~ =  ID, as was asserted. 

The quotient of the image tesselation by F,, is a marked complete hyperbolic 
surface of  finite area. This gives our map from IR q to J-~. The map to the fiber of 
~-~ is given by taking the natural F-orbits of  parabolic fixed points arising as the 
vertices of  the triangles in ~¢I. The maps between ~ and IRq+ are clearly inverse to 
each other, and the theorem is proved. 

Remark. The maps in Theorem 3.1 between J o  ~-~ and IRq+ are linear with respect 
to scalar multiplication on IW+ and IR%, giving a homeomorphism between 
Y-~ x Interior (a ~- 1) and Interior (crY-1), where a" denotes the n-simplex. 
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One can remove the factor Interior (a s .  ~) to get a homeomorphism between J-~ 
itself and Interior (aq-') (see Theorem A.1). We also give an interpretation of  
2-lengths in terms of the matrix entries of a discrete subgroup of PSL21R 
representing a point of ~'-~ (see the remark after Theorem A.1)~ 

Recall that MC~ acts on ~-~, and if ~o ~MC~, let q0.: ~--~ 3 denote the 
corresponding homeomorphism. Since ~0 admits a representative which respects 
Poincar6 metrics and 2-1engths are a Poincar~ metric quantity by Lemma 2.1, we 
have 

Theorem 3.2. 2-lengths are natural for the action of MCg in the sense that if q~ ~ MC~, 
f,, e ~ ,  and c is an ideal arc in F~, then 

,~ (c; ~ ) =  ,z (~o c; q,,/~). 

Corollary 3.3. Suppose that A is an ideal triangulation of F~ and A is an assignment 
of positive real numbers to the ideal crcs of A so that (A, A) determines the point 
F e J-~. Ifcp 6MC~, then (p induces a one-to-one correspondenee between components 
of A and components of cp- ~ A. IrA' denotes the assignment of numbers to components 
of cp- l A induced from A by ~o, then (q)- l A, A') determines the point ~ ~ qo .F~J o. [] 

Remark. The action of MC~ on ~-~ with respect to a fixed ideal triangulation is 
computed in Sect. 7. See also the Addendum. 

We close this section with yet another parametrization of  ~ .  Fix an assignment 
A of 2-lengths on the ideal arcs of an ideal triangulation A of Fg, and let F,, e Y-~ 
correspond to (A,A). Let ~z: ID~F~ denote the universal cover with group F. 
Suppose that T c  F is a triangle in A with geodesic sides and choose a lift T of T to 
ID. By an end of T in ~ ,  we mean the F-orbit of an end (in the usual sense) of the 
closed convex hull of T in 1t3. The collection of such ends is denoted ~ = 8 (A). The 
end E ~ eg abuts on the puncture xl of F~ if rc (E) is asymptotic to xi. Two ends are 
said to be equivalent if they have a common abutment xi, and the class is denoted 
[xi]. 

Suppose, now, that T has sides {c, d, e} c A. The orientation on F~ = T induces 
both a cyclic ordering (c, d, e) on {c, d, e} and an orientation ~, aT: [0,1 ] ~ d, Y on each 
side of T (see Fig. 3.1). Consider the end E ~ g of T which meets the tail ~l [0, ½] of d. 
The end Eis said to be opposite the ideal arc e, and dis said to abut on the end E. We 
also let -1 denote reversal of paths, so, for instance, ~7 and U ~ have a common 
abutment. 

Since fi,, e ~-g is a decorated group, there are well-defined horocycles h~, hd, h~ in 
ID centered at the vertices of the lift T of T; see Fig. 3. I. The sector of the end E of  T 
is the horocyclic segment rc (h~ c~ ~r) ~ F~. Of course, the sector depends on both 
E e ~ a n d / ~  s J'~. 

We define a map 

and develop the corresponding parametrization of Y-~. To compute the coordinate 
entries in the target, suppose that Tis a triangle with edges (c, d, e) and the end E o f  
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Fig. 3.1 
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T is opposite e. The h-length (for "hatf  horocyclic length") of e for (A, A) = F,, e ff'~ 
is defined by 

h (E, rm)-  A (e) 
A (e) A (d )  

This defines the map L 
The terminology is motivated by our next result, which follows immediately 

from the definitions and Proposition 2.8. 

Corollary 3.4. I f  (A, A) = ff~ ~ ~-~ and E ~ g (A), then h (E, ff~) is half the Poincar~ 
length of the sector of E. 

Remark. It follows that the functions ~i: ~ - ~  IR+, i = 1 . . . . .  s, used to define the 
foliation f f  of  -ff-~ are easily computed as 

0~( /~)=2 • h(E, Fm). 
E e [xl] 

Returning to the map I: J0~-~-~ IRe+ , we first observe that 

A-2(c)=h(C, Fm) h(D,F~), 

so I is an embedding. Moreover, if e ~ A, then e "abuts"  on four ends A, B, C, 
D e E(A) as in Fig. 3.2. The condition 

h(A,F,~) h(B, ff~)=h(C, ffm) h(D, ffm) 

is called the coupling equation of e. We summarize with 

Fig. 3.2 

g ( 

e E OF @ G 
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Proposition 3.5. I: ~g  =,+ is an embedding of  ~'o onto an intersection of  
homogeneous quadrics. Explicitly, I ( J ' g )c  lR°+ is characterized by the coupling 
equations. [] 

Several of  our subsequent arguments will depend on the "h-length para- 
metrization" of ~-g given by Proposition 3.5. As a final parenthetical note, we 
simultaneously diagonalize the quadratic forms by assigning a complex coordinate 
~ e • to each of  the orientations Y on e e A as follows. The orientation of  F~ induces 
a canonical orientation on horocycles (as in Fig. 3.1), and if the tail of  ~ separates 
the sectors of  adjacent ends E, E '  in the induced order (E, E'), then we define the 
"strand coordinate", 

~ = h (E,/~,,,) - ] / - 1  h(E',Fm). 

This assignment defines an IR-linear embedding J: IR*+ c 112 e The coupling 
equation on e is equivalent to the condition that 

Arg ~ = Arg ~-~. 

(Arg denotes the principal value of  the argument.) Of course, we introduce some 
further coupling equations: in case T is a triangle in A with (canonically) oriented 
edges (c, d, e), then 

Re ~ = Im ~ 1 

Re ~a = Im ~-1 

Re ~ = Im ~a i. 

For convenience, we may write 

Jo I: Y - ~  (~2)q 

e~a 

and consider the map [~2q____> {~2q induced by the following linear coordinate change 
on each factor 

~ 2  ._+ {~2 

; ' ,  ¢,_ 

In general, if {, ~ e ~ ,  then Arg~=Arg ,1  if and only if I { - 1 / / 7 1 - ~  [ = II] 

- ]1/- 1 ~ 1; in this way, one imagines the variety determined by the coupling 
equations as a product C q ~ (C2)q, where C = {(z, co) e t122 : I z[ = I col}. 

Remarks. 1) The functions @i in the definition of the foliation ~,~ of  J'~ are easily 
computed in strand coordinates as 

@i (/~) _- 2 

where the sum is over all oriented edges ~ whose tails abut on x~, i = 1 . . . .  , s. 
2) If  h i is the i th distinguished horocycle determined by /~ e J-~, then the 



Decorated Teichmfiller Space of Punctured Surfaces 3t 5 

"combinatorial  length" of  hi is defined as ~ {components ofh~ - A}. Provided this 
quantity is not equivalent to zero rood four, then one can easily CU-linearly solve for 
the h-lengths of  ends of  A that abut on x~ from the strand coordinates {~: ~abuts on 
x~, e e A}. In particular, when s = 1, q = 6g - 3, so the combinatorial  length ofh~ is 
2q = 2 (4). Thus, h-lengths are N-valued fl?-tinear functions of  strand coordinates 
in case s = 1. See Remark  4 after Corollary 7.4. 

4. The Convex Hull Construction 

Lemma 4.1. Suppose F,, ~ J ~ ,  and let u e L  +. The orbit Fu  is discrete in L + ~,{0) / f  
and only i f  u is a f i xed  point o f  some parabolic transformation in F. In particular, 0 is 
an accumulation point o f  Fu i f  and only i f  u is not a parabolic f ixedpoint .  

Proof  First suppose that u is a parabolic fixed point and choose an embedded 
horocycle about the corresponding cusp of F~. Since the horocycle is embedded, the 
Euclidean radius of  a lift to ID is bounded away from one. Since the height h of  a 
point h in L + is related to the Euclidean radius r of  the corresponding horocycle by 
r = (1 + h ) - 1 ,  it follows that 0 is not an accumulation point of  Fu. 

Conversely, suppose that 0 is not an accumulation point of  Fu, and let K b e  the 
complement in F~ of  a union of disjointly embedded horoballs, one about  each 
cusp. Choose/3 > 0, so that if the height of  a point on L + exceeds/3, then the 
corresponding horocycle in Ii2) is disjoint from a fixed lift of  K. Now, choose c~ ~ IR+, 
so the height of  any point of  Fo~u exceeds/3. It  follows that the horocycle on/ ;~ 
corresponding to c~u lies inside F ~ - K ,  which implies that u is a parabolic fixed 
point. 

It  remains to show that if Fu accumulates at a point, say v, on L +, then Fu 
accumulates at 0. To see this, choose a sequence {7~} of  hyperbolic elements o f f  so 
that the contracting eigenvector (ray) ofyi on L + tends to the ray f rom 0 through v. 
I f  {u~} c Pu is a sequence which accumulates at v, then {Tiui} accumulates at 0. D 

Remarks. 1) In fact, the action of P on L ÷ is ergodic; see [EP]. 
2) Another proof  of  discreteness of  P u  for u a parabolic fixed point comes from 

the fact that the hyperbolic length spectrum of  F~ is discrete [Ab] with an 
application of Lemma 2.1. 

If/~,, = (Fro, BI,  B ~ e J-~ (see Sect. 2), then we define ~ = B1 ~ w Bs and 
• • • ,  s J  0 " " " 

let C be the closed convex (Euclidean) hull of  N in ~I. 

Lemma 4.2. L + ~ C is the set o f  points o f  the form ez, where c~ > 1 and z e J3. 

Proof  I fu  ~ L + is not of  the stated form, then we may choose c~ > 1 so that eu is also 
not of  the stated form. Let T be the tangent plane to L + at eu, and let Am T be the 
horizontal line through c~u. We may rotate T slightly about A so that the rotated 
plane separates u f rom N, since there are only finitely many point of  ~ below the 
height o f  c~u by Lemma4.1.  Therefore, u0g C. 

Conversely, i fu e N and e > 1, choose a sequence {7~} of hyperbolic elements of  
F whose expanding eigenvectors on L + tend to the ray from the origin through u. 
Since ~ is discrete, the height of  T~u tends to infinity, so c~u is in the closed convex 
hull of  {TiU}. [] 

Lemma 4.3. Each ray r f rom the origin inside L + meets 8C exactly once. 
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Proof Since the projection N ~ S~ of  N is dense, the projection to ID of  the point 
r ~ IH lies in the hyperbolic convex hull of  a finite set {Z~ . . . . .  ffk} c ~ .  It  follows 
that r meets the convex hull o f  {z~ . . . . .  Zk} ~ ~ and so meets C. By discreteness of  
~ ,  there are points {Wl . . . .  , wk} = N of arbitrarily large height with #~ arbitrarily 
near 2~, i = 1 . . . .  , k. It follows that every point of  r beyond the first intersection 
with C lies in C. ~3 

Proposition 4.4. The boundary of C inside L ~ consists of a countable set 49 1 , 4 9 2 ,  " • " 

of codimension-one "faces," each of which is the convex hull of a finite number of 
points in ~ .  Each face lies in an elliptic plane, and the set of faces is locally-finite inside 
Z +" 

Proof Let z o ~ S C - L  + and let S be a support plane for C at z 0. I f  S were 
hyperbolic, then since ~ is dense, we could find points of  ~ on either side of  S, 
which is absurd. I f  S = {x ElM: (x,  s ) = -  1} were parabolic, then s e L  + (since 
(z o, s) = - 1 and z o lies inside L+), and s could not be a multiple of  any point of  N 
(since (s, s) = 0 and C lies above S); by Lemma 4.1, there are 7j ~ F so that 7is tends 
to 0, but 

-- ] ~ (7? 1Z, S) ~-- (Z, ~)jS)--+O 

for z s N, which is absurd. It  follows that S is elliptic. 
We claim that there is a support  plane at z 0 which contains three affinely 

independent points of  N. Indeed, suppose some line A in the support plane S 
contains Sc~ ~ ,  and rotate S about A until a point o f ~  is encountered. (As before, 
only a finite number of  points of  N lie below the elliptic plane S.) Performing at 
most two such rotations, we arrive at such a support  plane. 

It remains to show that the set of  faces is locally-finite inside L +. To this end, 
suppose that K is a compactum lying inside L + meeting the faces 491, 492 . . . . .  
Choose x i ~ 49i c', Kconverging to x, so that the plane of  49i converges to a limit plane 

• Wcontaining x. As a limit of  support planes, Wis itselfa support  plane of  C, whence 
W is elliptic. By discreteness of  M, the faces 491, ~2, --. cannot all be distinct, as 
desired. [ii~ 

I f  Fm= (Fro, B1 . . . .  Bs) e J-~, let A (/~m) denote the collection of  geodesics on F~ 
arising from the edges of SC inside L +. Explicitly, if z, w ~ N, then the geodesic in 1D 
connecting Z, ~'~S~ projects to a geodesic arc connecting cusps of / ;~;  A (Fro) 
consists of  the geodesic arcs that arise in this way from the endpoints of  edges of SC 
inside L +. 

Theorem 4.5. A (/~,,) consists of a finite collection of simple geodesic arcs disjointly 
embedded in F~ connecting punctures. Furthermore, components of  F~ - A (F,,) are 
simply connected. 

The isotopy class of  such a decomposition is called an ideal cell decomposition 
of  F~. 

Proof Suppose that q ,  c2 ~ A (/~m) (perhaps with q = c2) and c~ ~ c 2 4= ~. There are 
lifts e~, e2 of cl ,  c2 to IM (with 8el, 8e2 ~ ~ )  so that the endpoints 8~1 separate 8~ 2 
on S~. Since the construction of  C was F-equivariant, e~ and e 2 are edges of  8C 
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inside L +. By discreteness of  ~ in L +, there is a point z e N  whose height exceeds 
that of 8e, and ( ~ e  2 . It follows that e, and e 2 cannot both be edges of  8C, and this 
contradiction shows that A (/~,,) consists of disjointly embedded arcs. 

If7 e F leaves invariant a face of SC, then 7 preserves the plane of  the face since it 
acts linearly• Since the plane of  a face is elliptic by Proposition 4.4, 7 must be elliptic 
(see Sect. 1), which is absurd for Fm~3-g. It follows that complementary 
components of  A (F,,) are simply connected, and the theorem is proved. [] 

Remarks. 1) The ideal cell decomposition A (fro) depends on the choice of  orbits 
B 1 . . . . .  B~. There is thus an ( s -  1)-parameter family of  ideal cell decompositions. 
In particular, if s = 1, then the ideal cell decomposition is unique. 

2) At the expense of  choosing a distinguished cusp of F~, we give a convex hull 
construction for a kind of decomposition of  F~ associated to a point of  Y-~ (see 
Theorem A.2). 

3) Many of the arguments in this section generalize readily to the setting of 
finite-volume hyperbolic n-manifolds with cusps, n > 3 (see [EP]). 

4) The inner product on ~¢I induces a Euclidean structure on each face since the 
plane of  each face is elliptic (see Sect. 1). These combine to give a canonical (non- 
complete) Euclidean structure on F~ associated to F~ ~ J-~. 

5. The Cell Decomposition of the Decorated Teichmiiller Space 

Suppose that /~m E ~g.~-~ The convex hull construction of  Sect. 4 determines a 
canonical ideal cell decomposition (i.c.d.) A (fire)c F~. Conversely, if A is a fixed 
i.c.d, of F~, then we define 

{rm  = g/o:A(fm)=A}, 

= {fm  Y-;: A A}. 

By definition, ~f (A ~) ~ cg (A z) + ¢, if and only if A 1 ~ A 2 is an i.c.d, of  F~, and in this 
case, ~ (A 1) n ~ (A 2) = cg (A 1 ~ A 2). Our immediate goal is to characterize ~f (A), 

(A) in terms of  k-lengths on A in the special case that A is an ideal triangulation 
(i.t.) of/7~. 

To establish notation, fix an arc e in the i.t. A, and consider a lift g o f e  to ~ .  Y 
separates two triangles S, T of the lift zT of  A to ID, and we adopt the notation of 
Fig. 5.1(0) for the arcs in 8S-, ST. it  may be that rcS= rc~, where ~: ID~Fg  is the 
canonical projection, and a ' =  rE(~ . . . .  , d ' =  rc(tT) need not be distinct; see Fig. 5.1, 
where we enumerate the various cases. In any case, if A ~IR~+ = {A:A~IR+},  
then we say A satisfies the (strict)face condition on e e A if the following inequality 
holds: 

A (a') A (b') [3 2 (c') + A 2 (d') - A 2 (e')] 

+ A (c') A (d') [AZ(a ') + AZ(b ') - A2 (e')] > 0. 

The strict face condition on e is indicated in Fig. 5.1 in the various cases (where 
we identify an arc with its A-value for convenience). We will also refer to "face 
equality" (corresponding to equality above) and the "weak" face condition 

• t C (corresponding to the weak inequality > above) on e for A. Furthermore, lfA A, 
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(o) 
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ab(oZ+c2-eZ ) ÷ ac (oZ+b 2 .e  2 ) > 0 

(iv) 

c=d ~ -  e a=b 

cZ(2a2-e21÷a2(2c -e 2] >0  

{vi) 

Fig. 5.1 

ab(c2+d2-e 2) +cd(a2+b2-e2):~O 
( i )  

d 

a=b 

cd (2a 2- e 2 ) + 2,a 2(c z +d z -e  2) > 0 

(ii{) 

j D~ 

BJ 
O=C 

/ 
E 

e 

b 
B 2 

ab[d 2+az~e 2) +adIb2÷a2-e 2 )>0 
(v) 

o=d e 

F D 
= 

2ab(a2+b2-e 2)>0 

(v i i )  
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Fig. 5.1 (continued) 

F . . . .  b = d  

C 

B 

e 

2abla2+b2-e 21>0 
( v i i i )  

then we will say that A e IRe satisfies the "face relations on A rel A ' "  if the strict 
face conditions hold for A on each e s A' c A, and the face equalities hold on each 
e ~ A - A'. In particular, we say simply that the "face relations" hold for A if the 
strict face conditions hold on each e ~ A. 

Theorem 5.1. Suppose that A is an i.t. of  F~, and let IR~+ a A = F m ~ f f -  ~. Then a 
necessary and sufficient condition for Fm ~ ~ (A) is that A satisfy the face relations 
for A. Furthermore, if A' c A  is an i.c.d., then a necessary and sufficient condition 
for F~ ~ ~ (A') ~ (f (A) is that A satiffy the face relation for A rel A'. 

Proof of  Necessity. Fix/~m ~ J-~, recall the construction ofA (r,,) from Fm (in Sect. 4), 
and let ~ c L + denote the discrete subset corresponding to the decoration of  
horocycles. A lifts to a collection of  Euclidean geodesics in IM connecting points of  
~ .  IfY is such a lift o f e  ~ A separating triangles S, T in the lift, then ~ is extremal in 
the hull of  g and so in particular in the hull of S u T. Comparison of  the face 
condition with Proposition 2.6b thus guarantees necessity. The proof  of  necessity 
in the second assertion is analogous. 

Before we undertake a w o o f  of  sufficiency, we develop some generalities. Fix an 
i.t. A of  F~. Suppose that (~)~ is a cycle of  triangles in the sense that Tj ~ Tj + ~ = e j, 
for all j, where we henceforth regard the indexj as cyclic, so for instance, T,+ a = T~. 
If  the edges of  Tj are {ei_ ~, e~, b~),j = 1 , . . . ,  n, then the collection {bj}~ c A is called 
the boundary of  the cycle (Tj)]. 

Lemma 5.2. Suppose the (weak) face conditions hold for IR $ ~ A = ~ ~ ff-~ on each 
e ~ A. Then all three strict triangle inequalities on {A (c), A (d), A (e)} hold whenever 
there is a triangle in A with sides c, d, e. 

Proof  To get a contradiction, we suppose fbr instance that A (e) > A (e) + A (d), 
and adopt the usual notation for the edges adjacent to e (see Fig. 5.1). Thus, 

A 2 (e) + A 2 (d) - A 2 (e) < - 2 A (c) A (d), 

so the face condition on e gives 

0 < A (a) A (b) [(A (c) - A (d)) 2 - A 2 (e)], 
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and we find a second edge-triangle pair so that the triangle inequality fails. It 
follows that there is a cycle (Ti) ~ of  triangles in A so that a strict triangle inequality 
fails at the edge-triangle pair (Ti, ej), for allj. As before, let {bj}~ denote the ideal 
arcs of  A in the boundary of the cycle. We have 

A(ej+l)>A(bj)+A(ej), j = l ,  . . . ,  n. 

Upon summing these inequalities and cancelling like terms, we obtain 

0 >__ ~ A(bj), 
.i=1 

which is absurd for F,, s ~ .  [] 

Proof of Sufficiency in Theorem 6.1. To prove sufficiency in the first claim, we 
suppose that A ~ IR~_ satisfies the face relation on A (and hence the "triangle 
inequality" condition of  Lemma 6.2) and prove that ig m = (A, A)e@ (A). To this 
end, adopt the notation in the proof  of  necessity, so that N c L + arises from 
A E IR~. By Proposition2.2, the triangle inequality condition is equivalent to 
ellipticity of  the affine planes spanned by triples in ~M arising as the vertices of  a lift 
of  a triangle in A. Furthermore, we saw above that the face condition is equivalent 
to "local extremality." Finally, from the inductive definition of  ~ c L  + in 
Theorem3A, it follows by induction and an appeal to Proposition2.7 that 
/~m e @(A). The proof of  sufficiency in the second assertion is analogous. [] 

Recall the h-length parametrization of  ~ g  given in Proposition 3.5. A pleasant 
algebraic fact relating h-lengths and the face condition is the observation that the 
face condition is linear in h-length coordinates. Indeed, suppose first that e s A 
separates two triangles S ~ T in A with edges (a, b, e), (c, d, e), respectively, where 
4~ {a, b, c, d} = 4, and let (c~, fl, e) ((7, (5, g0), respectively) denote the h-lengths of the 
ends of  S opposite (a, b, e) (of Topposite (c, d, e), respectively); see Fig. 5.2a. We see 
that the (strict) face condition on e is equivalent to 

/ ' < 1 7 \  

(el 

{X e 

(b) 
Fig. 5.2 
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by dividing the former by A (a) A (b) A (e) A (d) A (e). Since the various cases 
(indicated in Fig. 5.1) give rise to linear quotients, the claim follows. 

For  each e t A, we next define a pair of  vectors Be, C e t IR ~, where N = d"(A) is 
the set of  ends of  A (see Sect. 3). Adopt the notation of  Fig. 5.2 for the ends A, B, C, 
D t ~ on which e abuts. B e and C e each lie in the coordinate subspace of  IR ~ 
corresponding to A, B, C, D (in this order), and B e (Ce, respectively) has entries 
(I, 1,1,1) ((1, - 1, l ,  - 1), respectively); the ends A, B, C, D need not be distinct. See 
Fig. 5.3a. 

Lemma 5.3. {Be, Ce: e t A }  is a basis for IR ~. Furthermore, suppose 

z = x + y =  Z x e B e +  Z y e C e ,  
e ~ A  e ~ 3  

Xe, Ye t  IR. Then z satisfies the face relation on A rel A' if  and only i f  x e > O for e t A' 
and x e = 0 for e t A - A', 

Proof The span of  {B e, Ce: e tA}  is clearly identical with the span of  the vectors 

{ Be _ Be + Ce B e -  Ce } 2 , C~ - 2 " e t A . Let us fix a triangle T in A, say with ends 

B' e t A } with a non-zero (A, B, E). There are exactly three vectors among { e, C£: 
projection into the subspace of  IR ~ corresponding to (A, B, E); namely, (1,1,0), 
(0,1,1), and (1,0,1). See Fig. 5.3b. Insofar as these projections are linearly 

B' e t A } ,  and hence {Be, Ce: e t A }  forms a linearly independent independent, { e, C~: 
set, proving the first part. 

Be C e Be C e 

(a) 

Fig. 5.3 {b) 
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Since the face condition is linear, the second part follows at once from the fact 
that the face equality e + fl + 7 + 6 = e + (p holds on every edge for any Ce, 
e~A.  [1 

Define the following subspaces of IRe: 

X = {Xx~B~: xee IR} ,  

Y = { X y e C e :  y~EIR}, 

= { Xe Be: Xe >-- 0},  

= { ~ X e g e :  x e 2> 0}, 

and remark that X has a natural structure as a cone on a simplex. Indeed, the (open) 
faces of  Y~ correspond to subsets A' c A, where the face relation holds on A rel A'. A 
face F o f X  is said to be finite if the corresponding subset A' = {e: x e :4=0} of  A is an 
i. c.d., and we define 

X + =J~ w {faces F of  X: F i s  finite} c X .  

We regard .Y-~ as the subset of  IR~+ ~ IR e determined by the coupling equations 
(as in Proposition 3,5), and consider the projection 11 of IRe along Y onto X. 

Theorem 5.4. For each i.t. A of Fg, the projection H induces a homeomorphism 

H: cg (zl) ---,X + 

which maps c~ ( A) to ~.  I f  A ' c A is an i. c. d., then H maps ~ ( A') to the corresponding 
(open) finite face of X +. 

The argument involves an "energy functional" 

K: IRe+ -+ IR 

: z ~ X (ln ~B/76) 2 , 

where the sum is over all e cA and e, fl, 7, 6 denote the h-lengths of  the ends of A on 
which e abuts (see Fig. 5.2). Clearly, K is non-negative, homogeneous, and smooth; 
furthermore, K(z) = 0 if and only if z satisfies the coupling equations. 

Suppose z sIRe+ and consider the affine subspace Y~= { y + z :  y sY and 
y+zEIRe+}. The gradient VK restricts to a vector-field, denoted VKIy , on Yz, 
consider the negative-time flow z t = (VK[v)_t(z), so energy is decreasing along 
trajectories (the system is "dissipative"). 

Claim 1. Fix z e IRe+. If  Hz ~X +, then l imz t = zoo exists, where zoo ~ IRe+. 

Proof. Since K is homogeneous, the limit [zoo] ~ P IRe exists projectively, and there 
are two cases: either [zoo]sPIRe, or perhaps [Zoo]eP[(IR+ w{0}) ~ -  IRe+]. To 
prove the claim, we show that the second case is absurd for IIz ~X ÷. To this end, 
suppose [zt] ~ P IRe+ are normalized by the condition sup {z t (E)} = 1. Notice that 
IIz  t = IIz  ~X + by definition, z~e 

Suppose zt(A)--,,O for some a r ceeA  with adjacent ends A, B, C, D (as in 
Fig. 5.2). Since z, is dissipative, in case (a), we must have z,(C)--,'O or zt(D)--+O; in 
case (b), z, (D) -+ 0. There is thus a cycle of triangles (1})~ with boundary (bj)] so that 
z, (Bj)--+ 0, j = 1, . . . ,  n, where Bj is the end of  A which is opposite bj in T~, 
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Now, for any z ~ IR~+ with H z  = ff, xeBe, we easily compute that 

x~ =½(c~+/~+~+6-8-~o) 

in case (a), and x, = ½fl in case (b). In particular, i fz  vanishes on the ends opposite a 
cycle of  triangles (Tj)] as above, then the sum 

j = l  j = l  

telescopes. 
Finally, 

I I z c X  +, 
since Nz~(B~)~O, it follows that Zxej vanishes, which contradicts 

Claim 2. If  x c X +, then Yx 4= 0. 

Proof. The proof  is by induction on the number N of  vanishing coordinates, and 
the basis step N = 0 is trivial. For  the induction, suppose first that e separates two 
triangles of A and adopt the notation of Fig. 5.2a for the nearby ends and h-lengths. 
If, for instance, e = 0 and 76 4 = 0, then it is easy to deform z along Y and decrease N 
by at least one. Similarly, if e does not separate and we adopt the notation of  
Fig. 5.2b, then if~ =~ 0, 6 = 0 or c~ = 0, 6 + 0, we can again easily decrease N. We are 
led to a cycle of  triangles so that x vanishes on the boundary of the cycle, and this 
contradiction as before establishes the claim. [] 

Let us enumerate the arcs e I, ez, . . . ,  eq cA  once and for all, and define 

(ln ~)2 = (In ~e) 2 = ( ln 
2 

' 76 J 

to be the corresponding term of K; suppose z = x + Zye Ce, x ~ X +, and let Yi = Ye,, 

i = 1  . . . . .  q. 

Claim 3. z c IR~+ is a zero of  K if and only if z is a fixed point of  (VKIv)~. 

Proof  We compute 

~---K= f 2 8q/i 
~Y) i= 1 ~//(In gt~) ~YJ , 

so a zero of K is automatically a zero of [ 7 K I y .  

Conversely, suppose K(z) + 0 for z ~ IRe+. Thus, ~ ( z )  =~ 1 for some e cA, and 
we may choose an arc e so that (ln qJe) 2 is greatest. Suppose first that e does not 
separate two triangles of  A, and adopt the notation of  Fig. 5.2 b for the nearby ends 
and h-lengths. Let us make the convention that C~ has projection (1, - 1) into the 
(~, 6)-subspace. Compute 

1 ~g i ~ t=o ( ~+t~2 1) cz 

so if e does not separate triangles of A, then VKly(z)  4: O. 
In case e does separate triangles of  A, adopt the notation of  Fig. 5.2a for nearby 

ends and h-lengths. Let us suppose first that all the ends pictured in the figure 
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are distinct [case (i) of Fig. 5.1] and make the convention that C e has projection 
(1, I, - 1, - 1) into the (e, fi, 7, 6)-subspace. We compute 

1~3K ~ t=o[ ( t  (O~q-t)(flq-t--)'] 2 (t g(~-l---t)'~ 2 
~ @~(z) ~ n ( y - t ) (5 - t )  J + n fl1132 } 

___( _1 }_fl_l l_7_i 1_5_1) , 0~fl . ] , ~  
m T ~ + ~  In filfie 

1 ~fi 1 07 1 (05 
-4- ~ In In In . 

~,~2 7 ~a2 5 7172 

(1 ~/~V Since (In q~e)2= ~Jn ~ - )  is greatest, we must have OK/3ye(z) + 0 unless 

2 2 v ~  = ~ = v, 2 = v,d = v ~ .  

Furthermore, we may suppose aft > 76, and it follows that 

f l l f l 2 > O ~ e ,  5152 > 7(p. 

Finally, i f f e  {a, b, c, d}, then these inequalities are asymmetric in e and f', it follows 
easily that i f f  is of  type (i), then aX/ay,(z), o. 

Armed with this computation, we can handle the various cases of  Fig. 5.1 
(iii)-(viii) in turn. For instance, if e is of type (iii), then % = e = ill, al = a, f12 = fl, 
and 

I a K ( z  ) 1 ~ ~[~ 2C3ye = (¢~-a__ fl-1) n ~ +  (0c-1 + fl- 1+7-1 +~5-1) in ~ - 

7(° - 5  -1 In 5q0 
- Y - ~  l n 6 ~  ~ 7172' 

0K 
so ~y~ (z) # 0 in this case. We leave the analogous routine computations in cases 

(iv)-(viii) to the untiring reader. 

Claim 4. Each zero z e IR e of VKIy with Hz eX + is non-degenerate with index one. 

Proof Suppose that z~IR~+ satisfies VKlv(z)=O, so K ( z ) = 0  by Claim3. 
Compute 

2 ¢3y k ~3yj (z) = ~Yk i=1 ~, a)5 ,=1 ~ 7  ~Yk ]~ 

and define the matrix 

0q/i z 
A i j = -O-~j , i , j =  1, 2, . . . ,  q. 
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The Hessian o f  K at z is therefore 2AtA, and the claim follows provided A is non-  
singular. 

Adopt ing  the no ta t ion  of  Fig. 5.2, define 

{ c~fl, if e = el is type (a) 
q u =  a , i f e = e i i s t y p e ( b ) ;  

for  i = 1 . . . . .  q, set 

A' = (~.) (Ai~), 

and r emark  that  invertibility of  A'  implies the desired invertibility of  A. To  see tha t  
A' is non-singular,  we suppose that  

i=1 ~TYJh:l 

is a relat ion amongs t  the rows, where 4~ ~ IR. Fix an arc e E A; we show below that  
~e = 0, and there are several cases (those of  Fig. 5.1) depending on the topo logy  
o f  A near  e. These cases are considered in turn. 

Cases (ii) and (iii). Adop t  the no ta t ion  o f  case (iii) and  define 

with 
(a, c, d, e) to be 

C a = C o = ( -  1,1) in (a, f i)-coordinates 

C~ = (1, 1, - 1, - 1) in (7, q~, 61,62)-coordinates ,  

Cd = (1, 1, - 1, - 1) in (6, (o, 71,72)-coordinates ,  

C e as before. C o m p u t e  the four -by- four  minor  o f  A' cor responding to 

~+/~ 

0 
B =  

0 

0 

0 0 a+/3 

7 1 + 7 2 + ~ + 7  6 - ( p  

7 31-}-62+(/0-}- 7 --(/9 

7 6 ~ + / ~ + 7 + 6  

In  part icular ,  the two-by- two minor  corresponding to (a, e) is non-singular .  Since 
the only non-zero entries o f  (Ogta/~y j ]~)q= 1 lie in this subspace,  we conclude that  the 
coefficient 4a = 0 if a is o f  type (ii). 

Fur thermore ,  the three-by- three  minor  corresponding to the (1,1) entry  o f  B 
row-reduces to 

71 J-~2--~-~ @ J- 6 0 -- (0( J- fl~- ~ ~- 6 J- @) 

0 6,+62-6+~o+7 -(e+fl+7+a+qo) 
6 (~+/~+~+a+~) 

Finally, each diagonal  ent ry  is posit ive since Ha EX + and z e IR~+; expanding  by 
minors  a long the first row, each te rm is positive; and  one concludes tha t  the mat r ix  
is non-singular.  I t  follows as before that  ~e = 0 if e is o f  type (iii). 
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Case (iv). 

R. C. P e n n e r  

Adopt  the no ta t ion  o f  case (iv), and define 

Ca = Ca = (1,1, - 1, - 1) in (7, q~, fl, e)-coordinates ,  

Cb = (1,1, - 1, - 1) in (fl~, fl~, e, e)-coordinates,  

C~ = (1,1, - 1, - 1) in (3, ~o, 7~, 7~)-coordinates.  

The four-by-four  minor  of  A'  corresponding to (a, b, c, e) is computed  to be 

f i + e + 7 + c p  

--0{ 

b--0~ 

which row-reduces to 

e + f l + ~ + 7 + ~ o - a  

b - a  

~ + e + f l l + f l 2  0 

0 ~ + q ~ + 7 , + 7 2  - ( P  
-/~ y c~+/~+~+a 

0 0 e - ( ~ + / ~ + ~ + a + ~ o )  

~ + e + f i l + f i 2 - f i  0 e 

0 c~ + ~ o + y ,  + 7 2 -  7 - ( p  

- / ~  >' ( ~ + / ~ + 7 + a )  

Again the d iagonal  is positive, and  one concludes (after expanding by minors  along 
the first row) that  ~e = 0 if  e is o f  type (iv). 

Case (v). This case is computa t iona l ly  identical with the previous one. 

Case (i). Adopt  the no ta t ion  o f  case (i), and define 

C a = (1,1, - 1, - 1) in (~1, % ,  fi, e)-coordinates ,  

C b = (1,1, - 1, - 1) in (ill, fi2, a, s ) -coordinates ,  

C c = (1, 1, - 1, - 1) in (~, ~0, Yl, 72) -coordinates  , 

C d = (1,1, - i ,  - 1) in (?, ~0, a l ,  c~2)-coordinates • 

The  five-by-five minor  o f  A'  cor responding to (a, b, c, d, e) is 

--0{ 

0 

0 

--0{ 

which row-reduces to 

0 

o 

0 

--f i  0 0 e 

f l l + f i 2 + e + e  0 0 

0 ?, +72 +c~+ q~ fi --~o 

0 • (~ 1 "t- (~ 2 -'}- 2 -[- q) - - q )  

- ( / ? ~ + & + e + ~ + / ? )  0 0 0 

e+~+f l ,  +/?2 0 0 

0 71 +72-?+~p+c~ 6 - ~ o - 7 - ~ 1 - c ~  2 0 

0 ~ qo+v+fil+fi  2 -qo 
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Expanding by minors on the first row, one easily concludes that each term is 
positive; as be~bre, we find that ~ = 0 if e is of  type (i). 

Cases (vi)-(viii). These are left as easy exercises. [] 

Proof of Theorem 5.4. Fix x sX + and consider the flow VKIy on g~; Yx #: ~J by 
Claim 2. The cycle of triangles argument in Claim 1 shows that the direction field of  
VK]y extends continuously to 

Y~= {yeY:  x+ye ( IR+ w{0}) g} 

in such a way that the extension points into Y~ at the ideal points'7~ - Y~. Insofar as 
Y~ is convex, Claim 3 together with the Poincar6-Hopf index theorem imply that 
17Kly has a unique attracting zero in Y~. 

We define a map 

a: X+-+cg(A) 

: x ~ lim (VKly)_~x', 
t ~ c O  

where x - x' EY and x' > 0. By Claims 1-4, o" is well-defined; moreover, ~ is clearly 
continuous, and//o c~ is the identity on X ÷ by construction. To finish the proof, we 
show that ~r is onto. To this end, suppose z e IR~+, K (z) = 0, x = IIz e X +, and define 
z ' =  ax. It follows that K(z') = 0 from Claim 3 and z 'e  IRS+ from Claim 1. Claim 4 
finally gives z = z', so o-x = z '= z, as desired. D 

Remark. Because of  the formal similarity with classical mechanics, it would be 
interesting if the dissipative flow on IR~+ were Hamiltonian for some reasonable 
extension to IRe+ of the (known; see [P2]) Weil-Petersson K/ihler form on the 
variety f c  IR~. 

As an immediate consequence of  Theorem 5.4 and Corollary 3.3, we find 

Theorem 5.5. I f  A is an i.c.d, of F~, then C~ (A) is an open cell of dimension 
4~ A. {cg (A): A is an i.c.d, of F~} is a MC~-invariant cell decomposition of ~-~ itself 
Furthermore, the isotropy group ofCg ( A) in MC~ is isomorphic to the (finite) group of 
mapping classes of F~ leaving A invariant. 

By definition, the complex 

cg~= {~(A): A is an i.c.d, of F~} 

is isomorphic to the poset of  i. c.d.'s of F~ with the relation of  inclusion. Following 
Harer [Ha], we define the arc complex d~ of  F~ to be the simplicial complex whose 
p-simplices correspond to collections A of  disjointly embedded families of  (p+  1) 
ideal arcs in F~ so that no arc, nor any pair of  arcs, in A bounds a disc in /~ .  Of 
course, MC~ acts on dO in the natural way. 

Now, the cell-decomposition cg~ of  J 'g induces a cell-decomposition cg~/IR+ of 
~ o / N + ,  and we identify cells of cg~/IR+ with corresponding cells of  d o~ in the 
natural way. Clearly, d ~  - cg~/IR + is a subcomplex of  ~4~, and the identification of  
cells in cg~/iR + with ceUs of d ~  induces a MC~-equivariant inclusion cg~/IR + -+ d~ .  



328 R.C. Penner 

6. Centers of Ceils, Cyclic Euclidean Polygons, and the Construction of Matrix 
Groups 

Suppose that A is an i.t. of F~. The assignment A -= 1 of 2-lengths to each e~ A 
determines a point/~,,(A), called the center of @ (A). It follows immediately from 
naturality (Corollary3.3) that if ~ eMC~, then cp.F,,(A)= Fm(q0-1A). Thus, the 
conformal symmetry group of Fro(A) (preserving the decoration) is naturally 
isomorphic to the topological symmetry group of mapping classes leaving A 
invariant, which is itself naturally isomorphic to the isotropy group of @ (A) in 
MC~. 

Proposition 6.1. Suppose that A is an i.t. of  F~. Then the point Fro(A) = 4) f, ,( A) ~ J-g 
is arithmetic, where 4): J-~-~ ~-~ is the canonical fibration (see Sect. 2). That is, F m (A) 
is conjugate in PSL 2 IR to a subgroup of  finite index in PSLz2g. 

Proof Since F,, = Fro(A) is finite co-area, it suffices to show that F,,,, is conjugate to a 
subgroup of PSLz2L To this end, let T be the triangle in IM with vertices 
2-1/2(1,1,0), 2-1/2 ( - 1 ,  - 1 ,  0), 2-1/2(2,0,2). If  u, v, w ~ L  + are the vertices of  a 
triangle in PSL2• (T), then (u, v) = (v, w) = (w, v) = - 1. The projection of edges 
of triangles in PSLzZ (T) to ~ gives the usual PSL271-invariant tesselation of ID. 

Now, the center igm of Cg(A) arises from 1 -  A ~lRa+, and we recall the 
construction o f N  c L + from A given in Theorem 2.t. In fact, ~ is exactly the set of 
vertices of triangles in PSL 2 Z (T), and the construction furthermore determines a 
representation of F m = 4)/'~,, as a group of  motions preserving N setwise and 
mapping triangles in PSLzTI(T) to triangles in P S L z Z ( T  ). The proposition 
follows. [] 

The argument indicates the fact that the proof of Theorem 2.1 is constructive in 
the sense that if A e IRa+, for A an i.t. of F~, and (A, A) =/~,, e J-~, then one can 
algorithmically compute a matrix group corresponding to 4)F,, e Y-j; of course, one 
can also compute the decoration N c L + from A. For instance, taking the triangle T 
above together with its reflection in the plane x2 = 0 as a fundamental domain for 
the action of ~ (F~), one computes that the corresponding matrix group is 
generated by (_ ~ -21) and (~ 21). 

We wish to extend this to a construction of (decorated and marked) matrix 
groups from the 2-length data {2(e; ig,,): e~A'}  in case A' is an i.c.d, of F~; our 

o ! 

approach also leads to the notion of  the "center" of cg (A). We begin with some 
definitions. 

Let P denote an oriented convex Euclidean n-gon in the plane for n > 3. The 
orientation of P will be used to enumerate the edges in their clockwise order starting 
from some fixed vertex. We say P is r-cyclic i fP  inscribes in a circle of  radius r, and 
we say P is simply cyclic if it is r-cyclic for some r > 0. A cyclic polygon is on-center if 
its interior intersects every diameter of the circumscribing circle; otherwise P is off- 
center. An on-center cyclic polygon has a unique edge which shares an endpoint (or 
perhaps coincides) with an otherwise disjoint diameter; this edge is said to be long. 

If  a, b, c s IR+ satisfy all three strict triangle inequalities, then we define 

Z(a ,b ,c )= l / ( a + b - c ) ( a + e - b ) ( b + c - a ) ( a + b + c ) / a b c .  
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Lemma 6.1. Suppose that P is a triangle with edges (in order) o f  lengths a, b, c. P is 
i-cyclic i f  and only i f  Z (a, b, c) = 1. Furthermore, P is off-center with f irst  edge long 
i f  and only i f  a 2 >= b 2 + c 2. 

Proof  The classical fo rmula  o f  H e r o n  gives a relat ion between the semi-per imeter  
s = ½ ( a +  b +  c) and the area A o f  P, namely  

A = ]//s(s - a) (s-- b) ( s -  c). 

It  is an exercise to verify that  A = abc/4r, where r is the radius o f  the circle which 
circumscribes P. Equat ing  the two expressions for  A and solving for  _ 1 S - 7 proves  
the first part .  The  second par t  follows f rom the law o f  cosines. []  

Theorem 6.2. Suppose that ( b l , . . . ,  b,), n > 3, is a tupte o f  positive numbers 
satisfying the strict triangle inequalities 

b~ < ~, bj, for  i=  l . . . . .  n . 
j4=i 

There exists a unique r > 0 and a unique (up to congruence) r-cyclic polygon P whose 
edge lengths (in order starting f rom some f i xed  vertex o f  P) are bl . . . . .  b,. 

Remark.  The uniqueness par t  o f  the theorem is a version o f  Cauchy ' s  T h e o r e m  on 
rigidity o f  convex surfaces for  cyclic p lanar  polygons.  The  existence par t  fur ther  
gives the tuple (bz)7 as a complete  modulus  for congruence classes o f  cyclic 
polygons.  

Proof  Suppose without  loss that  bl > b~, i =  1, . . . ,  n. The idea o f  the p r o o f  is to 
inscribe in a circle C ~  IR z o f  radius  r > ½b 1 a b roken  arc whose c o m p o n e n t  line 
segments  (i.e., chords of  Cr) have respective lengths bl . . . . .  b,. We then let r va ry  
and  apply  the M e a n  Value T h e o r e m  to  prove  existence. In  fact, i f r  > ½b a , there are 
two ways to inscribe the first arc (o f  length bl)  in Cr so that  the arc has  (r, 0) ~ I R  2 as 
an endpoint :  the two possibilities cor respond to the on- and off-center cases. 

In  fact, we proceed somewhat  more  analytically and  let 

fli(r) = s in -  1 (bi/2r) , i = 1 . . . . .  n, 

be ha l f  the angle subtended by  a chord  o f  length b i in C~; each/3 i (r) is a strictly 
m o n o t o n e  decreasing funct ion o f  r. We define 

/.t (r) = ~z -- fll (r) ,  v (r) = fll (r).  

There is thus an r-cyclic n-gon realizing the tuple (b~)] if  and only if 

co (r) = ~ fli (r) ~ {~ (r), v (r)}, 
i = 2  

where co (r) =/~ (r) gives an on-center  and  09 (r) = v (r) gives an off-center polygon,  
respectively. Meanwhi le , /3  = kt (r) and/3  = v (r) are the upper  and lower sheets o f  
r = ½b 1 csc/3, respectively. 

To  prove  existence, notice that  c~(r) (~(r),  v(r), respectively) is a strictly 
m o n o t o n e  decreasing (increasing, decreasing, respectively) funct ion o f  r, and 



330 R.C. Penner 

Thus, for r large 

/ 
lim v(r)/co(r) = b 1 / ~ b i < 1,  
r - , o a  / i = 2  

lim/~ (r)/co (r) = ~ . 
r ~ o o  

v (r )  < co ( r )  < ~ (r)  ; 

-~-b either on the other hand, for r = 2 1, 

co ( ½ b 0  > ~ = ~ ( ½ b 0  = v ( ½ b 0  
= 2  

[and we conclude that co(r0)= # (r0) for some unique r 0 > }bl], or perhaps 

co (½b~) < 2 

[and we conclude that co (q)  = v @1) for at least one q > ½bj ]. This completes the 
proof  of  existence. 

To prove uniqueness, we first claim that v ( r ) -  co(r) is a strictly monotone 
decreasing function whenever it is non-negative. To this end, compute 

dfii _ 1 
tan ill. 

dr r 

Thus, 

d i ( ~  tanfi _ t a n f l l )  (v (r)  - co ( r ) )  = r , ° 2 

However, an easy induction proves that if 02 + . . .  + 0 m < 0~ < ~-, 0, > 0, for 
i = l , . . . , m ,  m > 3 ,  then  

z .  

tan 02 + . . .  + tan 0,, < tan 01. 

The claim follows. 
A final application of  the Mean Value Theorem shows that co (r) equals one of 

/l (r), v (r) exactly once, as desired. [] 

I f  (b~ . . . . .  b,) is a tuple satisfying all strict triangle inequalities, then we define 
the scaling func t ion  Z (bl . . . .  , b,) to be the reciprocal of  the radius of  the circle 
which circumscribes the cyclic polygon with edge lengths (bl, . . . ,  b,). Z is a smooth 
homogeneous function (of degree one) which is invariant under cyclic permutation 
of  its arguments. The expression for 2; when n = 3 is given before Lemma 6.1. When 
n = 4, one can explicitly write down an (unpleasant) expression for S using the 
result for n = 3 and Ptolemy's Theorem. For  n > 5, it seems difficult to write down 2; 
explicitly. 

b "  Let P be the cyclic polygon realizing the tuple ( ~)1, and suppose that P has 
corresponding edges (ei) ] . We associate a sign to (P, el), i = 1 . . . . .  n, by 

- 1 ,  if P is off-center with e~ long 

e (P, ei) = 0, if e~ is a diameter of  the circumscribing circle 

i, else 
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Consider the triangle T c P  with edges ej, ej+ a, e , ,  where e ,  is a diagonal of P (and 
the subscript j is cyclic). If  e ,  has length ¢t, then 

e (P, e~) = sgn (/12 + b2+1 - b 2) 

by Lemma 6.1 [where sgn (0)= 0 by convention]. 
Now, suppose that A' is an i.c.d, of Fg and/~,, e ~-~. There is then an induced 

Aro ~ IR~' 

where Aro(e) = 2 (ej; l~m). 
Theorem 6.3. I f  A is an i.c.d, of  F~ and Fm ~C~ (A), then Aro uniquely determines 
F,~. Furthermore, c~ ( A) is parametrized by a t lA~  IR~+ so that the following conditions 
hold. 

(i) I f  R is a component o f  F~ - A with (consecutive) edges (e~)] c A ,  then 

A (ei) < ~ A (e~), ,/'or i = 1 , . . . ,  n. 
j + i  

(ii) Suppose that e ~ A separates a n-gon component N of  F~ - A with consecutive 
edges (~ ]  f rom an m-gon component M of  F~ - A with consecutive edges (ei)" ~. Then 

0 < e(N, e) Z (A (J;) . . . . .  A (f,)) 

+ e (M, e) Z (A (e~) . . . . .  A (era)). 

Proof. We begin with necessity of the conditions and suppose that A = A~, ~ IR~+ for 
some/~,, ~@(A). I f R  is as in condition (i), then R lifts to a face 4~ of the hull o f ~ ,  
where Fm= Fm x ~ .  Since the plane of 4~ is elliptic by Proposition 4.4, the ordinary 
triangle inequality holds in this plane in the induced structure. It follows easily that 
condition (i) is necessary. 

To finish the proof of necessity, suppose that e e A is as in the statement of 
condition (ii); we may assume that e = e 1 = f l .  Consider triangles T c  N and S c  M 
with edges (e t f2, f , )  and (et ez, e,), respectively. T and Slift to triangles in IM which 
lie in adjacent faces of  the hull of N. As in the proof of necessity in Theorem 5,1, we 
must have 

0 < A (e2) A (e,) (A 2 (f2) + A2 (f,) - A2 (e)) 

+ A (f2) A (f,)  (A z (e2) + A 2 (e,) - A 2 (e)). 

It requires only arithmetic to check that this is equivalent to 

0 < e(T, e) Z 2 ( A ( e ) , A ( f z ) , A ( f , ) )  

+ e (S, e) S 2 (A (e), A (e2), A (e,)). 

and 

Finally, we have 

Z (A (e), A (e2), A (e,))  = Z (A (e2))•, 

Z (A (e), A (f2), A (f,)) = Z (A (f)) ] ,  

~(T,e)  = ~ (N ,e ) ,  ~(S,e)  = ~ ( m , e ) .  
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The first pair of equalities holds because if the vertices of  a Euclidean triangle 
are in fact (some of) the vertices of  an r-cyclic polygon P, then ~ is r-cyclic as well. 
The second pair of  equalities holds because if e is a common edge of z and P, then 
e (% e) = - 1 if and only ifz is off-center with e long; this, in turn, is equivalent to the 
condition that P is off-center with e long. Necessity of the conditions is therefore 
established. 

To see that A L uniquely determines Fm if F,, ~ @ (A), suppose that R is an n-gon 
as in condition (i). R lifts to a face ~ of  the hull o f ~  in IM, where/~m =Fm x N. Since 
~b lies in an elliptic plane and L ÷ intersects this plane in a round circle in the induced 
structure (see Sect. 1), ~ is a cyclic n-gon with edge lengths (Ar,(ei))~ in the induced 
structure. This n-gon is uniquely determined (up to congruence) by A L as in 
Theorem 6.2. Thus, At, uniquely determines/~m E @ (A). 

To prove the conditions are sufficient, suppose that A ~ IR% satisfies the 
conditions and extend A to an i.t. A' = A of  F~. A' induces a triangulation of  each 
component ofF~ - A. We extend A to A' ~ IRe' in the natural way: suppose that R is 
a component ofF~ - A and e s A' - A is contained in R; A ]oR uniquely determines a 
cyclic Euclidean polygon by Theorem 6.2, and we define A' (e) to be the Euclidean 
length of the diagonal of  this polygon corresponding to e. The assignment A' ~ IR~+ ' 
determines/~,~ E 37"~ by Theorem2.1, and Arm restricts to A on A, as desired. [] 

Remarks. 1) Since the function N is not explicitly known, we are not able to 
algorithmicaUy construct matrix groups from elements of lRa+ for A an arbitrary 
i.c.d, of  F~. However, since the scaling function X is known for quadrilaterals, all 
elements of  codimension-one or -zero (and many high-codimension) cells are 
amenable to algorithmic construction. 

2) IfA is an i.c.d, of  F~ so that there is 1 4= q~ ~MCg with q~(e) = e for all e cA, 
then we say A is "hyperelliptic." It is easy to see that "most"  i.c.d.'s are not 
hyperelliptic: indeed, a hyperelliptic i.c.d. A has the property that either F~ - A is 
connected or consists of  exactly two n-gons, for some n > 3; for instance, any i.c.d. 
of F~ is hyperelliptic. In case A is not hyperelliptic, it follows from the theorem and 
Corollary 3.3 that {f~ ~ c~ (A): there is no 1 4 = (# ~ MC~ with rp, (/~,,) 7 / ~ }  is a set of  
full measure (with respect to Lebesgue measure on 2-lengths) in cg (A). 

3) It follows from the theorem and Corollary 3.3 that the map 

J-~--,{IR¢' A is an i.c.d, of F~} 

C (A (L), Aro) 
is a MC~-equivariant embedding. 

4) It may be of  interest to use the interior angles of cyclic polygons to give 
coordinates on ~(A), for A an i.c.d. 

IfA is an i.c.d, of F~, then we define the center C(A)  e J-~ ofCg (A) to be the point 
of ~-g determined by the assignment I = A e IRe; notice that A satisfies conditions (i) 
and (ii) of the theorem, so in fact,/~,,(A) ~(g(A). Just as before, we have 

Proposition 6.4. I f  A is an i.c.d, of Fg and q) ~MCg, then 

(p, f~ (A) =/~((p-  ~A). 

In particular, the eonformal symmetry group of Fm(A) is isomorphic to the isotropy 
group of ~ (A) in MCg. [] 
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7. The Representation of the Mapping Class Group 

Suppose that a, b, c, cl, e ~ A, so that (a, b, e) and (c, d, e) are (distinct) triangles in A, 
and adopt the (usual) notation of Fig. 7.1 i for nearby ends. Consider the operation 
(called an elementary move) on A indicated in Fig. 7.1 ii, and let A~ denote the 
resulting i.t.. 

Fig. 7.1 

c'=c ~ b':b 

i i )  fii) 

We define the Ptolemy groupoid of F~ to be the groupoid/7~ generated by 
elementary moves. Thus, an element o f / / ~  is an equivalence class of sequence 
(A j)~' (called a "chain") of i. t.'s so that A] + 1 arises from Aj by an elementary move, 
j = 0 . . . . .  m - 1; two chains (A])~' and (Ai) ~ are regarded as equivalent if A 0 = A; 
and Am = A',. There is a natural correspondence between arcs of A s and As+ 1, and 
hence an induced correspondence between arcs in any A i, Ai, 0 < i, j < m. Notice 
that there may be a pair e e A s, e'E As+ ~ of corresponding arcs so that e separates 
triangles of A s, yet e' does not separate triangles of A~+ 1 ; see Fig. 7.2. 

Fig. 7.2 

Proposition 7.1. IlSo acts transitively on i.t.'s of F~. That is, given i.t.'s A, A' there is 
a chain (Aj)~' of i. t.'s with A = A o, A '=  Am. 

Proof. Given two i.t.'s A and A' of F~z consider the correspondingcenters (see 
Sect. 6) F,,,/~,~ ~ ~-~ respectively. Since Y~ is connected, we may join F,, to 1;~ by a 

~$ 
path in Yg. By general position, we may choose a path which meets only the 
codimension-zero and codimension-one faces of our cell-decomposition cg~ of ~-~. 
Since two top-dimensional cells cg (A 1) and %' (A z) share a codimension-one face if 
and only if A 1 and A 2 differ by an elementary move, the proposition follows. [] 

Lemma 7.2. Given e cA separating triangles of  A, adopt the notation above for Ae. 
• E•g, let 

. . . .  = 2 ( e  ; r , . ) ,  

c~ = h (A;/~m) . . . . .  q / =  h (F';/~,) 
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denote the corresponding 2- and h-lengths. Then 

2e 2~, = 2,,~.~ + 2 b 2 a 

and 
e ' = B + 7 ,  ~ ' = e + 6 ,  

~'=~, #'=~#, 

7' e 6'=--e 6. 

Proof The first assertion is simply a restatement of  the "ideal Ptolemy theorem" 
Proposition2.6a. Furthermore, Corollary 3.4 has the immediate consequences 

cp'=c~+ 6 ~ '= f i+7  

7 ' + 6 ' = e  c ( + / 3 ' =  cp, 

and by definition 

~'1~'  = # ' t ~ '  c, 'tP' = ~ ' t , v .  

One easily derives the asserted formulas by direct computation. 

Proposition 7.3. H i admits a faithful rational representation. That is, i f  A, A are i. t.'s 
of F~, then there exists a q-tuple of homogeneous (of  degree one) integral rational 
maps 

R~,~,: IR~+ ~ IRe' 

so that 
(i) For all i.t. 's A1, A2, A 3 of F~ 

R~I,~ = R~2 ,~o R~,~ . 

(ii) R~, 4' is the identity i f  and only i f  A = A '. 

Proof Suppose that A is an i.t. of Fg and consider A ' = A  e for some e t A .  If 
A E IR~+, then Lemma 7.2 describes the rational computation of A' ~ IR A' , so that 
(A, A) and (A ', A') represent the same point of  ~~; say A ' =  R~,~,(A). 

Now, given arbitary i.t.'s A, A' of  F~ choose a chain (Aj)~ so that Ao= A 
and A,, = A ', and define 

the independence of R~,~, on the choice of chain and property (ii) each follows 
directly from the fact that 2-lengths give coordinates on 'Y-i; property (i) holds by 
definition. [] 

Corollary 7.4. Fix an i.t. A of Fg. The natural action of MC~ on 2-length coordinates 
with respect to A is by rational maps. 

Proof As in Corollary 3.3, ifcp ~MCg, then q)- ~ induces a correspondence between 
A and cp- i A, and hence a natural map IR~_ ~ IR_~_ ~(J~. Composing with R~(~), ~ gives 
our rational representation of  ~0 ~MC~. UJ 
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Remarks.  1) As in [Mo], one might think of MCg as a subgroup of finite-index 
in/7~. 

2) Since only the projective class of  2-lengths is needed to compute the 
underlying conformal types (see Remark l after Theorem3.1), we can clear 
denominators in the tuple of rational maps to obtain a faithful representation of 
MC~ as a tuple of integral polynomials. 

3) An interesting and important problem is to discover computable conjugacy 
invariants of a mapping class from its representing polynomials. 

4) Of course, the second part of Lemma 7.1 gives the action of  MC~ on h-length 
parameters for P~ Since h-lengths are (N-valued) ~-analytic functions of  strand 
coordinates on 3-~ (see the end of Sect. 3), we derive a faithful representation of the 
action of MC~ on strand coordinates as a group of analytic motions of ~2q 
preserving the variety determined by the coupling equations. 

Example.  Let c:, c 2, c a , c 4 be the ideal arcs in F~ corresponding to the meridian, 
longitude, one-one, and one-(minus one) curves, respectively, and let A be the ideal 
triangulation of F~ corresponding to {c~} 3. Let :,~ and re denote the right Dehn 
twists along the meridian and longitude, respectively. We have 

~ 1  (cl) = < ,  

~ 2 :  (c3)  = c , ,  

~m 1 (~2) = e , .  

If Fme P~  and 2, = 2 (q; /~) ,  i = 1 . . . . .  4, then 

It follows that the action of %. on the coordinates (2~)~ 3 forJ-~with respect to A is 
given by 

z,.: Oq,,:., ,L) ~ (&, ,~;1 (,~ +,~), &). 

One similarly computes that 

~ . .  ~ (&, &, ;,;1 (~  + ~) ) ,  

describing a faithful rational representation of M C  1 . The underlying projective- 
linear structure of  our representation of M C  1 ~ P S L  z ~. is not understood. 

We comment briefly on the action of MC~ on the set {/~m(A): A is an ideal 
triangulation of F~}. Recall Markov's diophantine equation 

m 2 + m 2 - m 2 = 3 m m l  m2, 

which arises in diophantine approximation (see [Ca]). As a quadratic in m, one 
computes the other root to be 

m ' = 3 m l m z - m = m - i ( m 2 - m 2 ) .  

It is well-known that any Markov triple (i.e., diophantine solution to Markov's 
equation) arises from the Markov triple (1,1,1) by a finite sequence of 
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transformations of the form (m, ml,  m2) ~ (m', ml ,  mz). Comparison of  the 
previous equation with our formula for the action of MC~ shows that the set of 
Markov triples is exactly the set of  coordinates on J-I  so that the corresponding 
point is of  the form/~,,(A) for A an ideal triangulation of  F~. 

Remarks. I) There is a quadratic form classically associated with a Markov triple. 
It turns out that the quadratic form corresponding to F(A')  for A' an ideal 
triangulation of FI is an eigenvector of  a certain hyperbolic transformation in the 
group of  M6bius transformations underlying/~(A') .  

2) Further examples of  such representations are pursued in the addendum. 

Addendum. Surfaces with Distinguished Cusps and the Braid Groups 

Given the surface F~ with s > 1, we choose a cusp x of F~ once and for all. We say an 
ideal arc c in F~ is based at x if c runs from x to x. The 2-length of  e depends on 
Fm ~ J-~ and a choice of  orbit of  parabolic fixed points corresponding to x alone, 
and so ratios of  h-lengths of  ideal arcs based at x depend only on F m. We denote the 
h-length of c with respect to some fixed choice of horocycle about x by h (c; Fro). An 
ideal triangulation A x of F~ based at x is (the isotopy class of) a maximal family of 
disjointly embedded essential ideal arcs based at x. Components of  F ~ -  Ax are 
either triangles or once-punctured mono-gons. There are ( s -  1) components of  the 
latter type and q = 6g - 5 + s components of  A~ itself. 

Theorem A.1. Fix an ideal triangulation A~ of F~ based at x. h-lengths of edges of A~ 
give projective coordinates on 3 o.~-s That is, given a projective tuple in IR%, there is a 
unique F,, e ~-~ realizing the tuple as A-lengths on ideal ares in A~. 

Proof A x extends in a unique way to an ideal triangulation A of  F~ by adjoining to 
A~ one ideal arc in each of  the punctured mono-gons. The h-lengths of  the ideal arcs 
in A -  Ax (relative to some choice of  orbit of  parabolic fixed point for cusps of  
F~) can be chosen independently of the other h-lengths and can be ignored. (The 
h-lengths on A -  Ax serve only to fix the orbits for cusps other than x.) The 
argument of  Theorem 3.1 applies to prove the theorem. D 

Remark. Suppose that z = i /1 /2  (1,1,0) s L + is a point in the orbit corresponding 
to the distinguished cusp x, a condition we can always arrange by conjugating Fm 
inside SO+(1,2) and re-scaling. If (~ ~)EPSLzlR corresponds to ~ F  m with 

(z) = w :# z, then 

(z, w) = (z, 7 (z)) = 1/2 ((1,1,0), (a z + b 2, a z - b e, 2ab)) = - b 2 . 

Thus, if c = F~ is the ideal arc arising from the geodesic in 113 running from ff to ~, 
then 2(C;Fm)= Ib[. 

h-lengths of  ideal arcs based at x are natural for the action of the subgroup 
MC~(x) of MC~ which leaves x invariant. 

Suppose F,~ ~ Yg. Let B =  L + be a choice ofF-orbit  of parabolic fixed point for x, 
and let C be the convex hull of B in IM. The arguments of  Sect. 4 go through to show 
that the faces of ~C inside L + lie in either elliptic or parabolic planes, and in the 
parabolic case, the face is the convex hull of infinitely many points of B lying in the 



Decorated Teichmiiller Space of Punctured Surfaces 337 

orbit of a parabolic subgroup of  Fro. The set of  faces is still locally-finite inside L ÷. 
Let Ax(Fm) be the set of  ideal arcs in F~ arising from edges of ~C inside L + . 

Theorem A.2, I f  Fm• 3"~, then Ax(Fm) consists o f  a finite collection of  di6jointly 
embedded ideal arcs based at x so that components o f  F~ - Ax(F,~) are either simply 
connected or once-punctured. [1 

Such a decomposition A~(F,~) is called an ideal cell decomposition based at x. 
As before, we define 

(4 x) = J - ; :  (rm) x} ; 

the arguments in Sect. 5 apply to show that each ~(A~) is a cell. Moreover, 
Theorem 6.3 holds verbatim, where the conditions (i) and (ii) are interpreted as 
constraints on projective assignments of  positive numbers to the arcs in an ideal cell 
decomposition based at x. 

Theorem A.3. {Cg(Ax): A~ is an ideal cell decomposition based at x} is a 
MCg (x)-invariant cell decomposition of  ~"~. cg (A x) is a face of  cg (A~) if  and only if 

Remark. If  A x is an ideal cell decomposition of  Fg based at x, then we define 
Fm(Ax) E J-~ by the assignment A - 1 of  2-lengths to ideal arcs in A~. The group of  
topological symmetries of  (F~, A~) is the group of  conformal symmetries of  Fm (A~). 

Theorem A.4. MC~(x) admits a faithful representation as a group of  tuples of  
rational maps. 

Proof. If A~ is an ideal triangulation of F~ based at x, extend it to an ideal 
triangulation A of F~ as before. We extend a projective assignment A of positive real 
numbers to ideal arcs in A ~ to a projective assignment on A by setting A (c') = A (c) if 
c' •A  - A  x and {c, c'} determine a triangle in F~. Transitivity of  the elementary 
moves applies as before to give a sequence of  elementary moves relating q~- ~ (A, A) 
to (A, A"), for ~o • MC~(x), where A" is a projective rational function of A; we finally 
simply ignore the values of  A" on ideal arcs in A - A~. 

A move on ideal triangulations based at x which is useful in this context is 
the following. If  Cl •A~ decomposes a once-punctured bi-gon R in F~ with 
aR = {c2, e3} c A~ into a triangle and a once-punctured mono-gon, then we let c[ 
be the other such ideal arc in R and replace c 1 by c~ (see Fig. A.1). 

Remark. We believe that the elementary move of  Sect, 7 together with this new 
move act transitively on ideal triangulations of F~ based at x. 

Fig.A1 
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Lemma A.5. In the notation above, i f  Fm ~ J-~ and 

2~ = 2 (ci; Fro), i = 1,2, 3, 

)[i = )[ ( 4  
then 

)[1 )[1 = ()[2 -~ )[3) 2. 

Proof. The new move is the result of  two elementary moves, and the result ~bllows 
from two applications of  Lemma 7.2. [] 

Since MQ; (x) is isomorphic to the usual braid group on ( s -  1) strands modulo 
its center, Theorem A.4 and LemmaA.5 are useful for giving a faithful 
representation of the braid groups modulo centers. We pursue this in the 

Example. Let {q}~- 1 be a collection of  ideal arcs based at x disjointly embedded in 
F~, s > 4, each bounding a once-punctured mono-gon. The complement of these 
regions in /~ is an ( s -1 ) -gon  R, which we suppose has consecutive edges 
(C1, • ' ", Cs-1)" Let {di} ]-  1 be diagonals of  R, so that {di} separates {% c, + 1} from 
the other edges. (We regard indices as cyclic, so c~ = cl, etc.) 

Fix Fme 9"g) and define 

2i = 2 (q; I~), 

/~i = 2 (di;/~),  i = 1  . . . . .  s - 1 .  

)[ S--1 Proposition A.6. In the notation above, the projective class of  the tuple (~,lzi) 1 
uniquely determines F,, e J-~. 

Proof. The proof  is by induction, and the claim is trivial for s = 4, 5, 6, since in these 
cases {ci, di}] -1 contains an ideal triangulation of/7~ based at x. Let ej be the 
diagonal of R separating {cj_ 1, cj, cj+ 1} from the rest of OR, j = 1 . . . . .  s - 1. An 
application of  Lemma 7.2 gives 

 (ej; r )  0 .  

Cutting R along d 1 yields (a triangle and) an ( s -  2)-gon S whose edge lengths are 
given. The diagonals of  S required for the induction step are either given or among 
the {e~}~-1, and the proposition follows. 

Our approach is to keep track of  the over-determined set (2~,#i)] -~ of  
parameters on J-~ under the action of MC~(x). Let aj denote the half right 
Dehn twist along the non-trivial curve in F~ homotopic to dj ~ {x} in F~ ~ {x}, 
j = 1 . . . . .  s -  1 ; the aj give generators for MC~ (x). The action of af  1 on ()[i)]- 1 
is easily described. Indeed, only )[j and 2~+ 1 are affected, and 

tT? 1: (~j, ,)~j+ 1) ~ (~721 0cj -~-//j)2, )[j), 

o ; 1 ;  ()[j , )[j + l) - 

by Lemma A.5. Similarly, the action of  o-f ~ affects only the parameters #j_ ~ and 
#j+ 1 among {pj}]- 1 Neither ej nor ej+ 1 are affected by af  J, so the effect on #i-  1, 
/~j+ 1 can be computed from the formula in Proposition A.6: 
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(7; 1: (flj-l'flj+l) 

0"? I: (flj- 1' flj+ 1) 
~"~ ~l? l (~j,~j+ l-~ )Cj_ l ~.? l (~.j+12r"l~lj)2 , Vj+ l,,~f" l (~j+ l-+- llj)2 2r- 2j+ l"~i+ 2) . 

Remark. It  is h o p e d  tha t  a s impl i f icat ion o f  the represen ta t ions  would  arise by 
specia l izat ion o f  var iables  a n d / o r  a sui table  depro jec t iv iza t ion  o f  the  coordina tes .  
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